Interactions Between Ectomycorrhizal Fungi and Rhizospheric Microbes

  • Mondem S. Reddy
  • Tulasi Satyanarayana
Part of the Soil Biology book series (SOILBIOL, volume 7)

Keywords

Biomass Pseudomonas Streptomyces Microbe Chitin 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Altomare C, Norvell WA, Björkman T, Harman GE (1999) Solubilization of phosphates and micronutrients by the plant-growth-promoting and biocontrol fungus Trichoderma harzianum Rifai 1295–22. Appl Environ Microbiol 65:2926–2933 PubMedGoogle Scholar
  2. 2.
    Azcon-Aguilar C, Barea JM (1992) Interactions between mycorrhizal fungi and other rhizosphere microorganisms. In: Allen MJ (ed) Mycorrhizal functioning: an integrative plant-fungal process. Routledge, Chapmann and Hill, New York, pp 163–198 Google Scholar
  3. 3.
    Ba AM, Balaji B, Piche Y (1994) Effect of time of inoculation on in-vitro ectomycorrhizal colonization and nodule initiation in Acacia holosericea seedlings. Mycorrhiza 4:109–119 Google Scholar
  4. 4.
    Barea JM (1997) Mycorrhiza/bacteria interactions on plant growth promotion. In: Ogoshi A, Kobayashi L, Homma Y, Kodama F, Kondon N, Akino S (eds) Plant growth-promoting Rhizobacteria, present status and future prospects. OECD, Paris, pp 150–158 Google Scholar
  5. 5.
    Barea JM, Jeffries P (1995) Arbuscular mycorrhizas in sustainable soil plant systems. In: Hock B, Varma A (eds) Mycorrhiza structure, function, molecular biology and biotechnology. Springer, Berlin Heidelberg New York, pp 521–559 Google Scholar
  6. 6.
    Barea JM, Azcon R, Azcon-Aguilar C (1992) Vesicular-arbuscular mycorrhizal fungi in nitrogen fixing systems. In: Norris JR, Read DJ, Varma AK (eds) Methods in microbiology. Academic Press, London, pp 391–416 Google Scholar
  7. 7.
    Barea JM, Azcon R, Azcon-Aguilar C (2002) Mycorrhizosphere interactions to improve plant fitness and soil quality. Antonie van Leeuwenhoek 81:343–351 CrossRefPubMedGoogle Scholar
  8. 8.
    Bending GD, Read DJ (1995) The structure and function of the vegetative mycelium of ectomycorrhizal plants. V. Foraging behaviour and translocation of nutrients from exploited litter. New Phytol 130:401–409 Google Scholar
  9. 9.
    Bending GD, Poole EJ, Whipps JM, Read DJ (2002) Characterisation of bacteria from Pinus sylvestris-Suillus luteus mycorrhizas and their effects on root-fungus interactions and plant growth. FEMS Microbiol Ecol 39:219–227 Google Scholar
  10. 10.
    Benhamou N, Rey P, Cherif M, Hockenhull J, Tirilly Y (1997) Treatment with the mycoparasite Pythium oligandrum triggers induction of defense-related reactions in tomato roots when challenged with Fusarium oxysporum f. sp. radicis-lycopersici. Phytopathology 87:108–122 Google Scholar
  11. 11.
    Benhamou N, Rey P, Picard K, Tirilly Y (1999) Ultrastructural and cytochemical aspects of the interaction between the mycoparasite Pythium oligandrum and soil-borne plant pathogens. Phytopathology 89:506–517 Google Scholar
  12. 12.
    Bethalenfalvay GJ, Linderman RG (1992) Mycorrhiza in sustainable agriculture. ASA Special Publication, no 54. Madison, Wisconsin Google Scholar
  13. 13.
    Bowen GD, Theodorou C (1979) Interaction between bacteria and ectomycorrhizal fungi. Soil Biol Biochem 11:119–126 CrossRefGoogle Scholar
  14. 14.
    Chanway CP, Radley RA, Holl FB (1991) Inoculation of conifer seed with plant growth promoting Bacillus strains causes increased seedling emergence and biomass. Soil Biol Biochem 23:575–580 Google Scholar
  15. 15.
    Chet I, Ordentlich A, Shapira R, Oppenheim A (1990) Mechanisms of biocontrol of soil-borne plant-pathogens by rhizobacteria. Plant Soil 129:85–92 CrossRefGoogle Scholar
  16. 16.
    Cornet F, Diem HG (1982) Etude comparative de l'efficacite des souches de Rhizobium d'Acacia isolees de sols du Senegal et effet de la double symbiose Rhizobium-Glomus mosseae sur la croissance de Acacia holosericea et A. raddiana. Bois Trop 198:3–15 Google Scholar
  17. 17.
    Davanlou M, Madsen AM, Madsen CH, Hockenhull J (1999) Parasitism of microconidia, chlamydospores and hyphae of Fusarium culmorum by mycoparasitic Pythium species. Plant Pathol 48:352–359 CrossRefGoogle Scholar
  18. 18.
    De Boer W, Gunnewiek PJAK, Lafeber P, Janse JD, Spit BE, Woldendorp JW (1998) Anti-fungal properties of chitinolytic dune soil bacteria. Soil Biol Biochem 30:193–203 Google Scholar
  19. 19.
    De Boer W, Gunnewiek PJAK, Kowalchuk GA, Van Veen JA (2001) Growth of chitinolytic dune soil beta-subclass Proteaobacteria in response to invading fungal hyphae. Appl Environ Microbiol 67:3358–3362 PubMedGoogle Scholar
  20. 20.
    Dunstan WA, Malajczuk N, Dell B (1998) Effects of bacteria on mycorrhizal development and growth of container grown Eucalyptus diversicolor F. Muell seedlings. Plant Soil 201:243–251 CrossRefGoogle Scholar
  21. 21.
    Duponnois R, Garbaye J (1991) Mycorrhization helper bacteria associated with the Douglus-fir-Laccaria laccata synbiosis: effects in asceptic and in glasshouse conditions. Ann Sci Forest 48:239–251 Google Scholar
  22. 22.
    Duponnois R, Garbaye J (1992) Application des BAM (bacteries auxiliaries de la mycorhization) a l'inoculation du Douglas par Laccaria laccata S238 en pepiniere forestiere. Rev For Fr 44:491–500 Google Scholar
  23. 23.
    Duponnois R, Plenchette C (2003) A mycorrhiza helper bacterium enhances ectomycorrhizal and endomycorrhizal symbiosis of Australian Acaia species. Mycorrhiza 13:85–91 PubMedGoogle Scholar
  24. 24.
    Duponnois R, Garbaye J, Bouchard D, Churin JL (1993) The fungus-specificity of mycorrhization helper bacteria (MHBs) used as an alternative to soil fumigation for ectomycorrhizal inoculation of bare-root Douglas-fir planting stocks with Laccaria laccata. Plant Soil 157:257–262 CrossRefGoogle Scholar
  25. 25.
    Duponnois R, Plenchette C, Ba AM (2001) Growth stimulation of seventeen fallow leguminous plants inoculated with G. aggregatum in Senegal. Eur J Soil Biol 37:181–186 CrossRefGoogle Scholar
  26. 26.
    Duschesne LC (1994) Role of ectomycorrhizal fungi in biocontrol. In: Pfleger FL, Linderman RG (eds) Mycorrhizae and plant health. American Phytopathological Society, St Paul, MN, pp 27–45 Google Scholar
  27. 27.
    Finlay RD, Soderstrom B (1989) Mycorrhizal mycelia and their role in soil and plant communities. In: Clarholm M, Bergstrom L (eds) Ecology of Arable Land. Kluwer, Amsterdam, pp 139–148 Google Scholar
  28. 28.
    Fitter AH, Garbaye J (1994) Interactions between mycorrhizal fungi and other soil organisms. Plant Soil 159:123–132 Google Scholar
  29. 29.
    Fogel R, Hunt G (1979) Fungal and arboreal biomass in a western Oregon Douglas-fir ecosystem: distribution patterns and turnover. Can J Forest Res 9:245–256 Google Scholar
  30. 30.
    Founoune H, Duponnois R, Ba AM, Sall S, Branger I, Lorquin J, Neyra M, Chotte JL (2002) Mycorrhiza helper bacteria stimulate ectomycorrhizal symbiosis of Acacia holocerecea with Pisolithus alba. New Phytol 153:81–90 CrossRefGoogle Scholar
  31. 31.
    Frey-Klett P, Pierrat JC, Garbaye J (1997) Location and survival of mycorrhiza helper Pseudomonas fluorescence during establishment of ectomycorrhizal symbiosis between Laccaria bicolor and Douglus fir. Appl Environ Microbiol 63:139–144 Google Scholar
  32. 32.
    Gagnon J (1996) Stimulation of mycorrhization and growth for containerized Jack pine seedlings inoculated with Laccaria bicolor and Pseudomonas fluorescens. In: Azcon C, Barea JM (eds) Mycorrhizas in integrated systems from genes to plant development. European Commission EUR 16728 EN, pp 634–637 Google Scholar
  33. 33.
    Garbaye J (1994) Helper bacteria: a new dimension to the mycorrhizal symbiosis. New Phytol 128:197–210 Google Scholar
  34. 34.
    Garbaye J, Bowen GD (1987) Effect of different microflora on the success of ectomycorrhizal inoculation of Pinus radiata. Can J Forest Res 17:941–943 Google Scholar
  35. 35.
    Garbaye J, Bowen GD (1989) Stimulation of ectomycorrhizal infection of Pinus radiata by some microorganisms associated with the mantle of ectomycorrhizas. New Phytol 112:383–388 Google Scholar
  36. 36.
    Garbaye J, Duponnois R (1992) Specificity and function of mycorrhization helper bacteria (MHB) associated with the Pseudotsuga menziesii-Laccaria laccata symbiosis. Symbiosis 14:335–344 Google Scholar
  37. 37.
    Garbaye J, Duponnois R, Wahl JL (1990) The bacteria associated with Laccaria laccata ectomycorrhizas or sporocarps: effect on symbiosis establishment on Douglas-fir. Symbiosis 9:267–273 Google Scholar
  38. 38.
    Garbaye J, Churin JL, Duponnois R (1992) Effect of substrate disinfection, fungicide treatments and mycorrhization helper bacteria (MHB) on ectomycorrhizal formation of pedunculate oak inoculated with Laccaria laccata in two bare root nurseries. Biol Fert Soils 13:55–57 CrossRefGoogle Scholar
  39. 39.
    Gehring CA, Cobb NS, Whitham TG (1997) Three-way interactions among ectomycorrhizal mutualists, scale insects, and resistant and susceptible pinyon pines. Am Nat 149:824–841 CrossRefGoogle Scholar
  40. 40.
    Germida JJ, Walley FL (1996) Plant growth-promoting rhizobacteria after rooting patterns and arbuscular mycorrhizal fungi colonization of field-grown spring wheat. Biol Fert Soils 23:113–120 Google Scholar
  41. 41.
    Goverde M, van der Heijden MGA, Wiemken A, Sandres IR, Erhardt A (2000) Arbuscular mycorrhizal fungi influence life history traits of a lepidopteran herbivore. Oecologia 125:362–369 CrossRefGoogle Scholar
  42. 42.
    Green H, Larsen J, Olsson PA, Jensen DF, Jakobsen I (1999) Interaction between Trichoderma harzianum and the external mycelium of Glomus intraradices. ICOM2 (abstract) Google Scholar
  43. 43.
    Gupta V, Satyanarayana T (2002) Production of extracellular siderophores by ectomycorrhizal fungi. Indian J Microbiol 42:107–110 Google Scholar
  44. 44.
    Harris KK, Paul EA (1987) Carbon requirements of vesicular arbuscular mycorrhizae. In: Safir GR (ed) Ecophysiology of VA mycorrhizal plants. CRC Press, Boca Raton, FL, pp 93–105 Google Scholar
  45. 45.
    Hartnett DC, Wilson GWT (2002) The role of mycorrhizas in plant community structure and dynamics: lessons from grasslands. Plant Soil 244:319–331 CrossRefGoogle Scholar
  46. 46.
    Haselwandter K (1995) Mycorrhizal fungi-siderophore production. Crit Rev Biotech 15:287–291 Google Scholar
  47. 47.
    Haselwandter K, Winkelmann G (2001) Ferricrocin – an ectomycorrhizal siderophore of Cenococcum geophilum. Biometals 15:73–77 Google Scholar
  48. 48.
    Hetrick BAD, Wilson GWT, Owensby CE (1990) Mycorrhizal influences on big bluestem rhizome regrowth and clipping tolerance. J Range Manage 43:286–290 Google Scholar
  49. 49.
    Hodge A (2000) Microbial ecology of the arbuscular mycorrhiza. Microbial Ecol 32:91–96 Google Scholar
  50. 50.
    Howell CR (1998) The role of antibiosis in biocontrol. In: Harman GE, Kubicek CP (eds) Tricoderma and Gliocladium. Vol 2. Enzymes, biological control and commercial applications. Taylor and Francis, London, pp 173–184 Google Scholar
  51. 51.
    Iwase K (1992) Induction of basidiospore of germination by gluconic acid in the ectomyccorhizal fungus Trichoderma robustum. Can J Bot 70:1234–1238 Google Scholar
  52. 52.
    Jeffries P (1995) Biology and ecology of microparasitism. Can J Bot 73:S1284–S1290 Google Scholar
  53. 53.
    Jeffries P, Barea JM (1994) Biogeochemical cycling and arbuscular mycorrhizas in the sustainability of plant soil system. In: Gianinazzi S, Schuepp H (eds) Impact of Arbuscular mycorrhizas on sustainable agriculture and natural ecosystem. Birkhäuser, Basel, Switzerland, pp 101–115 Google Scholar
  54. 54.
    Kennedy AC, Smith KL (1995) Soil microbial diversity and the sustainability of agricultural soils. Plant Soil 170:75–86 CrossRefGoogle Scholar
  55. 55.
    Kloepper JW (1994) Plant growth promoting rhizobacteria (other systems) In: Okon Y (ed) Azospirillum/plant associations. CRC Press, Boca Raton, pp 111–118 Google Scholar
  56. 56.
    Koide RT (2000) Mycorrhizal symbiosis and plant reproduction. In: Kapulnik Y, Douds DD (eds) Arbuscular mycorrhizas: physiology and functions. Kluwer Academic Publishers, Dordrecht, pp 19–46 Google Scholar
  57. 57.
    Leyval C, Turnau K, Haselwandter K (1997) Effect of heavy metal pollution on mycorrhizal colonization and function: physiological, ecological and applied aspects. Mycorrhiza 7:139–153 CrossRefGoogle Scholar
  58. 58.
    Li CY, Massicote HB, Moore LVH (1992) Nitrogen-fixing Bacillus sp. associated with Douglas-fir tuberculate ectomycorrhizae. Plant Soil 140:35–40 CrossRefGoogle Scholar
  59. 59.
    Linderman RG (1988) Mycorrhizal interactions with the rhizosphere microflora: the mycorhizosphere effect. Phytopathology 78:366–371 Google Scholar
  60. 60.
    Linderman RG (1992) Vescicular-arbuscular mycorrhizae and soil microbial interactions. In: Bethlenfalvay GJ, Linderman RG (eds) Mycorrhizae in sustainable agriculture. ASA Spec Publ, Madison, Wisconsin, pp 45–70 Google Scholar
  61. 61.
    Lo C-T, Nelson EB, Hayes CK, Harman GE (1998) Ecological studies of transformed Trichoderma harzianum strain 1295–22 in the rhizosphere and on the phylloplane of creeping bentgrass. Phytopathology 88:129–136 Google Scholar
  62. 62.
    Marx DH (1972) Ectomycorrhiza as biological deterrents to pathogenic root infections. Ann Rev Phytopathol 10:429–454 Google Scholar
  63. 63.
    Miller RM, Jastrow JD (1994) Vesicular-arbuscular mycorrhizae and biogeochemical cycling. In: Pfleger FL, Linderman RG (eds) Mycorrhizae and plant health. APS Press, St Paul, MN, pp 189–212 Google Scholar
  64. 64.
    Mogge B, Loferer C, Agerer R, Hutzler P, Hartmann A (2000) Bacterial community structure and colonization patterns of Fagus sylvatica L. ectomycorrhizospheres as determined by florescence in situ hybridization and confocal laser scanning microscopy. Mycorrhiza 9:271–278 CrossRefGoogle Scholar
  65. 65.
    Nehl DB, Allen SJ, Brown JF (1996) Deleterious rhizosphere bacteria: an integrating perspective. Appl Soil Ecol 5:1–20 Google Scholar
  66. 66.
    Nurmiaho-Lassila EL, Timonen S, Haahtela K, Sen R (1997) Bacteria colonisation patterns of intact Pinus sylvestris micorrhizospheres in dry pine forest soil: an electron microscopy study. Can J Microbiol 43:1017–1035 Google Scholar
  67. 67.
    O'Neil GA, Chanway CP, Axelrood PE, Radley RA, Holl FB (1992) An assessment of spruce growth response speficity after inoculation with coexistent rhizosphere bacteria. Can J Bot 70:2347–2353 Google Scholar
  68. 68.
    Paulitz TC, Linderman RG (1991) Lack of antagonism between the biocontrol agent Gliocladium-virens and vesicular arbuscular mycorrhizal fungi. New Phytol 117:303–308 Google Scholar
  69. 69.
    Perrin R (1990) Interactions between mycorrhizae and diseases caused by soil-borne fungi. Soil Use Manage 6:189–195 Google Scholar
  70. 70.
    Piccini D, Azcon R (1987) Effect of phosphate-solubilizing bacteria and vesicular arbuscular mycorrhizal (VAM) on the utilization of bayoran rock phosphate by alfalfa plants using a Sand-vermiculite medium. Plant Soil 101:45–50 Google Scholar
  71. 71.
    Poole EJ, Bending GD, Whipps JM, Read DJ (2001) Bacteria associated with Pinus sylvestris-Lactarius rufus ectomycorrhizas and their effects on mycorrhiza formation in vitro. New Phytol 151:741–753 CrossRefGoogle Scholar
  72. 72.
    Probanza A, Lucas JA, Acero N, Gutierrez Manero FJ (1996) The influence of native rhizobacteria on european alder (Alnus Glutinosa (l.) Gaertn.) growth. Plant Soil 182:59–66 CrossRefGoogle Scholar
  73. 73.
    Rasanayagam S, Jeffries P (1992) Production of acid is responsible for antibiosis by some ectomycorrhizal fungi. Mycol Res 96:971–976 Google Scholar
  74. 74.
    Ray J, Bagyaraj DJ, Manjunath A (1981) Influence of soil inoculation with vesicular arbuscular mycorrhizal (VAM) and a phosphate dissolving bacteria on plant growth and 32P uptake. Soil Biol Biochem 13:105–108 Google Scholar
  75. 75.
    Reddell P, Warren R (1986) Inoculation of Acacia with mycorrhizal fungi: potential benefits. In: Turnbull JW (ed) Australian Acaia in developing countries. ACIAR, Canberra, pp 50–53 Google Scholar
  76. 76.
    Reddy MS, Kumar S, Babita K, Reddy MS (2002) Biosolubilization of poorly soluble rock phosphates by Aspegillus tubingensis and A. niger. Bioresource Technol 84:187–189 CrossRefGoogle Scholar
  77. 77.
    Requena N, Perez-Solis E, Azcon-Aguilar C, Jeffries P, Barea JM (2001) Management of indigenous plant-microbe symbioses aids restoration of desertified ecosystems. Appl Environ Microbiol 67:495–498 CrossRefPubMedGoogle Scholar
  78. 78.
    Rodriguez H, Fraga R (1999) Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol Adv 17:319–339 PubMedGoogle Scholar
  79. 79.
    Rojas NS, Perry DA, Li CY, Ganio LM (2002) Interactions among soil biology, nutrition and performance of actinorhizal plant species in the HJ. Andrew's experimental forest of Oregon. Appl Soil Ecol 19:13–26 CrossRefGoogle Scholar
  80. 80.
    Rozycki H, Strzelczyk E, Raczkowska E, Li CY (1993) Effects of different carbon and nitrogen-sources and vitamins on growth of Azospirillum spp. isolated from coniferous ectomycorrhizae and sporocarps of ectomycorrhizal fungi. Acta Microbiol Pol 41:193–201 Google Scholar
  81. 81.
    Rozycki H, Kampert M, Strzelezyk E, Li CY, Perry DA (1994) Effect on different soil bacteria on mycorrhizae formation in Scots pine (pinus sylvestris L.) in vitro studies. Folia For Pol 36:92–102 Google Scholar
  82. 82.
    Rozycki H, Dahm H, Strzelczyk E, Li CY (1999) Diazotrophic bacteria in root-free soil and in the root zone of pine (Pinus sylvestris L.) and oak (Quercus robur L.). Appl Soil Ecol 12:239–250 Google Scholar
  83. 83.
    Shishido M, Massicotte HB, Chanway CP (1996a) Effect of plant growth promoting Bacillus strains on pine and spruce seedling growth and mycorrhizal infection. Ann Bot 77:433–441 CrossRefGoogle Scholar
  84. 84.
    Shishido M, Peterson DL, Massicote HB, Chanway CP (1996b) Pine and spruce seedling growth and mycorrhizal infection after inoculation with plant growth promoting Pseudomonas strains. FEMS Microbiol Ecol 21:109–119 Google Scholar
  85. 85.
    Sidorova II, Velikanov LL (2000) Bioactive substances of agaricoid basidiomycetes and their possible role in regulation of myco- and microbiota structure in soils of forest ecosystems. I. Antibiotic activity of water extracts from basidioms of of several dominant agaricoid basidiomycetes. Mikol Fitopatol 34:11–17 Google Scholar
  86. 86.
    Slankis V (1974) Soil factors influencing formation of mycorrhizae. Ann Rev Phytopathol 12:437–457 Google Scholar
  87. 87.
    Smith DE, Read DJ (1997) Mycorrhizal symbiosis. Academic Press, London Google Scholar
  88. 88.
    Sturz AV, Nowak J (2000) Endophytic communities of rhizobacteria and the strategies required to create yield enhancing associations with crops. Appl Soil Ecol 15:183–190 CrossRefGoogle Scholar
  89. 89.
    Sun YP, Unestam T, Lucas SD, Johanson KJ, Kenne L, Finlay RD (1999) Exudation-reabsorption in mycorrhizal fungi, the dynamic interface for interaction with soil and other microorganisms. Mycorrhiza 9:137–144 CrossRefGoogle Scholar
  90. 90.
    Tian CJ, He XY, Zhong Y, Chen JK (2003) Effect of inoculation with ecto- and arbuscular mycorrhizae and Rhizobium on the growth and nitrogen fixation by black locust, Robinia pseudoacacia. New Forest 25:125–131 CrossRefGoogle Scholar
  91. 91.
    Timonen S, Jorgensen KS, Haahtela K, Sen R (1998) Bacterial community structure at defined locations of Pinus sylvestris-Suillus bovinus and Pinus sylvestris-Paxillus involutus mycorrhizospheres in dry pine forest humus and nursery peat. Can J Microbiol 44:499–513 CrossRefGoogle Scholar
  92. 92.
    Toal ME, Yeomans C, Killham K, Meharg AA (2000) A review of rhizosphere carbon flow modelling. Plant Soil 222:263–281 CrossRefGoogle Scholar
  93. 93.
    Toro M, Azcon R, Barea JM (1997) Improvement of arbuscular mycorrhiza development by inoculation of soil with phosphate-solubilizing rhizobacteria to improve rock phosphate bioavailability (32P) and nutrient cycling. Appl Environ Microbiol 63:4408–4412 PubMedGoogle Scholar
  94. 94.
    Tsantrizos YS, Kope HH, Fortin JA, Ogilvie KK (1991) Antifungal antibiosis from Pisolithus tinctorius. Phytochemistry 30:1113–1118 CrossRefGoogle Scholar
  95. 95.
    Varese GC, Portinaro S, Trotta A, Scannerini S, Luppi-Mosca AM, Martinotti MG (1996) Bacteria associated with Suillus grevillei sporocraps and ectomycorrhizae in vitro growth of the mycobiont. Symbiosis 21:129–147 Google Scholar
  96. 96.
    Vazquez MM, Cesar S, Azcon R, Barea JM (2000) Interaction between arbuscular mycorrhizal fungi and other microbial inoculants (Azospirillum, Pseudomonas, Trichoderma) and their effects on microbial population and enzyme activities in the rhizosphere of maize plants. Appl Soil Ecol 15:261–272 Google Scholar
  97. 97.
    Volpin H, Kapulnik Y (1994) Interaction of Azospirillum with beneficial soil microorganisms. In: Okon Y (ed) Azospirillum/plant associations. CRC Press, Boca Raton, pp 111–118 Google Scholar
  98. 98.
    Watteau F, Berthelin J (1991) Iron solubilization by mycorrhizal fungi producing siderophores. Symbiosis 9:59–67 Google Scholar
  99. 99.
    Werner A, Zadworny M (2003) In vitro evidence of mycoparasitism of the ectomycorrhizal fungus Laccaria laccata against Mucor hiemalis in the rhizosphere of Pinus sylvestris. Mycorrhiza 13:41–47 PubMedGoogle Scholar
  100. 100.
    Whipps JM (1997) Developments in the biological control of soil-borne plant pathogens. Adv Bot Res 26:1–134 Google Scholar
  101. 101.
    Whipps JM (2001) Microbial interactions and biocontrol in the rhizosphere. J Exp Bot (Root special issue) 52:487–511 PubMedGoogle Scholar
  102. 102.
    Xue L, Charest PM, Jabaji-Hare SH (1998) Systematic induction of peroxidases, 1,3-b-glucanases, chitinases and resistance in bean plants by binucleate Rhizoctonia species. Phytopathology 88:359–365 Google Scholar
  103. 103.
    Yadav A, Bhatt M, Dubey AR (2001) Characterization of mycorhizosphere bacteria isolated from deodar and oak seedlings from Kumaun Himalaya. J Ind Bot Soc 80:209–211 Google Scholar
  104. 104.
    Yang CH, Crowley DE (2000) Rhizosphere microbial community structure in relation to root location and plant iron nutritional status. Appl Environ Microbiol 66:345–351 PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Mondem S. Reddy
    • 1
  • Tulasi Satyanarayana
    • 2
  1. 1.Department of BiotechnologyThapar Institute of Engineering & TechnologyPatialaIndia
  2. 2.Division of MicrobiologyUniversity of DelhiNew DelhiIndia

Personalised recommendations