Skip to main content

Nanomechanical Cantilever Devices for Biological Sensors

  • Chapter
Micromanufacturing and Nanotechnology

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

13.10 References

  • Arntz Y, Seelig JD, Lang HP, Zhang J, Hunziker P, Ramseyer JP, Meyer E, Hegner M, Gerber C (2003) Label-free protein assay based on a nanomechanical cantilever array, Nanotechnology 14:86

    Article  CAS  Google Scholar 

  • Abedinov N, Grabiec P, Gotszalk T, Ivanov T, Voigt J, and Rangelow IW (2001) Micromachined piezoresistive cantilever array with integrated resistive microheater for calorimetry and mass detection, J. Vac. Sci. Technol. A 19:2884

    CAS  Google Scholar 

  • Alexander S, Hellemas L, Marti O, Schneir S, Elings V, Hansma PK, Longmire M, Gurley J (1989) An atomic-resolution atomic-force microscope implemented using an optical lever. J. Appl. Phys. 65:164

    Article  CAS  Google Scholar 

  • Alvarez M, Calle A, Tamayo J, Lechuga L, Montoya A (2003) Development of nanomechanical biosensors for detection of the pesticide DDT. Biosens. Bioelectron. 18:649

    Article  CAS  Google Scholar 

  • Amantea R, Goodman LA, Pantuso F, Sauer DJ, Varhese M, Villianni TS, White LK (1998) Progress toward an uncooled IR imager with 5-mK NETD, Infrared Technology and Applications, vol. XXIV3436, pp 647

    Google Scholar 

  • Amantea R, Knoedler CM, Pantuso FP, Patel VK, Sauer DJ, Tower JR (1997). In: Orlando, FL (ed) Proc. of the SPIE, vol. 3061, pp 210–215

    Google Scholar 

  • Antonik MD, D’Costa NP, Hoh JH (1997) A biosensor based on micromechanical interrogation of living cells, IEEE Eng. Med. Biol. 16:66

    Article  CAS  Google Scholar 

  • Arntz Y, Seelig JD, Lang HP, Zhang J, Hunziker P, Ramseyer JP, Meyer E, Hegner M and Gerber CH (2003) Label-free protein assay based on a nanomechanical cantilever array, Nanotechnology 14:86–89

    Article  CAS  Google Scholar 

  • Baselt DR, Gil U Lee, Richard J. Colton, J (1996) Biosensor based on force microscope technology, J. Vac. Sci. Technol. B 14:789–793

    Article  CAS  Google Scholar 

  • Baxter LK (1997) Capacitive Sensors, Design and Applications, IEEE Press, New York.

    Google Scholar 

  • Berger R, Delamarche E, Lang HP, Gerber C, Gimzewski JK, Meyer E, Guntherodt HJ (1997) Surface stress in the self-assembly of alkanethiols on gold, Science 276:2021

    Article  CAS  Google Scholar 

  • Berger R, Gerber CH and Gimzewski JK (1996) Analytical methods & instrumentation. Special Issue μ TAS’96, pp 74–77

    Google Scholar 

  • Blanc N, Brugger J, Rooij NF de, Duerig U, (1996) Scanning force microscopy in the dynamic mode using microfabricated capacitive sensors, J. Vac. Sci. Technol. B14:901

    Article  CAS  Google Scholar 

  • Bonaccurso E, Butt H-J, Franz V, Stepputat M, Raiteri R (2000) A new microcantilever-based surface stress sensor for operation in liquids. Cantilever sensors and nanostructures, Heidelberg

    Google Scholar 

  • Brath FG, Humphery JAC (2002) Sensors and sensing in biology and engineering. Springer, New York, pp 337–345

    Google Scholar 

  • Britton CL, Jones RL, Oden PI, Hu Z, Warmack RJ, Smith SF, Bryan WL, Rochelle JM (2000) Multiple-input microcantilever sensors, Ultramicroscopy 82:17–20

    Article  CAS  Google Scholar 

  • Butt HJ, Siedle P, Seifert K, Fendler K, Seeger T,. Bamberg E, Weisenhorn AL, Goldie K, Engel A (1993) Scan speed limit in atomic force microscopy, J. Microsc. 169:75–80

    Google Scholar 

  • Butt HJ, (1996) A Sensitive method to measure changes in the surface stress of solids, J. Colloid Interf. Sci. 180:251

    Article  CAS  Google Scholar 

  • Chen GY, Thundat T, Wachter EA, Warmack RJ (1995) Adsorption-induced surface stress and its effects on resonance frequency of microcantilever, J. Appl. Phys. 66:1695

    Google Scholar 

  • Cherian S, Thundat T (2002) Determination of adsorption-induced variation in the spring constant of a microcantilever, Appl. Phys. Lett. 80:2219

    Article  CAS  Google Scholar 

  • Datskos PG, Sepaniak MJ, Tripple CA, Lavrik N (2001) Photomechanical chemical microsensors, Sensors and Actuators B 76:393

    Article  Google Scholar 

  • Davis ZJ, Abadal G, Kuhn o, Hansen O, Grey F, Boisen A (2000) Fabrication and characterisation of nanoresonating devices for mass detection J. Vac. Sci. Technol. B 18:162

    Google Scholar 

  • Erbe A, Weiss C, Zwerger W, Blick RH (2001) Nanomechanical resonator shuttling single electrons at radio frequencies, Phys Rev. Lett. 87:96106

    Article  CAS  Google Scholar 

  • Fritz J, Baller MK, Lang HP, Rothuizen H, Vettiger P, Meyer E, Guntherodt HJ, Gerber C, Gimzewski JK (2000) Translating biomolecular recognition into nanomechanics, Science 288:316

    Article  CAS  Google Scholar 

  • Fujii T, Watanabe S (1996) Feedback positioning cantilever using lead zirconate titanate thin film for force microscopy observation of micropattern, Appl. Phys. Lett. 68:467

    Article  CAS  Google Scholar 

  • Gupta A, Akin D, Bashir R (2004) Single virus particle mass detection using microresonators with nanoscale thickness, Appl. Phys. Lett. 84:1976

    Article  CAS  Google Scholar 

  • Hansen KM, Ji HF, Wu G, Datar R, Cote R, Majumdar A, Thundat T (2001) Cantilever-based optical deflection assay for discrimination of DNA single-nucleotide mismatches, Anal. Chem. 73:1567

    Article  CAS  Google Scholar 

  • Ilic B, Czaplewski C, Craighead HG, Neuzil P, Campagnolo C, Batt C (2000) Mechanical resonant immunospecific biological detector, Appl. Phys. Lett. 77:450

    Article  CAS  Google Scholar 

  • Ilic B, Czaplewski D, Zalalutdinov M, Craighead HG, Neuzil P, Campagnolo C, Batt C (2001) Single cell detection with micromechanical oscillators, J. Vac. Sci. Technol. B 19:2825

    Article  CAS  Google Scholar 

  • Kaw AK (1997) Mechanics of composite materials. CRC press

    Google Scholar 

  • Kim HJ, Kim YB, Park J, Kim TS (2003) Biological element detection sensor application of micromachined PZT thick film cantilever. IEEE Sensors, Toronto, Canada

    Google Scholar 

  • Lavrik NV, Sepaniak MJ, Datskos PG (2004) Cantilever transducers as a platform for chemical and biological sensors, Rev. Sci. Instrum. 75:2229

    Article  CAS  Google Scholar 

  • Lee C, Itoh T, Suga T (1999) Self-excited piezoelectric PZT microcantilevers for dynamic SFM with inherent sensing and actuating capabilities, Sensors and Actuators A72:179

    Article  Google Scholar 

  • Lee JH, Hwang KH, Yoon KH, Hwang KS, Park J, Ahn S, Kim TS (2004) Label free novel electrical detection using micromachined PZT monolithic thin film cantilever for the detection of C-reactive protein. Biosens, Bioelectron. 20:269

    Article  CAS  Google Scholar 

  • Lee JH, Kim TS, Yoon KH, (2004) Effect of mass and stress on resonant frequency shift of functionalised Pb(Zr0.52Ti0.48)O3 thin film microcantilever for the detection of C-reactive protein, Appl. Phys. Lett. 84:3187

    Article  CAS  Google Scholar 

  • Lee JH, Yoon KH, Kim TS (2002) Characterisation of resonant behavior and sensitivity micromachined PZT cantilever, Integr. Ferroelectr. 50:43

    Article  CAS  Google Scholar 

  • Lee JH, Hwang KS, Park J, Yoon KH, Yoon DS, Kim TS (2005) Immunoassay of prostate0specific antigen (PSA) using resonant frequency shift of piezoelectric nanomechanical cantilever, Biosens. Bioelectron. 20:2157

    Article  CAS  Google Scholar 

  • Martin Y, Williams CC, Wickramasinghe HK (1987) Atomic force microscope-force mapping and profiling on a sub 100-A scale, J. Appl. Phys. 61:4723

    Article  CAS  Google Scholar 

  • Mehta A (2001) Manipulation and controlled amplification of Brow-nian motion of microcantilever sensors, Appl. Phys. Lett. 78:1637

    Article  CAS  Google Scholar 

  • Mertens J, Finota E, Thundat T, Fabre A, Bourillot E (2003) Effects of temperature and pressure on microcantilever resonance response, Ultramicroscopy 97:119

    Article  CAS  Google Scholar 

  • Meyer G and Amer NM (1988) Novel optical approach to atomic force microscopy, Appl. Phys. Lett. 53:1045

    Article  Google Scholar 

  • Minne SC, Manalis SR, Quate CF (1995) Parallel atomic force microscopy using cantilevers with integrated piezoresistive sensors and integrated piezoelectric Actuators, Appl. Phys. Lett. 67:3918

    Article  CAS  Google Scholar 

  • Moulin AM, O’shea SJ, Badley RA, Doyle P, Welland ME (1999) Measuring surface-induced conformational changes in protein, Langmuir 15:8776

    Article  CAS  Google Scholar 

  • Raiteri R et al.(1999) Sensing of biological substances based on the bending of microfabricated cantilevers, Sensor Actuat. B-Chem 61:213

    Article  Google Scholar 

  • Raiteri R, Grattarola M, Butt HJ, Skladal P (2001) Micromechanical cantilever-based biosensors, Sens. Actuators B 79:115

    Article  Google Scholar 

  • Rodolphe M (2002), DNA Hybridisation investigated by microcantilever-based sensor. M. Sc. thesis, MIC Technical University of Denmark

    Google Scholar 

  • Rugar D, Mamin HJ, and Guethner P (1989) Improved fiber-optic interferometer for atomic force microscopy, Appl. Phys. Lett. 55:2588

    Article  CAS  Google Scholar 

  • Rugar D, Mamin HJ, and Terris BD (1998) Force microscope using a fiber-optic displacement sensor, Rev. Sci. Instrum. 59:2337

    Article  Google Scholar 

  • Rugar D, Yannoni CS, and Sidles JA (1992) Mechanical detection of magnetic resonance, Nature 360:563

    Article  Google Scholar 

  • Smits JG, Choi W-S (1991) The Constituent equations of piezoelectric heterogeneous bimorphs, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 38:256

    Article  Google Scholar 

  • Tamayo J (2001) Chemical sensors and biosensors in liquid environment based on microcantilevers with amplified quality factor, Ultramicroscopy 86:167

    Article  CAS  Google Scholar 

  • Thaysen J, Boisen A, Hansen O, and Bouwstra S (2000) Atomic force microscopy probe with piezoresistive read-out and a highly symmetrical wheatstone bridge arrangement, Sens. Actuators, A 83:47

    Article  Google Scholar 

  • Thundat T, Wachter EA, Sharp SL, Warmack RJ (1995) Detection of Mercury Vapor Using Resonating Cantilevers, Appl. Phys. Lett. 66:1695

    Article  CAS  Google Scholar 

  • Tortonese M, Barrett RC, and Quate CF (1993) Piezoresistive silicon cantilever Method, Appl. Phys. Lett. 62:834

    Article  CAS  Google Scholar 

  • Wee KW, Kang GY, Park J, Kang JY, Yoon DS, Park JH, Kim TS (2005) Novel electrical detection of label-free disease marker proteins using piezoresistive self-sensing microcantilever, Biosens. Bioelectr. 20:1932

    Article  CAS  Google Scholar 

  • Wu GH, Data RH, Hansen KM, Thundat T, Cote RJ, Majumdar A (2001) Bioassay of prostate-specific antigen (PSA) using microcantilevers, Nat. Biotechnol. 19:856

    Article  CAS  Google Scholar 

  • Yi JW, Shih WY, Shih W-H (2002) Effect of length, width, and mode on the mass detection sensitivity of piezoelectric unimorph cantilevers, J. Appl. Phys 91:1680

    Article  CAS  Google Scholar 

  • Yu X, Thaysen J, Hansen O, Boisen A (2002) Optimisation of sensitivity and noise in piezoresistive cantilevers, J. Appl. Phys. 92:6296

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kim, T.S., Lee, J.H., Yoon, D.S. (2006). Nanomechanical Cantilever Devices for Biological Sensors. In: Micromanufacturing and Nanotechnology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-29339-6_13

Download citation

Publish with us

Policies and ethics