Skip to main content

Direct Push-Technologies

  • Chapter

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

11.6 References

  • Abu-Farsakh MY, Voyiadjis GZ, Tumay MT (1998) Numerical analysis on the miniature piezocone penetration tests (PCPT) in clays. Int J Numer Analyt Meth Geomech 22:791–818

    Article  Google Scholar 

  • ASTM D6001, Standard guide for direct-push water sampling for geoenvironmental investigations. Annual Book of ASTM Standards, v.04.08

    Google Scholar 

  • ASTM D6724, Standard guide for installation of direct push ground water monitoring wells. Annual Book of ASTM Standards, v.04.08

    Google Scholar 

  • ASTM D6725, Standard practice for direct-push installation of prepacked screen monitoring wells in unconsolidated aquifers. Annual Book of ASTM Standards, v.04.08

    Google Scholar 

  • Baligh MM, Levadoux JN (1980) Pore pressure dissipation after cone penetration. Report R80-11 Dept of Civil Engineering, Massachusetts Institute of Technology

    Google Scholar 

  • Binley A, Daily W, Ramirez A (1997) Detecting leaks from environmental barriers using electrical current imaging. J of Environmental & Engineering Geophysics 2:11–21

    Article  Google Scholar 

  • Beck FP, Clark PJ, Puls RW (2000) Location and characterization of subsurface anomalies using a soil conductivity probe. Ground Water Monitoring and Remediation 20:55–59

    Google Scholar 

  • Bujewski G, Rutherford B (1997) The Rapid Optical Screening Tool (ROST TM) Laser-Induced Fluorescence (LIF) System for screening of petroleum hydrocarbons in subsurface soils. — US EPA Innovative Technology Verification Report EPA/600/R-97/020

    Google Scholar 

  • Butler JJ Jr (1998) The design, performance, and analysis of slug tests. Boca Raton, Lewis Publishers

    Google Scholar 

  • Butler JJ Jr (2002) A simple correction for slug tests in small-diameter wells. Ground Water 40:303–307

    Article  Google Scholar 

  • Butler JJ Jr, Dietrich P (2004) New methods for high-resolution characterization of spatial variations in hydraulic conductivity. In: Proc. of International Symposium on Hydrogeological Investigation and Remedial Technology, National Central University, Jhongli, Taiwan, pp. 42–55

    Google Scholar 

  • Butler JJ Jr, Healey JM, McCall GW, Garnett EJ, Loheide SP (2002) Hydraulic tests with direct-push equipment. Ground Water 40:25–36

    Article  Google Scholar 

  • Chiang CY, Loos KR, Klopp RA (1992) Field determination of geological / chemical properties of an aquifer by cone penetrometry and headspace analysis. Ground Water 30:428–436

    Article  Google Scholar 

  • Dietrich P (1999) Konzeption und Auswertung gleichstromgeoelektrischer Tracerversuche unter Verwendung von Sensitivitätskoeffizienten.-Tübinger Geowissenschaftliche Arbeiten (TGA), Reihe C, ISSN 0935-4948, Nr. 50:130

    Google Scholar 

  • Dietrich P, Butler JJ Jr, Yaramanci U, Wittig V, Tiggelmann T, Schoofs S (2003) Field comparison of direct-push approaches for determination of K-profiles. Eos 84: F661

    Google Scholar 

  • Elsworth D (1991) Dislocation analysis of penetration in saturated porous media. Journal of Engineering Mechanics 117: 391–408

    Google Scholar 

  • Elsworth D (1993) Analysis of piezocone dissipation data using dislocation methods. Journal of Geotechnical Engineering 119: 1601–1623

    Article  Google Scholar 

  • Farrar JA (1996) Research and standardization needs for direct push technology applied to environmental site characterization. In: Sampling Environmental Media, ed. by Morgan, J. H., ASTM Special Technical Publication 1282, American Society for Testing and Materials, Philadelphia:, pp 93–107

    Google Scholar 

  • Fejes I, Szabadvary, Vero L (1997) Geophysikalische Penetrationssondierungen, In: Knödel K, Krummel H, Lange G, Handbuch zur Erkundung des Untergrundes von Deponien und Altlasten, Bd. 3-Geophysik, pp 897–922

    Google Scholar 

  • Henebry BJ, Robbins GA (2000) Reducing the influence of skin effects on hydraulic conductivity determinations in multilevel samplers installed with direct push methods. Ground Water 38: 882–886

    Article  Google Scholar 

  • Hinsby K, Bjerg PL, Andersen LJ, Skov B, Clausen EV (1992) A mini slug test method for determination of a local hydraulic conductivity of an unconfined sandy aquifer. Journal of Hydrology 136: 87–106

    Article  Google Scholar 

  • Jacobs JA, Kram M, Lieberman S (2000) Direct push technology sampling methods, In: Standard Handbook of Environmental Science, Health, and Technology, ed. by Lehr, J., McGraw Hill, pp. 11.151–11.163

    Google Scholar 

  • Kram ML, Lorenzana D; Michaelsen J; Major W, Parker L; Antwort C; McHale T (2003) Direct-push wells prove effective for long-term ground water monitoring. Water Well Journal 57:16–19

    Google Scholar 

  • Kram M (2001). Direct-push versus HSA drilled monitoring wells. RPM News, Spring 2001:6–7

    Google Scholar 

  • Kram ML, Lieberman SH, Fee J, Keller AA (2001a) Use of LIF for real-time insitu mixed NAPL source zone detection. Ground Water Monitoring and Remediation 21:67–76

    Google Scholar 

  • Kram ML., Lorenzana D, Michaelsen J, Lory E (2001b) Performance comparison: direct-push wells versus drilled wells. Naval Facilities Engineering Service Center Technical Report, TR-2120-ENV, January 2001

    Google Scholar 

  • Kram ML (1998) Use of SCAPS Petroleum Hydrocarbon Sensor Technology for real-time indirect DNAPL detection. Journal of Soil Contamination 7:73–86

    Google Scholar 

  • Lambson M, Jaobs PA (1995) The use of the Laser Induced Fluorescence Cone for environmental investigations. Proceedings of the International Conference on Cone Penetration Testing, CPT’ 95, Linköping, Sweden

    Google Scholar 

  • Lowry W, Mason N, Chipman V, Kisiel K, Stockton J (1999) In-situ permeability measurements with direct push techniques: Phase II topical report, SEASFTR-98-207 Rept to DOE Federal Energy Tech Center

    Google Scholar 

  • Lunne T, Robertson PK, Powell JJM (1997) Cone penetration testing in geotechnical practice. London, Blackie Academic and Professional

    Google Scholar 

  • Mason N, Lowry W (1999) In-situ permeability measurements with direct push techniques: Phase III topical report, SEASF-TR-99-223 DOE Fed Energy Tech Center

    Google Scholar 

  • McCall W, Butler JJ Jr, Healey JM, Lanier AA, Sellwood SM, Garnett EJ (2002) A dual-tube direct-push method for vertical profiling of hydraulic conductivity in unconsolidated formations. Environmental and Engineering Geoscience: 8:75–84

    Google Scholar 

  • Neuhaus M (2001) Spatial In Situ Delineation of Soil and Groundwater Contamination with Environmental CPT. In: Proceedings of the conference “Field Screening Europe 2001”, Karlsruhe, Germany, pp 71–78

    Google Scholar 

  • Nielsen BJ (1994) New tools to locate and characterize oil spills in aquifers. Symposium on Natural Attenuation of Ground Water, EPA/600/R-94/162

    Google Scholar 

  • Pitkin SE (1998) Detailed subsurface characterization using the Waterloo Profiler. Proc of the 1998 Symp on the Application of Geophysics to Environmental and Engineering Problems, EEGS, pp 53–64

    Google Scholar 

  • Pitkin SE, Cherry JA, Ingleton RA, Broholm M (1999) Field demonstrations using the Waterloo Ground Water Profiler. Ground Water Monitoring and Remediation 19:122–131

    Google Scholar 

  • Pitkin SE, Rossi MD (2000) A real time indicator of hydraulic conductivity distribution used to select groundwater sampling depths (abstract). Eos 81:239

    Google Scholar 

  • Ramirez A, Daily W, LaBrecque D, Owen E, Chesnut D (1993) Monitoring of an underground steam injection process using electrical resistance tomography. Water Resources Research: 29:73–87

    Article  Google Scholar 

  • Robertson PK (1990) Soil classification using the cone penetration test. Can Geotech. J 27: 151–158

    Google Scholar 

  • Robertson PK, Campanella RG (1983a) Interpretation of cone penetration tests: Part I: Sand. Canadian Geotechnical Journal 20:719–733

    Google Scholar 

  • Robertson PK, Campanella RG (1983b) Interpretation of cone penetration tests: Part II: Clay. Canadian Geotechnical Journal 20:734–745

    Google Scholar 

  • Robertson PK, Campanella RG, Gillespie D, Greig J (1986a) Use of piezometer cone data. Proc. ASCE Spec. Conf. In Situ’ 86. Use of In Situ Tests in Geotechnical Engineering. Blacksburg, pp 1263–1280

    Google Scholar 

  • Robertson PK, Campanella RG, Gillespie D, Rice A (1986b) Seismic CPT to measure in situ shear wave velocity. Journal of Geotechnical Engineering 112:791–803

    Article  Google Scholar 

  • Robertson PK, Sully JP, Woeller DJ, Lunne T, Powell JJM, Gillespie DG (1992) Estimating coefficient of consolidation from piezocone tests. Canadian Geotechnical Journal 29:539–550

    Google Scholar 

  • Rogge M, Christy TM, De Weirdt F (2001) Site Contamination Fast De-lineation and Screening Using the Membrane Interface Probe. In: Proceedings “Field Screening Europe 2001”, Karlsruhe, Germany, pp 91–98

    Google Scholar 

  • Scaturo DM, Widdowson MA (1997) Experimental evaluation of a drive-point ground-water sampler for hydraulic conductivity measurement. Ground Water 35:713–720

    Article  Google Scholar 

  • Schulmeister MK, Butler JJ Jr, Healey JM, Zheng L, Wysocki DA, McCall GW (2003) Direct-push electrical conductivity logging for high-resolution hydrostratigraphic characterization. Ground Water Monitoring and Remediation 23:52–62

    Google Scholar 

  • Schulmeister MK, Healey JM, Butler JJ Jr, McCall GW (2004) Direct-push geochemical profiling for assessment of inorganic chemical heterogeneity in aquifers. Journal of Contaminant Hydrology 69:215–232

    Article  Google Scholar 

  • Sellwood SM, Healey JM, Birk S, Butler JJ Jr (2005) Direct-push hydrostratigraphic profiling: Coupling electrical logging and slug tests. Ground Water 43:19–29

    Article  Google Scholar 

  • Smolley M, Kappmeyer JC (1991) Cone penetrometer tests and Hydro-Punch sampling: A screening technique for plume definition. Ground Water Monitoring Review 11:101–106

    Google Scholar 

  • Sørensen K (1989) A method for measurement of the electrical formation resistivity while auger drilling. First break 7:403–407

    Google Scholar 

  • Sørensen K, Pellerin L, Auken E (2003) An auger tool to estimate hydraulic conductivity using a resistivity analogy. ASEG 16th Geophysical Conference and Exhibition, February 2003, Adelaide

    Google Scholar 

  • Spies BR, Ellis RG (1995) Cross-borehole resistivity tomography of a pilot-scale, in-situ vitrification test. Geophysics 60:886–898

    Article  Google Scholar 

  • Sully JP, Robertson PK, Campanella R, Woeller DJ. (1999) An approach to evaluation of field CPTU dissipation data in overconsolidated fine-grained soils. Can. Geotech. J. 36:369–381

    Article  Google Scholar 

  • Terry TA, Woeller DJ, Robertson PK (1996) Engineering soil parameters from seismic cone penetrometer tests; an overview. In: Bell RS; Cramer MH (Eds.) Proceedings of the symposium on the Application of geophysics to engineering and environmental problems pp 1279–1287

    Google Scholar 

  • Thornton D, Ita K, Larson K (1997) Broader use of innovative ground water access technologies. In: Superfund XVIII Conference Proceedings, Vol. 2

    Google Scholar 

  • Tillman N, Leonard L (1993) Vehicle mounted direct push systems, sampling tools and case histories: An overview of an emerging technology, In: Proc. of the 1993 meeting on Petroleum Hydrocarbons and Organic Chemicals in Ground Water, Ground Water Management 17, pp 177–188

    Google Scholar 

  • U.S. A.C.E.-U.S. Army Corps of Engineers (1996) Tri-service site characterization and analysis penetrometer system. Eng. Tech. Letter 1110-1-171

    Google Scholar 

  • U.S. EPA (1995) Rapid Optical Screen Tool (ROST). — Innovative Technology Verification Report EPA/540/R-95/519

    Google Scholar 

  • U.S. EPA (1998) Environmental Technology Verification Report-Soil Sampling Technology-Art’s Manufacturing and Supply-AMS Dual Tube Liner Sampler-EPA 600R-98/093

    Google Scholar 

  • Van den Boogaart J, van Deen JK, Kinneging NA, Meyer JG, van Ree CC (2001) The camera cone as an effective site screening tool. In: Proceedings “Field Screening Europe 2001”, Karlsruhe, Germany, pp 107–111

    Google Scholar 

  • Voyiadjis GZ, Song CR (2003) Determination of hydraulic conductivity using piezocone penetration test. International Journal of Geomechanics 3:217–224

    Article  Google Scholar 

  • White PA (1994) Electrode arrays for measuring groundwater flow direction and velocity. Geophysics 59:192–201

    Article  Google Scholar 

  • White PA (1988) Measurement of ground-water parameters using salt-water injection and surface resistivity. Groundwater 6:179–186

    Google Scholar 

  • Zemo DA, Pierce YG, Gallinatti JD (1994) Cone penetrometer testing and discrete-depth ground water sampling techniques: A cost-effective method of site characterization in a multiple-aquifer setting. Ground Water Monitoring and Remediation 14:176–182

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dietrich, P., Leven, C. (2006). Direct Push-Technologies. In: Kirsch, R. (eds) Groundwater Geophysics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-29387-6_11

Download citation

Publish with us

Policies and ethics