Skip to main content

Nanotechnology for Fuel Cell Applications

  • Chapter
Micromanufacturing and Nanotechnology

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

18.6 References

  • Adzic RR (1998) Recent advances in the kinetics of oxygen reduction. In: Lipkowski J and Ross PN (ed) Electrocatalysis, Wiley-VCH, pp 19–242

    Google Scholar 

  • Adzic RR, Wang JX (1998) Configuration and site of O2 adsorption on the Pt (111) Electrode Surface, J. Phys. Chem. B 102:8988–8993

    CAS  Google Scholar 

  • Aiken-III JD, Finke RG (1999) A review of modern transition-metal nanoclusters: Their synthesis, characterisation, and applications in catalysis, J. Mol. Cat. A: Chemical 145:1–44

    Article  CAS  Google Scholar 

  • Allen MP, Tildesley DJ (1987) Computer simulation of liquids. Oxford University Press

    Google Scholar 

  • Anderson AB (2002) O2 Reduction and co-oxidation at the Pt-electrolyte interface: The role of H2O and OH adsorption bond strengths, Electrochim. Acta 47:3759–3763

    CAS  Google Scholar 

  • Anderson AB, Albu TV (2000) Catalytic effect of Pt on O2 reduction, an Ab initio model including electrode potential dependence, J. Electrochem. Soc. 147:4229–4238

    Article  CAS  Google Scholar 

  • Arico AS, Antonucci PL, Antonucci V (2003) Metal-support interaction in low-temperature fuel cell electrocatalysts. In: Wieckowski A, Savinova ER, Vayenas CG (eds) Catalysis and Electrocatalysis at Nanoparticle Surfaces, New York, Marcel Dekker

    Google Scholar 

  • Bard AJ, Faulkner LR (2001) Electrochemical methods: Fundamentals and applications. New York

    Google Scholar 

  • Bazin D, Mottet C, Treglia G (2000) New opportunities to understand heterogeneous catalysis processes on nanoscale bimetallic particles through synchrotron radiation and theoretical studies. Appl. Catal. A, vol. 200, pp 47–54

    Article  CAS  Google Scholar 

  • Bhetanabotla VR, Steele WA (1990) Computer simulation study of melting in dense oxygen layers on graphite, Phys. Rev. B 41:9480–9488

    Article  Google Scholar 

  • Bockris JOM, Khan SUM (1993) Surface electrochemistry: A molecular level approach. New York, Plenum Press

    Google Scholar 

  • Calvo S, Mainardi DS, Jansen APJ, Lukkien JJ, Balbuena PB (in press) Test of a mechanism for O2 electroreduction on Pt (111) via dynamic Monte Carlo simulations. In: Jungst RG, Weidner JW, Liaw BW and Nechev K (eds) Power Sources Modeling, Pennington, NJ

    Google Scholar 

  • Campbell CT (1990) Bimetallic surface-chemistry, Annu. Rev. Phys. Chem. 41:775–837

    Article  CAS  Google Scholar 

  • Combe N, Jensen P, Pimpinelli A (2000) Changing shapes in the nanoworld. Phys. Rev. Lett. 85:110–113

    Article  CAS  Google Scholar 

  • Cramer CJ (2002) Essentials of computational chemistry: Theories and models. Great Britain, John Wiley & Sons Ltd

    Google Scholar 

  • Delime FJ, Leger JM, Lamy C (1998) Optimisation of platinum dispersion in Pt-PEM Electrodes: Application to the electro-oxidation of ethanol, J. Appl. Electrochem. 28:27

    Article  CAS  Google Scholar 

  • Doye JPK, Wales DJ (1998) Global minima for transition metal clusters described by sutton-chen potentials, New J. Chem. 12:733–744

    Article  Google Scholar 

  • Dresselhaus MS, Dresselhaus G, Avouris P (Eds.) (2001) Carbon nanotubes: Synthesis, structure, properties and applications. Springer-Verlag, New York

    Google Scholar 

  • Eichler A, Hafner J (1997) Molecular precursors in the dissociative adsorption of O2 on Pt (111), Phys. Rev. Lett. 79:4481–4488

    Article  CAS  Google Scholar 

  • Gland JL (1980) Molecular and atomic adsorption of O2 on the Pt (111) and Pt (S)-12 (111) X (111) surfaces, Surf. Sci. 93: 487–514

    Article  CAS  Google Scholar 

  • Gland JL, Sexton BL, Fisher GB (1980) Oxygen interactions with the Pt (111) surface, Surf. Sci. 95:587–602

    Article  CAS  Google Scholar 

  • Hockaday R, Navas C (1999) Micro-fuel cells for portable electronics, Fuel cells 10:912

    Google Scholar 

  • Horch S, Lorensen HT, Helveg S, Laegsgaard E, Stensgaard I, Jacobsen KW, Norskov JK, Besenbecher F (1999) Enhancement of surface self-diffusion of platinum atoms by adsorbed hydrogen, Nature 398:134–136

    Article  CAS  Google Scholar 

  • Huang SP, Balbuena PB (2002) Platinum nanoclusters on graphite substrates: A molecular dynamics study, Mol. Phys. 100:2165–2174

    Article  CAS  Google Scholar 

  • Huang SP, Mainardi DS, Balbuena PB (2003) Structure and dynamics of graphite-supported bimetallic nanoclusters, Surf. Sci. 545:163–179

    Article  CAS  Google Scholar 

  • Iwasita T, Xia X (1996) Adsorption of water at Pt (111) electrode in HclO4 solutions: The potential of zero charge, J. Electroanal. Chem. 411:95–102

    Article  CAS  Google Scholar 

  • Jarvi TD, Stuve EM (1998) Fundamental aspects of vacuum and electrocatalytic reactions of methanol and formic acid on platinum surfaces. In: Lipkowski J and Ross PN (eds) Electrocatalysis, Wiley-VCH, Inc. pp 75–153

    Google Scholar 

  • Jung DH, Lee CH, Kim CS, Shin DR (1998) Performance of a direct methanol polymer electrolyte fuel cell, J. Power Sources 71:169–173

    Article  Google Scholar 

  • Koch W, Holthausen MC (2001) A chemist’s guide to density functional theory. Wiley-CVH

    Google Scholar 

  • Koper M, (1998) A lattice-gas model for halide adsorption on single-crystal electrodes, J. Electroanal. Chem. 450:189–201

    Article  CAS  Google Scholar 

  • Li T, Balbuena PB (2001) Computational studies of the interactions of O2 with Pt clusters, J. Phys. Chem. B 105:9943–9952

    CAS  Google Scholar 

  • Li W, Liang C, Zhou W, Qiu J, Zhou Z, Han H, Wei Z, Sun G, Xin Q (2003) Preparation and characterisation of multi-walled carbon nanotube-supported Pt for cathode catalysts of direct methanol fuel cells, J. Phys. Chem. B 107:6292–6299

    CAS  Google Scholar 

  • Liem SY, Chan KY (1995) Simulation study of platinum adsorption on graphite using the sutton-chen potential, Surf. Sci. 328:119–128

    Article  CAS  Google Scholar 

  • Mainardi DS, Balbuena PB (2001) Surface segregation in bimetallic nanoclusters: geometric and thermodynamic effects, Int, J. Quant. Chem. 85:580–591

    Article  CAS  Google Scholar 

  • Mainardi DS, Calvo S, Balbuena SB, Jansen APJ, Lukkien JJ (2003) Dynamic Monte Carlo simulations of O2 adsorption and reaction on Pt (111), Chem. Phys. Lett. 382:553–560

    Article  CAS  Google Scholar 

  • Markovic NM, Gasteiger HA, Grgur N, Ross PN (1999a) Oxygen reduction reaction on Pt(111): Effects of bromide, J. Electroanal. Chem. 467:157–163

    Article  CAS  Google Scholar 

  • Markovic NM, Ross PN (1999b) Electrocatalysis at well-defined surfaces: Kinetics of oxygen reduction and hydrogen oxidation/evolution on Pt (hkl) electrodes. In: Wieckowski A (ed) Interfacial Electrochemistry: Theory, experiment and applications, New York, Marcel Dekker, pp 821–841

    Google Scholar 

  • Markovic NM, Ross PN (2002) Surface science studies of model fuel cells electrocatalysts. Surf. Sci. Rep. 286: 1–113

    Google Scholar 

  • Markovic NM, Schmidt TJ, Grgur BN, Gasteiger HA, Behm RJ, Ross PN (1999c) Effect of temperature on surface processes at the Pt (111)-liquid interface: Hydrogen adsorption, oxide formation, and CO oxidation, J. Phys. Chem. B 103:8568–8577

    CAS  Google Scholar 

  • Mehta V, Cooper JS (2003) Review and analysis of PEM fuel cell design and Manufacturing, J. Power Sources 114:32–53

    Article  CAS  Google Scholar 

  • Neergat N, Shukla AK, Gandhi KS (2001) Platinum-based alloys as oxygen-reduction catalysts for solid-polymer-electrolyte direct methanol fuel cells, J. Appl. Electrochem. 31(4):373–378

    Article  CAS  Google Scholar 

  • Nolan D, Lutz R, Tanaka L, Davis E, Mullins B (1999) Molecularly chemisorbed intermediates to oxygen adsorption on Pt (111): A molecular beam and electron energy-loss spectroscopy study, J. Chem. Phys. 111:3696–3704

    Article  CAS  Google Scholar 

  • Puglia C, Nilsson A, Hernnas B, Karis O, Bennich P, Martensson N (1995) Physisorbed, chemisorbed and dissociated O2 on Pt (111) studied by different core level spectroscopy methods, Surf. Sci. 342:119

    Article  CAS  Google Scholar 

  • Rafii-Tabar H, Kamiyama H, Cross M (1997) Molecular dynamics simulation of adsorption of Ag particles on a graphite substrate, Surf. Sci. 385:187–19

    Article  CAS  Google Scholar 

  • Stamenkovic V, Markovic NM, Ross PN (2001) Structure-relationships in electrocatalysis: oxygen reduction and hydrogen oxidation reactions on Pt (111) and Pt (100) in solutions containing chloride ions, J. Electroanal. Chem. 500:44–51

    Article  CAS  Google Scholar 

  • Sutton AP, Chen C (1990) Long-range finnis-sinclair potentials. Phil. Mag. Lett. 61:139–146

    Google Scholar 

  • Toda T, Igarashi H, Uchida H, Watanabe M (1999) Enhancement of the electroreduction of oxygen on Pt alloys with Fe, Ni, and Co, J. Electrochem. Soc. 146:3750–3756

    Article  CAS  Google Scholar 

  • Todd BD, Lynden-Bell RM (1993) Surface and bulk properties of metals modeled with sutton-chen potentials, Surf. Sci. 281:191–206

    Article  CAS  Google Scholar 

  • Toshima N, Yonezawa T (1998) Bimetallic nanoparticles-novel materials for chemical and physical applications, New. J. Chem.:1179–1201

    Google Scholar 

  • Wang C, Waje CM, Wang X, Tang JM, Haddon RC, Yan Y (2004) Proton exchange membrane fuel cells with carbon nanotube based electrodes. Nano Lett. 4:345–348

    Article  CAS  Google Scholar 

  • Winkler A, Guo AX, Siddiqui HR, Hagans PL, Yates JT (1988) Kinetics and energetics of oxygen adsorption on Pt (111) and Pt (112): A comparison of flat and stepped surfaces, Surf. Sci. 201:419

    Article  CAS  Google Scholar 

  • Zhou R, Cao P (1992) Molecular cluster analysis of O2 adsorption and dissociation on Pt (111), Phys. Lett. A 169:167

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mainardi, D.S., Mahalik, N.P. (2006). Nanotechnology for Fuel Cell Applications. In: Micromanufacturing and Nanotechnology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-29339-6_18

Download citation

Publish with us

Policies and ethics