Advertisement

Bacterial Community Composition and Activity in Rhizosphere of Roots Colonized by Arbuscular Mycorrhizal Fungi

  • Petra Marschner
  • Sari Timonen
Part of the Soil Biology book series (SOILBIOL, volume 7)

Keywords

Arbuscular Mycorrhizal Fungus Arbuscular Mycorrhizal Mycorrhizal Fungus Plant Soil Soil Biol 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abbott LK, Robson AD (1977) Growth stimulation of subterranean clover with vesicular-arbuscular mycorrhizas. Aust J Agric Res 28:639–649 CrossRefGoogle Scholar
  2. 2.
    Abdel-Fatah GM, Mohamedin AH (2000) Interactions between a vesicular-arbuscular mycorrhizal fungus (Glomus intraradices) and Streptomyces coelicolor and their effects on sorghum plants grown in soil amended with chitin of brawn scales. Biol Fert Soils 32:401–409 Google Scholar
  3. 3.
    Ames RN, Reid CPP, Ingham ER (1984) Rhizosphere bacterial population responses to root colonization by a vesicular-arbuscular mycorrhizal fungus. New Phytol 96:555–563 Google Scholar
  4. 4.
    Amoralezcano E, Vazquez MM, Azcon R (1998) Response of nitrogen-transforming microorganisms to arbuscular mycorrhizal fungi. Biol Fert Soils 27:65–70 Google Scholar
  5. 5.
    Andrade G, Mihara KL, Linderman RG, Bethlenfalvay GJ (1997) Bacteria from rhizosphere and hyphosphere soils of different arbuscular mycorrhizal fungi. Plant Soil 192:71–79 CrossRefGoogle Scholar
  6. 6.
    Andrade G, Linderman RG, Bethlenfalvay GJ (1998a) Bacterial associations with the mycorhizosphere and hyphosphere of the arbuscular mycorrhizal fungus Glomus mosseae. Plant Soil 202:79–87 Google Scholar
  7. 7.
    Andrade G, Milhara KL, Linderman RG, Bethlenfalvay GJ (1998b) Soil aggregation status and rhizobacteria in the mycorrhizosphere. Plant Soil 202:89–96 Google Scholar
  8. 8.
    Azaizeh HA, Marschner H, Römheld V, Wittenmayer L (1995) Effects of a vesicular-arbuscular mycorrhizal fungus and other soil microorganisms on growth, nutrient acquisition and root exudation of soil-grown maize plants. Mycorrhiza 5:321–327 Google Scholar
  9. 9.
    Azcón R, Barea JM, Hayman DS (1976) Utilisation of rock phosphate in alkaline soils by plants inoculated with mycorrhizal fungi and phosphate solubilizing bacteria. Soil Biol Biochem 8:135–138 Google Scholar
  10. 10.
    Azcón R, Rubio R, Barea JM (1991) Selective interactions between different species of mycorrhizal fungi and Rhizobium meliloti strains, and their effects on growth, N2-fixation (15N) and nutrition of Medicago sativa L. New Phytol 117:399–404 Google Scholar
  11. 11.
    Azcón-Aguilar C, Diaz RRM, Barea JM (1986a) Effect of soil micro-organisms on spore germination and growth of the vesicular-arbuscular mycorrhizal fungus Glomus mosseae. Trans Br Mycol Soc 86:337–340 Google Scholar
  12. 12.
    Azcón-Aguilar C, Gianinazzi-Pearson V, Fardeau JC, Gianinazzi S (1986b) Effect of vesicular-arbuscular mycorrhizal fungi and phosphate-solubilizing bacteria on growth and nutrition of soybean in a neutral-calcareous soil amended with 32P–45Ca-tricalcium phosphate. Plant Soil 96:3–15 Google Scholar
  13. 13.
    Bago B, Azcón-Aguillar C (1997) Changes in the rhizosphere pH induced by arbuscular mycorrhiza formation in onion (Allium cepa L.). Z Pflanz Bodenkunde 160:333–339 Google Scholar
  14. 14.
    Bagyaraj DJ, Menge JA (1978) Interaction between a VA mycorrhiza and Azotobacter and their effects on rhizosphere microflora and plant growth. New Phytol 80:567–573 Google Scholar
  15. 15.
    Bakken LR (1985) Separation and purification of bacteria from soil. Appl Environ Microbiol 49:1482–1487 PubMedGoogle Scholar
  16. 16.
    Barea JM, Azcón-Aguillar C, Azcón R (1987) Vesicular-arbuscular mycorrhiza improve both symbiotic N2 fixation and N uptake from soil as assessed with a 15N technique under field conditions. New Phytol 106:717–725 Google Scholar
  17. 17.
    Barea JM, Andrade G, Bianciotto V, Dowling D, Lohrke S, Bonfante P, O'Gara F, Azcón-Aguillar C (1998) Impact on arbuscular mycorrhiza formation of Pseudomonas strains used as inoculants for biocontrol of soil-borne fungal plant pathogens. Appl Environ Microbiol 64:2304–2307 PubMedGoogle Scholar
  18. 18.
    Becker DM, Bagley ST, Podila GK (1999) Effects of mycorrhizal-associated Streptomyces on growth of Laccaria bicolor, Cenococcum geophilum, and Armillaria species and on gene expression in Laccaria bicolor. Mycologia 91:33–40 Google Scholar
  19. 19.
    Berta G, Fusconi A, Trotta A, Scannerini S (1990) Morphogenetic modifications induced by the mycorrhizal fungus Glomus strain E3 in the root system of Allium porrum L. New Phytol 114:207–215 Google Scholar
  20. 20.
    Berta G, Fusconi A, Trotta A (1993) VA mycorrhizal colonization and the morphology and functioning of root systems. Environ Exp Bot 33:159–173 CrossRefGoogle Scholar
  21. 21.
    Bethlenfalvay GJ, Pacovsky RS, Bayne HG, Stafford AE (1982) Interactions between nitrogen fixation, mycorrhizal colonization, and host plant growth in the Phaseolus-Rhizobium-Glomus symbiosis. Plant Physiol 70:446–450 Google Scholar
  22. 22.
    Bianciotto V, Bandi C, Minerdi D, Sironi M, Tichy HV, Bonfante P (1996) An obligately endosymbionitic mycorrhizal fungus itself habors obligately intracellular bacteria. Appl Environ Microbiol 62:3005–3010 PubMedGoogle Scholar
  23. 23.
    Bianciotto V, Lumini E, Lanfranco L, Minerdi D, Bonfante P, Perotto S (2000) Detection and identification of bacterial endosymbionts in arbuscular mycorrhizal fungi belonging to the family Gigasporaceae. Appl Environ Microbiol 66:4503–4509 CrossRefPubMedGoogle Scholar
  24. 24.
    Buwalda JG, Goh KM (1982) Host-fungus competition for carbon as a cause of growth depressions in vesicular-arbuscular mycorrhizal ryegrass. Soil Biol Biochem 14:103–106 CrossRefGoogle Scholar
  25. 25.
    Christensen H, Jakobsen I (1993) Reduction of bacterial growth by a vesicular-arbuscular mycorrhizal fungus in the rhizosphere of cucumber (Cucumis sativus L.). Biol Fert Soils 15:253–258 CrossRefGoogle Scholar
  26. 26.
    Dixon RK, Garrett HE, Cox GS (1989) Boron fertilization, vesicular-arbuscular mycorrhizal colonization and growth of Citrus jambhiri Lush. J Plant Nutr 12:687–700 Google Scholar
  27. 27.
    Eissenstat DM, Graham JH, Syvertsen JP, Drouillard DL (1993) Carbon economy of sour orange in relation to mycorrhizal colonization and phosphorus status. Ann Bot 71:1–10 CrossRefGoogle Scholar
  28. 28.
    Fan TWM, Lane AN, Shenker M, Bartley JP, Crowley DE, Higashi RM (2001) Comprehensive chemical profiling of gramineous plant root exudates using high-resolution NMR and MS. Phytochemistry 57:209–221 PubMedGoogle Scholar
  29. 29.
    Fester T, Maier W, Strack D (1999) Accumulation of secondary compounds in barley and wheat roots in response to inoculation with an arbuscular mycorrhizal fungus and co-inoculation with rhizosphere bacteria. Mycorrhiza 8:241–246 CrossRefGoogle Scholar
  30. 30.
    Filippi C, Bagnoli G, Citernesi AS, Giovannetti M (1998) Ultrastructural spatial distribution of bacteria associated with sporocarps of Glomus mosseae. Symbiosis 24:1–12 Google Scholar
  31. 31.
    Fitter AH (1991) Costs and benefits of mycorrhizas: implications for functioning under natural conditions. Experimentia 47:350–355 CrossRefGoogle Scholar
  32. 32.
    Foster RC (1986) The ultrastructure of the rhizoplane and rhizosphere. Ann Rev Phytopathol 24:211–234 Google Scholar
  33. 33.
    Fraga-Beddiar A, Le Tacon F (1990) Interactions between a VA mycorhizal fungus and Frankia associated with alder (Alnus glutinosa (L.) Gaetn.). Symbiosis 9:247–258 Google Scholar
  34. 34.
    George E, Römheld V, Marschner H (1994). Contribution of mycorrhizal fungi to micronutrient uptake by plants. In: Manthey JA, Crowley DE, Luster DG (eds) Biochemistry of metal micronutrient in the rhizosphere. Lewis Publishers, Boca Raton, pp 93–109 Google Scholar
  35. 35.
    Geurts R, Franssen H (1996) Signal transduction in Rhizobium-induced nodule formation. Plant Physiol 112:447–453 CrossRefPubMedGoogle Scholar
  36. 36.
    Graham JH, Leonard RT, Menge JA (1981) Membrane-mediated decrease of root-exudation responsible for phosphorus inhibition of vesicular-arbuscular mycorrhiza formation. Plant Physiol 68:548–552 Google Scholar
  37. 37.
    Grayston SJ, Wang S, Campbell CD, Edwards AC (1998) Selective influence of plant species on microbial diversity in the rhizosphere. Soil Biol Biochem 30:369–378 CrossRefGoogle Scholar
  38. 38.
    Green H, Larsen J, Olsson PA, Jensen DF, Jakobsen I (1999) Suppression of the biocontrol agent Trichoderma harizianum by mycelium of the arbuscular mycorrhizal fungus Glomus intraradices in root-free soil. Appl Environ Microbiol 65:1428–1434 PubMedGoogle Scholar
  39. 39.
    Gryndler M, Vosatka M, Hrselova H, Catska V, Chvatalova I, Jansa J (2002) Effect of dual inoculation with arbuscular mycorrhizal fungi and bacteria on growth and mineral nutrition of strawberry. J Plant Nutr 25:1341–1358 CrossRefGoogle Scholar
  40. 40.
    Hetrick BAD (1991) Mycorrhizas and root architecture. Experimentia 47:355–362 CrossRefGoogle Scholar
  41. 41.
    Hildebrand U, Janetta K, Bothe H (2002) Towards growth of arbuscular mycorrhizal fungi independent of a plant host. Appl Environ Microbiol 68:1919–1924 Google Scholar
  42. 42.
    Hoffland E, Findenegg GR, Nelemans JA (1989) Solubilization of rock phosphate by rape. II. Local root exudation of organic acids as a response to P starvation. Plant Soil 113:161–165 Google Scholar
  43. 43.
    Ibekwe AM, Kennedy AC (1998) Fatty acid methyl ester (FAME) profiles as a tool to investigate community structure of two agricultural soils. Plant Soil 206:151–161 CrossRefGoogle Scholar
  44. 44.
    Janssen PH, Yates PS, Grinton BE, Taylor PM, Sait M (2002) Improved culturability of soil bacteria and isolation in pure culture of novel members of the divisions Acidobacteria, Actinobacteria, Proteobacteria and Verrumicrobia. Appl Environ Microbiol 68:2391–2396 CrossRefPubMedGoogle Scholar
  45. 45.
    Klyuchnikov AA, Kozhevin PA (1990) Dynamics of Pseudomonas fluorescens and Azospirillum brasiliense populations during the formation of the vesicular-arbuscular mycorrhiza. Microbiology 59:449–452 Google Scholar
  46. 46.
    Kothari SK, Marschner H, Römheld V (1991) Effect of a vesicular-arbuscular mycorrhizal fungus and rhizosphere micro-organisms on manganese reduction in the rhizosphere and manganese concentrations in maize (Zea mays L.). New Phytol 117:649–655 Google Scholar
  47. 47.
    Krishnaraj PU, Sreenivasa MN (1992) Increased root colonization by bacteria due to inoculation of vesicular-arbuscular mycorrhizal fungus in chilli (Capsicum annuum). Zbl Mikrobiol 147:131–133 Google Scholar
  48. 48.
    Kucey RMN, Paul EA (1982) Carbon flow, photosynthesis, and N2 fixation in mycorrhizal and nodulated faba beans (Vicia faba L.). Soil Biol Biochem 14:407–412 Google Scholar
  49. 49.
    Li XL, George E, Marschner H (1991) Extension of the phosphorus depletion zone in VA-mycorrhizal white clover in a calcareous soil. Plant Soil 136:41–48 Google Scholar
  50. 50.
    Liljeroth E, Bååth E, Mathiasson I, Lundborg T (1990) Root exudation and rhizoplane bacterial abundance of barley (Hordeum vulgare L.) in relation to nitrogen fertilization and root growth. Plant Soil 127:81–89 Google Scholar
  51. 51.
    MacDonald RM, Chandler MR, Mosse B (1983) The occurrence of bacterium-like organelles in vesicular-arbuscular mycorrhizal fungi. New Phytol 90:659–663 Google Scholar
  52. 52.
    Mansfeld-Giese K, Larsen J, Bodker L (2002) Bacterial populations associated with mycelium of the arbuscular mycorrhizal fungus Glomus intraradices. FEMS Microbiol Ecol 41:133–140 Google Scholar
  53. 53.
    Marilley J, Aragno M (1999) Phylogenetic diversity of bacterial communities differing in degree of proximity of Lolium perenne and Trifolium repens roots. Appl Soil Ecol 13:127–136 CrossRefGoogle Scholar
  54. 54.
    Marschner P, Baumann K (2003) Changes in bacterial community structure induced by mycorrhizal colonization in split-root maize. Plant Soil 251:279–289 CrossRefGoogle Scholar
  55. 55.
    Marschner P, Crowley DE (1996) Root colonization of mycorrhizal and non-mycorrhizal pepper (Capsicum annuum) by Pseudomonas fluorescens 2–79RL. New Phytol 134:115–122 Google Scholar
  56. 56.
    Marschner P, Crowley DE (1998) Phytosiderophore decrease iron stress and pyoverdine production of Pseudomonas fluorescens Pf-5 (pvd-inaZ). Soil Biol Biochem 30:1275–1280 CrossRefGoogle Scholar
  57. 57.
    Marschner P, Timonen S (2004) Interactions between plant species, mycorrhizal colonization and light intensity on the bacterial community composition in the rhizosphere. Appl Soil Ecol 28:23–36 Google Scholar
  58. 58.
    Marschner P, Crowley DE, Higashi RM (1997) Root exudation and physiological status of a root-colonizing fluorescent pseudomonad in mycorrhizal and non-mycorrhizal pepper (Capsicum annuum L.). Plant Soil 189:11–20 CrossRefGoogle Scholar
  59. 59.
    Marschner P, Crowley DE, Lieberei R (2001) Arbuscular mycorrhizal infection changes the bacterial 16S rDNA community composition in the rhizosphere of maize. Mycorrhiza 11:297–302 Google Scholar
  60. 60.
    Martin JK (1971) Influence of plant species and plant age on the rhizosphere microflora. Aust J Biol Sci 24:1143–1150 Google Scholar
  61. 61.
    Medina A, Probanza A, Gutierrez Mañero FJ, Azcón R (2003) Interactions of arbuscular-mycorrhizal fungi and Bacillus strains and their effects on plant growth, microbial rhizosphere activity (thymidine and leucine incorporation) and fungal biomass (ergosterol and chitin). Appl Soil Ecol 22:15–28 CrossRefGoogle Scholar
  62. 62.
    Merbach W, Mirus E, Knof G, Remus R, Ruppel S, Russow R, Gransee A, Schulze J (1999) Release of carbon and nitrogen compounds by plant roots and their possible ecological importance. J Plant Nutr Soil Sci 162:373–383 CrossRefGoogle Scholar
  63. 63.
    Meyer JR, Linderman RG (1986) Selective influence on populations of rhizosphere or rhizoplane bacteria and actinomycetes by mycorrhizas formed by Glomus fasciculatum. Soil Biol Biochem 18:191–196 Google Scholar
  64. 64.
    Miethling R, Wieland G, Backhaus H, Tebbe CC (2000) Variation of microbial rhizosphere communities in response to crop species, soil origin, and inoculation with Sinorhizobium meliloti L 33. Microbial Ecol 40:43–56 Google Scholar
  65. 65.
    Minerdi D, Fani R, Gallo R, Boarino A, Bonfante P (2001) Nitrogen fixation genes in a endosymbiotic Burkholderia strain. Appl Environ Microbiol 67:725–732 CrossRefPubMedGoogle Scholar
  66. 66.
    Minerdi D, Bianciotto V, Bonfante P (2002) Endosymbiontic bacteria in mycorrhizal fungi: from their morphology to genomic sequences. Plant Soil 244:211–219 CrossRefGoogle Scholar
  67. 67.
    Mosse B (1970) Honey coloured sessile Endogone spores. Changes in fine structure during spore development. Arch Microbiol 74:146–159 Google Scholar
  68. 68.
    Neergaard-Bearden B, Petersen L (2000) Influence of arbuscular mycorrhizal fungi on soil structure and aggregate stability of a vertisol. Plant Soil 218:173–183 Google Scholar
  69. 69.
    Oliver JD (1993) Formation of viable but nonculturable cells. In: Kjelleberg S (ed) Starvation in bacteria. Plenum Press, New York, pp 239–272 Google Scholar
  70. 70.
    Olsson PA, Bååth E, Jakobsen I, Söderstrom B (1996) Soil bacteria respond to presence of roots but not to mycelium of arbuscular mycorrhizal fungi. Soil Biol Biochem 28:463–470 CrossRefGoogle Scholar
  71. 71.
    Olsson PA, Francis R, Read DJ, Söderström B (1998) Growth of arbuscular mycorrhizal mycelium in calcareous dune sand and its interaction with other soil microorganisms as estimated by measurement of specific fatty acids. Plant Soil 201:9–16 CrossRefGoogle Scholar
  72. 72.
    Paulitz TC, Linderman RG (1989) Interactions between fluorescent pseudomonads and VA mycorrhizal fungi. New Phytol 113:37–45 Google Scholar
  73. 73.
    Po C, Cumming JR (1997) Mycorrhizal fungi alter the organic acid exudation profile of red clover rhizospheres. In: Flores HE, Lynch JP, Eissenstat D (eds) Radical biology: advances and perspectives of the function of plant roots. American Society of Plant Physiology, pp 517–519 Google Scholar
  74. 74.
    Poole EJ, Bending GD, Whipps JM, Read DJ (2001) Bacteria associated with Pinus sylvestris-Lactarius rufus ectomycorrhizas and their effects on mycorrhiza formation in vitro. New Phytol 151:743–751 CrossRefGoogle Scholar
  75. 75.
    Posta K, Marschner H, Römheld V (1994) Manganese reduction in the rhizosphere of mycorrhizal and non-mycorrhizal maize. Mycorrhiza 5:119–124 Google Scholar
  76. 76.
    Ramos C, Molbak L, Molin S (2000) Bacterial activity in the rhizosphere analysed at the single-cell level by monitoring ribosome contents and synthesis rates. Appl Environ Microbiol 66:801–809 CrossRefPubMedGoogle Scholar
  77. 77.
    Ravnskov S, Nybroe O, Jakobsen I (1999) Influence of an arbuscular mycorrhizal fungus on Pseudomonas fluorescens DF57 in rhizosphere and hyphosphere soil. New Phytol 142:113–122 CrossRefGoogle Scholar
  78. 78.
    Reinhard S, Martin P, Marschner H (1992) Interactions in the tripartite symbiosis of pea (Pisum sativum L.), Glomus and Rhizobium under non-limiting phosphorus supply. J Plant Physiol 141:7–11 Google Scholar
  79. 79.
    Rengel Z (1997) Root exudation and microflora populations in the rhizosphere of crop genotypes differing in tolerance to micronutrient deficiency. Plant Soil 196:255–260 CrossRefGoogle Scholar
  80. 80.
    Rillig MC, Wright SF, Eviner VT (2002) The role of arbuscular mycorrhizal fungi and glomalin in soil aggregation: comparing effects of five plant species. Plant Soil 238:325–333 CrossRefGoogle Scholar
  81. 81.
    Rovira D (1959) Root excretions in relation to the rhizosphere effect. IV. Influence of plant species, age of plant, light, temperature, and calcium nutrition on exudation. Plant Soil 11:53–64 CrossRefGoogle Scholar
  82. 82.
    Ryan MH (2003) Arbuscular mycorrhizae in wheat and field pea crops on a low P soil: increased Zn uptake but no increase in P uptake or yield. Plant Soil 250:225–239 CrossRefGoogle Scholar
  83. 83.
    Scannerini S, Bonfante P (1991) Bacteria and bacteria like objects in endomycorrhizal fungi (Glomaceae). In: Margulis L, Fester R (eds) Symbiosis as source of evolutionary innovation: speciation and morphogenesis. MIT Press, Cambridge, MA, pp 273–287 Google Scholar
  84. 84.
    Secilia J, Bagyaraj DJ (1987) Bacteria and actinomycetes associated with pot cultures of vesicular-arbuscular mycorrhizas. Can J Microbiol 33:1069–1073 Google Scholar
  85. 85.
    Shachar-Hill Y, Pfeffer PE, Douds D, Osman SF, Doner LW, Ratcliffe RG (1995) Partitioning of intermediary carbon metabolism in vesicular-arbuscular mycorrhizal leek. Plant Physiol 108:7–15 PubMedGoogle Scholar
  86. 86.
    Søderberg KH, Olsson PA, Bååth E (2002) Structure and activity of the bacterial community in the rhizosphere of different plant species and the effect of arbuscular mycorrhizal colonization. FEMS Microbiol Ecol 40:223–231 Google Scholar
  87. 87.
    Sreenivasa MN, Krishnaraj PU (1992) Synergistic interaction between VA mycorrhizal fungi and a phosphate solubilizing bacterium in chilli (Capsicum annuum). Zbl Mikrobiol 147:126–130 Google Scholar
  88. 88.
    Subba Rao NS, Tilak KVBR, Singh CS (1985) Synergistic effect of vesicular-arbuscular mycorrhizas and Azospirillum brasilense on the growth of barley in pots. Soil Biol Biochem 17:119–121 CrossRefGoogle Scholar
  89. 89.
    Tarafdar JC, Marschner H (1994) Phosphatase activity in the rhizosphere and the hyphosphere of VA mycorrhizal wheat supplied with inorganic and organic phosphorus. Soil Biol Biochem 26:387–395 CrossRefGoogle Scholar
  90. 90.
    Tisdall JM (1991) Fungal hyphae and structural stability of soil. Aust J Soil Res 29:729–743 CrossRefGoogle Scholar
  91. 91.
    van Aarle IM, Söderström B, Olsson PA (2003) Growth and interactions of arbuscular mycorrhizal fungi in soils from limestone and acid rock habitats. Soil Biol Biochem 35:1557–1564 Google Scholar
  92. 92.
    van Veen JA, Liljeroth E, Lekkerkerk LJA (1991) Carbon fluxes in plant-soil systems at elevated atmospheric CO2 levels. Ecol Appl 1:175–181 Google Scholar
  93. 93.
    Vancura V, Orozco MO, Graunova O, Prikryl Z (1989) Properties of bacteria in the hyphosphere of a vesicular-arbuscular mycorrhizal fungus. FEMS Microbiol Ecol 29:421–427 Google Scholar
  94. 94.
    Vázquez MM, César S, Azcón R, Barea JM (2000) Interactions between arbuscular mycorrhzizal fungi and other microbial inoculates (Azospirillum, Pseudomonas, Trichoderma) and their effects on microbial population and enzyme activities in the rhizosphere of maize plants. Appl Soil Ecol 15:261–272 Google Scholar
  95. 95.
    Vivas A, Marulanda A, Gomez M, Barea JM, Azcon R (2003) Physiological characteristics (SHD and ALP activities) of arbuscular mycorrhizal colonization as affected by Bacillus thurigiensis inoculation under two phosphorus levels. Soil Biol Biochem 35:987–996 CrossRefGoogle Scholar
  96. 96.
    Wamberg C, Christensen S, Jacobsen I, Mueller AK, Sørensen SJ (2003) The mycorrhizal fungus (Glomus intraradices) affects microbial activity in the rhizosphere of pea plants (Pisum sativum). Soil Biol Biochem 35:1349–1357 CrossRefGoogle Scholar
  97. 97.
    Wang GM, Coleman DC, Freckman DW, Dyer MI, McNaughton SJ, Acra MA, Goeschl JD (1989) Carbon partitioning patterns of mycorrhizal versus non-mycorrhizal plants: real-time dynamic measurements using 11CO2. New Phytol 112:489–493 Google Scholar
  98. 98.
    Waschkies C, Schropp A, Marschner H (1994) Relations between grapevine replant disease and root colonization of grapevine (Vitis sp.) by fluorescent pseudomonads and endomycorrhizal fungi. Plant Soil 162:219–227 CrossRefGoogle Scholar
  99. 99.
    Wyss P, Boller T, Wiemken A (1992) Testing the effect of biological control agents on the formation of vesicular arbuscular mycorhiza. Plant Soil 147:159–162 CrossRefGoogle Scholar
  100. 100.
    Xavier LJC, Germida JJ (2003) Selective interactions between arbuscular mycorrhizal fungi and Rhizobium leguminosarum bv. viceae enhance pea yield and nutrition. Biol Fert Soils 37:261–267 Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Petra Marschner
    • 1
  • Sari Timonen
    • 2
  1. 1.Soil and Land Systems, School of Earth and Environmental SciencesUniversity of AdelaideAdelaideAustralia
  2. 2.Department of Applied BiologyUniversity of HelsinkiHelsinkiFinland

Personalised recommendations