Root Exudates as Determinant of Rhizospheric Microbial Biodiversity

  • Geeta Singh
  • Krishna G. Mukerji
Part of the Soil Biology book series (SOILBIOL, volume 7)

Keywords

Sugar Phosphorus Maize Bacillus Photosynthesis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ahmad I, Malloch D (1995) Interaction of soil microflora with the bioherbicide phosphinothricin. Agr Ecosyst Environ 54:165–174 CrossRefGoogle Scholar
  2. 2.
    Ahrenholtz I, Harms K, de Vries J, Wackernagel W (2000) Increased killing of Bacillus subtilis on hair roots of transgenic T4-lysozyme-producing potatoes. Appl Environ Microbiol 66:1862–1865 CrossRefPubMedGoogle Scholar
  3. 3.
    Araujo MAV, Mendonca-Hagler LC, Hagler AN, van Elsas JD (1994) Survival of genetically modified Pseudomonas fluorescens introduced into subtropical soil microcosms. FEMS Microbiol Ecol 13:205–216 Google Scholar
  4. 4.
    Azaizeh HA, Marschner H, Romheld V, Wittenmayer L (1995) Effects of a vesicular arbuscular mycorrhizal fungus and other soil microorganisms on growth, mineral nutrient acquisition and root exudation of soil grown maize plants. Mycorrhiza 5:321–327 Google Scholar
  5. 5.
    Azcon R, Ocampo JA (1984) Effect of root exudation on VA mycorrhizal infection at early stages of plant growth. Plant Soil 82:133–138 Google Scholar
  6. 6.
    Bachmann G, Kinzel H (1992) Physiological and ecological aspects of the interactions between plant roots and rhizosphere soil. Soil Biol Biochem 24:543–552 CrossRefGoogle Scholar
  7. 7.
    Bansal M, Mukerji KG (1994) Positive correlation between VAM induced changes in root exudation and mycorrhizosphere mycoflora. Mycorrhiza 5:39–44 Google Scholar
  8. 8.
    Becard G, Piche Y (1989) New aspects on the acquisition of biotrophic status by a vesicular-arbuscular mycorrhizal fungus, Gigaspora margarita. New Phytol 112:77–83 Google Scholar
  9. 9.
    Becard G, Piche Y (1990) Physiological factors determining vesicular-arbuscular mycorrhizal formation in host and nonhost Ri T-DNA transformed roots. Can J Bot 68:1260–1264 Google Scholar
  10. 10.
    Berg G, Nicotte R, Anette S, Leo E, Angela Z, Korndia S (2002) Plant dependent genotypic and phenotypic diversity of antagonistic rhizobacteria isolated from different verticillium host plants. Appl Environ Microbiol 68:3328–3338 PubMedGoogle Scholar
  11. 11.
    Boeuf-Tremblay V, Plantureux S, Guckert A (1995) Influence of mechanical impedance on root exudation of maize seedlings at two development stages. Plant Soil 172:279–287 CrossRefGoogle Scholar
  12. 12.
    Bolton H, Frederickson JK, Elliott LF (1992) Microbial ecology of the rhizosphere. In: Metting FB (ed) Soil microbial ecology. Marcel Dekker, New York, pp 27–36 Google Scholar
  13. 13.
    Bonfante-Fasolo P (1988) The role of the cell wall as a signal mycorrhizal associations, In: Scannerini S, Bonfante-Fasolo P, Pearson G (eds) Cell to signals in plant, animal and microbial symbiosis. Springer, Berlin Heidelberg New York, pp 219–235 Google Scholar
  14. 14.
    Brimecombe MJ, de Leij FA, Lynch JM (2001) The effect of root exudates on rhizosphere microbial communities. In: Pinton R, Varanini Z, Nannipieri P (eds) The rhizosphere. Biochemistry and organic substances at the soil-plant interface. Marcel Dekker, New York, pp 95–140 Google Scholar
  15. 15.
    Carelli M, Gnocchi S, Fancelli S, Mengoni A, Paffetti D, Scotti C, Bazzicalupo M (2000) Genetic diversity and dynamics of Sinorhizobium meliloti populations nodulating different alfalfa cultivars in Italian soils. Appl Environ Microbiol 66:4785–4789 CrossRefPubMedGoogle Scholar
  16. 16.
    Chantigny MH, Prevost D, Angers DA, Vezina LP, Chalifour FP (1996) Microbial biomass and N transformations in two soils cropped with annual and perennial species. Biol Fert Soils 21:239–244 Google Scholar
  17. 17.
    Christiansen-Weniger C (1996) Endophytic establishment of Azorhizobium caulinodans through auxin-induced tumors of rice (Oryza sativa L.). Biol Fert Soils 21:293–302 Google Scholar
  18. 18.
    Christensen-Weniger C, Groneman AF, vanVeen JA (1992) Associative N2 fixation and root exudation of organic acids from wheat cultivars of different aluminum tolerance. Plant Soil 139:167–174 Google Scholar
  19. 19.
    Cieslinski G, van Rees KCJ, Huang PM (1997) Low molecular weight organic acids released from roots of durum wheat and flax into sterile nutrient solutions. J Plant Nutr 20:753–764 Google Scholar
  20. 20.
    Curl EA, Truelove B (1986) The Rhizosphere. Springer-Verlag, New York Google Scholar
  21. 21.
    Duineveld BM, Rosado A, van Elsas JD, van Veen JA (1998) Analysis of the dynamics of bacterial communities in the rhizosphere of the chrysanthemum via denaturing gradient gel electrophoresis and substrate utilization patterns. Appl Environ Microbiol 64:4950–4957 PubMedGoogle Scholar
  22. 22.
    Duineveld BM, Kowalchuk GA, Keijzer A, van Elsas JD, van Veen JA (2001) Analysis of bacterial communities in the rhizosphere of chrysanthemum via denaturating gradient gel electrophoresis of PCR-amplified 16S rRNA as well as DNA fragments coding for 16S rRNA. Appl Environ Microbiol 67:172–178 CrossRefPubMedGoogle Scholar
  23. 23.
    Dunfield KE, Germida JJ (2001) Diversity of bacterial communities in the rhizosphere and root interior of field-grown genetically modified Brassica napus. FEMS Microbiol Ecol 38:1–9 Google Scholar
  24. 24.
    Falchini L, Naumova N, Kuikman PJ, Bloem J, Nannipieri P (2003) CO2 evolution and denaturing gradient gel electrophoresis profiles of bacterial communities in soil following addition of low molecular weight substrates to simulate root exudation. Soil Biol Biochem 36:775–782 Google Scholar
  25. 25.
    Franken P, Gnadinger F (1994) Analysis of parsley arbuscular endomycorrhiza: infection development and mRNA levels of defence-related genes. Mol Plant Microbe Interact 7:612–620 Google Scholar
  26. 26.
    Fromin N, Achouak W, Thiery JM, Heulin T (2001) The genotypic diversity of Pseudomonas brassicacearum populations isolated from roots of Arabidopsis thaliana: influence of plant genotype. FEMS Microbiol Ecol 37:21–29 Google Scholar
  27. 27.
    Giovannetti M, Avio L, Sbrana C, Citernesi AS (1993a) Factors affecting appressorium development in the vesicular-arbuscular mycorrhizal fungus Glomus mosseae (Nicol. & Gerd.) Gerd. & Trappe. New Phytol 123:115–122 Google Scholar
  28. 28.
    Giovannetti M, Sbrana C, Avio L, Citernesi AS, Logi C (1993b) Differential hyphal morphogenesis in arbuscular mycorrhizal fungi during preinfection stages. New Phytol 125:587–593 Google Scholar
  29. 29.
    Gomes NCM, Heuer H, Schonfeld J, Costa R, Mendonca-Hagler L, Smalla K (2001) Bacterial diversity of the rhizosphere of maize (Zea mays) grown in tropical soil studied by temperature gradient gel electrophoresis. Plant Soil 232:167–180 CrossRefGoogle Scholar
  30. 30.
    Gorlenko MV, Majorova TN, Kozhevin PA (1997) Disturbances and their influence on substrate utilization patterns in soil microbial communities. In: Insam H, Rangger A (eds) Microbial communities. Springer, Berlin Heidelberg New York, pp 84–93 Google Scholar
  31. 31.
    Grayston SJ, Wang SQ, Campbell CD, Edwards AC (1998) Selective influence of plant species on microbial diversity in the rhizosphere. Soil Biol Biochem 30:369–378 CrossRefGoogle Scholar
  32. 32.
    Gupta R, Mukerji KG (2002) Root exudate – biology. In: Mukerji KG et al. (eds) Techniques in mycorrhizal studies. Kluwer Academic, Dordrecht, pp 103–131 Google Scholar
  33. 33.
    Gyamfi S, Ulrike P, Michael S, Angela S (2002) Effect of transgenic glufosinate-tolerant oilseed rape (Brassica napus) and the associated herbicide application on eubacterial and Pseudomonas communities in the rhizosphere. FEMS Microbiol Ecol 41:181–190 Google Scholar
  34. 34.
    Hadacek F, Gunther FF (2002) Plant root carbohydrates affect growth behaviour of endophytic microfungi. FEMS Microbiol Ecol 41:161–170 Google Scholar
  35. 35.
    Heuer H, Kroppenstedt RM, Berg G, Smalla K (2002) Effects of T4 lysozyme release from transgenic potato roots on bacterial rhizophere communities are negligible relative to natural factors. Appl Environ Microbiol 68:1325–1335 CrossRefPubMedGoogle Scholar
  36. 36.
    Jaeger CH, Lindow SE, Miller W, Clark E, Firestone MK (1999) Mapping of sugar and amino acid availability in soil around roots with bacterial sensors of sucrose and tryptophan. Appl Environ Microbiol 65:2685–2690 PubMedGoogle Scholar
  37. 37.
    Kochian LV (1995) Cellular mechanisms of aluminum toxicity and resistance in plants. Ann Rev Plt Physiol Plt Mol Biol 46:237–260 Google Scholar
  38. 38.
    Kreitz S, Anderson TH (1997) Substrate utilization patterns of extractable and non-extractable bacterial fractions in neutral and acidic beech forest soils. In: Insam H, Rangger A (eds). Microbial communities. Springer, Berlin Heidelberg New York, pp 140–160 Google Scholar
  39. 39.
    Kuzyakov Y, Cheng W (2001) Photosynthesis controls of rhizosphere respiration and organic matter decomposition. Soil Biol Biochem 33:1915–1925 Google Scholar
  40. 40.
    Laheurte F, Leyval C, Berthelin J (1990) Root exudates of maize, pine and beech seedlings influenced by mycorrhizal and bacterial inoculation. Symbiosis 9:111–116 Google Scholar
  41. 41.
    Latour X, Corberand T, Laguerre G, Allard F, Lemanceau P (1996) The composition of fluorescent pseudomonad population associated with roots as influenced by plant and soil type. Appl Environ Microbiol 62:2449–2456 Google Scholar
  42. 42.
    Lemanceau P, Corberand T, Gardan L, Labour X, Laguerre G, Boeufgras J, Alabouvette C (1995) Effect of two plant species, flax (Linum usitatissinum L.) and tomato (Lycopersicon esculentum Mill.) on the diversity of soil-borne populations of fluorescent pseudomonads. Appl Environ Microbiol 61:1004–1012 Google Scholar
  43. 43.
    Lilley AK, Fry JC, Bailey MJ, Day MJ (1996) Comparison of aerobic heterotrophic taxa isolated from four root domains of mature sugar beet (Beta vulgaris). FEMS Microbiol Ecol 21:231–242 Google Scholar
  44. 44.
    Lottmann J, Berg G (2001) Phenotypic and genotypic characterization of antagonistic bacteria associated with roots of transgenic and non-transgenic potato plants. Microbiol Res 156:75–82 CrossRefPubMedGoogle Scholar
  45. 45.
    Lugtenberg BJJ, Ekkers L, Bloemberg GV (2001) Molecular determinants of rhizosphere colonization by Pseudomonas. Ann Rev Phytopathol 39:461–490 Google Scholar
  46. 46.
    Lukow T, Dunfield PF, Liesack W (2000) Use of the T-RFLP technique to assess and temporal changes in the bacterial community structure within an agricultural soil planted with transgenic and non-transgenic potato plants. FEMS Microbiol Ecol 32:241–247 Google Scholar
  47. 47.
    Mahaffee WF, Kloepper JW (1997a) Temporal changes in the bacterial communities of soil, rhizosphere, and endorhiza associated with field-grown cucumber (Cucumis sativa L.). Microbial Ecol 34:210–223 CrossRefGoogle Scholar
  48. 48.
    Mahaffee WF, Kloepper JW (1997b) Bacterial communities of the rhizosphere and endorhizosphere associated with field-grown cucumber plants inoculated with a plant growth-promoting rhizobacterium or its genetically modified derivative. Can J Microbiol 43:344–353 PubMedGoogle Scholar
  49. 49.
    Marschner H (1984) Nährstoffdynamik in der Rhizosphare. Vortrag Botaniker-Tagung, Wien Google Scholar
  50. 50.
    Marschner H, Treeby M, Romheld V (1989) Role of root-induced changes in the rhizosphere for iron acquisition in higher plants. Z Pflanz Bodenkunde 152:197–204 Google Scholar
  51. 51.
    Marschner P, Crowley DE, Higashi RM (1997) Root exudation and physiological status of a root-colonizing fluorescent pseudomonad in mycorrhizal and non-mycorrhizal pepper (Capsicum annuum L.). Plant Soil 189:11–20 CrossRefGoogle Scholar
  52. 52.
    Martin JK (1971) 14C-labelled material leached from the rhizosphere of plants supplied with 14CO. Aust J Biol Sci 24:1131–1142 Google Scholar
  53. 53.
    McSpadden-Gardener BB, Schroeder KL, Kalloger SE, Raajmakers JM, Thomashow LS, Weller DM (2000) Genotypic and phenotypic diversity of phlD-containing Pseudomonas strain isolated from the rhizosphere of wheat. Appl Environ Microbiol 66:1939–1946 PubMedGoogle Scholar
  54. 54.
    Meharg AA, Killham K (1995) Loss of exudates from the roots of perennial ryegrass inoculated with a range of micro-organisms. Plant Soil 170:345–349 Google Scholar
  55. 55.
    Merbach W, Mirus E, Knof G, Remus R, Ruppel S, Russow R, Gransee A, Schulze J (1999) Release of carbon and nitrogen compounds by plant roots and their possible ecological importance. J Plant Nutr Soil Sci 162:373–383 CrossRefGoogle Scholar
  56. 56.
    Metting BF (1993) Soil microbial ecology. Marcel Dekker, New York Google Scholar
  57. 57.
    Miethling R, Wieland G, Backhaus H, Tebbe CC (2000) Variation of microbial rhizosphere communities in response to crop species, soil origin, and inoculation with Sinorhizobium meliloti L33. Microbial Ecol 40:43–56 Google Scholar
  58. 58.
    Mukerji KG (2002) Rhizosphare biology. In: Mukerji KG et al. (eds) Techniques in mycorrhizal studies. Kluwer Academic, Dordrecht, pp 87–101 Google Scholar
  59. 59.
    Nagahashi G, Douds DD Jr, Abney GD (1996) Phosphorus amendment inhibits hyphal branching of the VAM fungus Gigaspora margarita directly and indirectly through its effect on root exudation. Mycorrhiza 6:403–408 CrossRefGoogle Scholar
  60. 60.
    Nair MG, Safir GR, Siqueira JO (1991) Isolation and identification of vesicular-arbuscular mycorrhiza-stimulatory compounds from clover roots. Appl Environ Microbiol 57:434–439 PubMedGoogle Scholar
  61. 61.
    Neal JL, Atkinson TG, Larson RI (1970) Changes in the rhizosphere microflora of spring wheat induced by disomic substitution of a chromosome. Can J Microbiol 16:153–158 PubMedGoogle Scholar
  62. 62.
    Neal JL, Larson RJ, Atkinson TG (1973) Changes in rhizosphere populations of selected groups of physiological groups of bacteria related to substitution of specific pairs of chromosomes in spring wheat. Plant Soil 39:209–212 CrossRefGoogle Scholar
  63. 63.
    Nehl DB, Allen SJ, Brown JF (1997) Deleterious rhizosphere bacteria: an integrating perspective. Appl Soil Ecol 5:1–20 CrossRefGoogle Scholar
  64. 64.
    Nehls U, Wiese J, Hampp R (2000) External sugar concentration as a signal controlling ectomycorrhizal fungal gene expression. In: Poldila G, Douds DD Jr (eds) Current advances in mycorrhizal research. APS Press, St Paul, Minn, pp 1–26 Google Scholar
  65. 65.
    Nielsen KM, Elsas JD (2001) Stimulatory effects of compounds present in the rhizosphere on natural transformation of Acinetobacter sp. BD413 in soil. Soil Biol Biochem 33:345–357 CrossRefGoogle Scholar
  66. 66.
    Peters NK, Long SR (1988) Alfalfa root exudates and compounds which promote or inhibit induction of Rhizobium meliloti nodulation genes. Plant Physiol 88:396–400 Google Scholar
  67. 67.
    Rengel Z, Ross G, Hirsch P (1998) Plant genotype micro-nutrient influence colonization of wheat roots by soil bacteria. J Plant Nutr 21:99–113 Google Scholar
  68. 68.
    Schilling G, Gransee A, Deubel A, Lezovic G, Ruppel S (1998) Phosphorus availability, root exudates, and microbial activity in the rhizosphere. Z Pflanz Bodenkunde 161:465–478 Google Scholar
  69. 69.
    Smith SE, Read DJ (1997) Mycorrhizal symbiosis. Academic Press, San Diego, Calif Google Scholar
  70. 70.
    Suriyaperruma SP, Koske RE (1995) Attraction of germ tube and germination of spores of the arbuscular mycorrhizal gus Gigaspora gigantea in the presence of roots of maize posed to different concentrations of phosphorus. Mycology 87:772–778 Google Scholar
  71. 71.
    Tawaraya K, Sasai K, Wagatsuma T (1994) Effect of phosphate application on the contents of amino acids and reducing sugars in the rhizosphere and VA mycorrhizal infection of wheat clover. Soil Sci Plant Nutr 40:539–543 Google Scholar
  72. 72.
    Tawaraya K, Watanabe S, Yoshida E, Wagatsuma T (1996a) Effect of onion (Allium cepa) root exudates on the hyphal growth of Gigaspora margarita. Mycorrhiza 6:57–59 Google Scholar
  73. 73.
    Tawaraya K, Saito M, Morioka M, Wagatsuma T (1996b) Effect of the concentration of phosphate on spore germination and hyphal growth of the arbuscular mycorrhizal fungus, Gigaspora margarita Becker & Hall. Soil Sci Plant Nutr 42:667–667 Google Scholar
  74. 74.
    Tesfaye M, Temple SJ, Allan DL, Vance CP, Samac DA (2001) Over-expression of malate dehydrogenase in transgenic alfalfa enhances organic acid synthesis and confers tolerance to aluminum. Plant Physiol 127:1836–1844 CrossRefPubMedGoogle Scholar
  75. 75.
    Tsai SM, Phillips AD (1991) Flavonoids released naturally from alfalfa promote development of symbiotic Glomus spores in vitro. Appl Environ Microbiol 57:1485–1488 PubMedGoogle Scholar
  76. 76.
    Uren NC (2001) Types, amounts, and possible functions of compounds released into the rhizosphere by soil-grown plants. In: Pinton R, Varanini Z, Nannipieri P (eds) The rhizosphere. Marcel Dekker, New York, pp 19–40 Google Scholar
  77. 77.
    von der Weid I, Paiva E, Nobrega A, van Elsas JD, Seldin L (2000) Diversity of Paenibacillus polymyxa strains isolated from the rhizosphere of maize planted in Cerrado soil. Res Microbiol 151:369–381 PubMedGoogle Scholar
  78. 78.
    Wardle DA (1992) A comparative assessment of factors which influence microbial biomass carbon and nitrogen levels in soil. Biol Rev 67:321–358 Google Scholar
  79. 79.
    Wei G, Kloepper JW, Tuzun S (1996) Induced systemic resistance to cucumber diseases and increased plant growth by plant-promoting rhizobacteria under field conditions. Phytopathology 86:221–224 Google Scholar
  80. 80.
    Werner D (2001) Organic signals between plants and microorganisms. In: Pinton R, Varanini Z, Nannipieri P (eds) Rhizosphere, biochemistry and organic substances at the soil-plant interface. Marcel Dekker, New York, pp 197–222 Google Scholar
  81. 81.
    Wiehe W, Hoflich G (1995) Survival of plant growth promoting rhizosphere bacteria in the rhizosphere of different crops and migration to non-inoculated plants under field conditions in north-east Germany. Microbiol Res 150:201–206 Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Geeta Singh
    • 1
  • Krishna G. Mukerji
    • 2
  1. 1.Division of MicrobiologyIndian Agricultural Research InstituteNew DelhiIndia
  2. 2.Department of BotanyUniversity of DelhiDelhiIndia

Personalised recommendations