Advertisement

Minimum Cost Flows

Part of the Algorithms and Combinatorics 21 book series (AC, volume 21)

Keywords

Reverse Edge Edge Cost Minimum Cost Flow Residual Graph Maximum Flow Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

General Literature

  1. Ahuja, R.K., Magnanti, T.L., and Orlin, J.B. [1993]: Network Flows. Prentice-Hall, Englewood Cliffs 1993Google Scholar
  2. Cook, W.J., Cunningham, W.H., Pulleyblank, W.R., and Schrijver, A. [1998]: Combinatorial Optimization. Wiley, New York 1998, Chapter 4zbMATHGoogle Scholar
  3. Goldberg, A.V., Tardos, É., and Tarjan, R.E. [1990]:Network flow algorithms. In: Paths, Flows, and VLSI-Layout (B. Korte, L. Lovász, H.J. Prömel, A. Schrijver, eds.), Springer, Berlin 1990, pp. 101–164Google Scholar
  4. Gondran, M., and Minoux, M. [1984]:Graphs and Algorithms. Wiley, Chichester 1984, Chapter 5zbMATHGoogle Scholar
  5. Jungnickel, D. [1999]:Graphs, Networks and Algorithms. Springer, Berlin 1999, Chapter 9Google Scholar
  6. Lawler, E.L. [1976]: Combinatorial Optimization: Networks and Matroids. Holt, Rinehart and Winston, New York 1976, Chapter 4zbMATHGoogle Scholar
  7. Ruhe, G. [1991]: Algorithmic Aspects of Flows in Networks. Kluwer Academic Publishers, Dordrecht 1991zbMATHGoogle Scholar

Cited References

  1. Armstrong, R.D., and Jin, Z. [1997]: A new strongly polynomial dual network simplex algorithm. Mathematical Programming 78 (1997), 131–148CrossRefMathSciNetGoogle Scholar
  2. Busacker, R.G., and Gowen, P.J. [1961]: A procedure for determining a family of minimum-cost network flow patterns. ORO Technical Paper 15, Operational Research Office, Johns Hopkins University, Baltimore 1961Google Scholar
  3. Edmonds, J., and Karp, R.M. [1972]: Theoretical improvements in algorithmic efficiency for network flow problems. Journal of the ACM 19 (1972), 248–264CrossRefzbMATHGoogle Scholar
  4. Fleischer, L., and Skutella, M. [2004]: Quickest flows over time. Manuscript, 2004Google Scholar
  5. Ford, L.R., and Fulkerson, D.R. [1958]: Constructing maximal dynamic flows from static flows. Operations Research 6 (1958), 419–433MathSciNetGoogle Scholar
  6. Ford, L.R., and Fulkerson, D.R. [1962]: Flows in Networks. Princeton University Press, Princeton 1962zbMATHGoogle Scholar
  7. Gale, D. [1957]: A theorem on flows in networks. Pacific Journal of Mathematics 7 (1957), 1073–1082MathSciNetzbMATHGoogle Scholar
  8. Goldberg, A.V., and Tarjan, R.E. [1989]: Finding minimum-cost circulations by cancelling negative cycles. Journal of the ACM 36 (1989), 873–886CrossRefMathSciNetzbMATHGoogle Scholar
  9. Goldberg, A.V., and Tarjan, R.E. [1990]: Finding minimum-cost circulations by successive approximation. Mathematics of Operations Research 15 (1990), 430–466MathSciNetzbMATHGoogle Scholar
  10. Grötschel, M., and Lovász, L. [1995]: Combinatorial optimization. In: Handbook of Combinatorics; Vol. 2 (R.L. Graham, M. Grötschel, L. Lovász, eds.), Elsevier, Amsterdam 1995Google Scholar
  11. Hassin, R. [1983]: The minimum cost flow problem: a unifying approach to dual algorithms and a new tree-search algorithm. Mathematical Programming 25 (1983), 228–239MathSciNetzbMATHGoogle Scholar
  12. Hitchcock, F.L. [1941]: The distribution of a product from several sources to numerous localities. Journal of Mathematical Physics 20 (1941), 224–230MathSciNetzbMATHGoogle Scholar
  13. Hoffman, A.J. [1960]: Some recent applications of the theory of linear inequalities to extremal combinatorial analysis. In: Combinatorial Analysis (R.E. Bellman, M. Hall, eds.), AMS, Providence 1960, pp. 113–128Google Scholar
  14. Hoppe, B., and Tardos, É. [2000]: The quickest transshipment problem. Mathematics of Operations Research 25 (2000), 36–62CrossRefMathSciNetzbMATHGoogle Scholar
  15. Iri, M. [1960]: A new method for solving transportation-network problems. Journal of the Operations Research Society of Japan 3 (1960), 27–87Google Scholar
  16. Jewell, W.S. [1958]: Optimal flow through networks. Interim Technical Report 8, MIT 1958Google Scholar
  17. Klein, M. [1967]: A primal method for minimum cost flows, with applications to the assignment and transportation problems. Management Science 14 (1967), 205–220zbMATHGoogle Scholar
  18. Klinz, B., and Woeginger, G.J. [2004]: Minimum cost dynamic flows: the series-parallel case. Networks 43 (2004), 153–162CrossRefMathSciNetzbMATHGoogle Scholar
  19. Orden, A. [1956]: The transshipment problem. Management Science 2 (1956), 276–285MathSciNetzbMATHGoogle Scholar
  20. Ore, O. [1956]: Studies on directed graphs I. Annals of Mathematics 63 (1956), 383–406MathSciNetGoogle Scholar
  21. Orlin, J.B. [1993]: A faster strongly polynomial minimum cost flow algorithm. Operations Research 41 (1993), 338–350MathSciNetzbMATHGoogle Scholar
  22. Orlin, J.B. [1997]: A polynomial time primal network simplex algorithm for minimum cost flows. Mathematical Programming 78 (1997), 109–129CrossRefMathSciNetzbMATHGoogle Scholar
  23. Orlin, J.B., Plotkin, S.A., and Tardos, É. [1993]: Polynomial dual network simplex algorithms. Mathematical Programming 60 (1993), 255–276CrossRefMathSciNetGoogle Scholar
  24. Plotkin, S.A., and Tardos, É. [1990]: Improved dual network simplex. Proceedings of the 1st Annual ACM-SIAM Symposium on Discrete Algorithms (1990), 367–376Google Scholar
  25. Schulz, A.S., Weismantel, R., and Ziegler, G.M. [1995]: 0/1-Integer Programming: optimization and augmentation are equivalent. In: Algorithms-ESA’ 95; LNCS 979 (P. Spirakis, ed.), Springer, Berlin 1995, pp. 473–483Google Scholar
  26. Schulz, A.S., and Weismantel, R. [2002]: The complexity of generic primal algorithms for solving general integer problems. Mathematics of Operations Research 27 (2002), 681–192CrossRefMathSciNetzbMATHGoogle Scholar
  27. Tardos, É. [1985]: A strongly polynomial minimum cost circulation algorithm. Combinatorica 5 (1985), 247–255MathSciNetzbMATHGoogle Scholar
  28. Tolstoľ, A.N. [1930]: Metody nakhozhdeniya naimen’shego summovogo kilometrazha pri planirovanii perevozok v prostanstve. In: Planirovanie Perevozok, Sbornik pervyľ, Transpechat’ NKPS, Moskow 1930, pp. 23–55. (See A. Schrijver, On the history of the transportation and maximum flow problems, Mathematical Programming 91 (2002) 437-445)Google Scholar
  29. Tomizawa, N. [1971]: On some techniques useful for solution of transportation network problems. Networks 1 (1971), 173–194MathSciNetzbMATHGoogle Scholar
  30. Vygen, J. [2002]: On dual minimum cost flow algorithms.Mathematical Methods of Operations Research 56 (2002), 101–126MathSciNetzbMATHGoogle Scholar
  31. Wagner, H.M. [1959]: On a class of capacitated transportation problems.Management Science 5 (1959), 304–318MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Personalised recommendations