Linear Programming Algorithms

Part of the Algorithms and Combinatorics 21 book series (AC, volume 21)


Polynomial Time Gaussian Elimination Simplex Algorithm Separation Problem Continue Fraction Expansion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


General Literature

  1. Grötschel, M., Lovász, L., and Schrijver, A. [1988]: Geometric Algorithms and Combinatorial Optimization. Springer, Berlin 1988zbMATHGoogle Scholar
  2. Padberg, M. [1995]: Linear Optimization and Extensions. Springer, Berlin 1995zbMATHGoogle Scholar
  3. Schrijver, A. [1986]: Theory of Linear and Integer Programming. Wiley, Chichester 1986zbMATHGoogle Scholar

Cited References

  1. Bland, R.G., Goldfarb, D., and Todd, M.J. [1981]: The ellipsoid method: a survey. Operations Research 29 (1981), 1039–1091MathSciNetzbMATHGoogle Scholar
  2. Edmonds, J. [1967]: Systems of distinct representatives and linear algebra. Journal of Research of the National Bureau of Standards B 71 (1967), 241–245MathSciNetzbMATHGoogle Scholar
  3. Frank, A., and Tardos, É. [1987]: An application of simultaneous Diophantine approximation in combinatorial optimization. Combinatorica 7 (1987), 49–65MathSciNetzbMATHGoogle Scholar
  4. Gács, P., and Lovász, L. [1981]: Khachiyan’s algorithm for linear programming. Mathematical Programming Study 14 (1981), 61–68zbMATHGoogle Scholar
  5. Grötschel, M., Lovász, L., and Schrijver, A. [1981]: The ellipsoid method and its consequences in combinatorial optimization. Combinatorica 1 (1981), 169–197MathSciNetzbMATHGoogle Scholar
  6. Iudin, D.B., and Nemirovskii, A.S. [1976]: Informational complexity and effective methods of solution for convex extremal problems. Ekonomika i Matematicheskie Metody 12 (1976), 357–369 [in Russian]MathSciNetGoogle Scholar
  7. Karmarkar, N. [1984]: A new polynomial-time algorithm for linear programming. Combinatorica 4 (1984), 373–395MathSciNetzbMATHGoogle Scholar
  8. Karp, R.M., and Papadimitriou, C.H. [1982]: On linear characterizations of combinatorial optimization problems. SIAM Journal on Computing 11 (1982), 620–632CrossRefMathSciNetzbMATHGoogle Scholar
  9. Khachiyan, L.G. [1979]: A polynomial algorithm in linear programming [in Russian]. Doklady Akademii Nauk SSSR 244 (1979) 1093–1096. English translation: Soviet Mathematics Doklady 20 (1979), 191-194Google Scholar
  10. Khintchine, A. [1956]: Kettenbrüche. Teubner, Leipzig 1956Google Scholar
  11. Padberg, M.W., and Rao, M.R. [1981]: The Russian method for linear programming III: Bounded integer programming. Research Report 81–39, New York University 1981Google Scholar
  12. Shor, N.Z. [1977]: Cut-off method with space extension in convex programming problems. Cybernetics 13 (1977), 94–96Google Scholar
  13. Steinitz, E. [1922]: Polyeder und Raumeinteilungen. Enzyklopädie der Mathematischen Wissenschaften, Band 3 (1922), 1–139Google Scholar
  14. Tardos, É. [1986]: A strongly polynomial algorithm to solve combinatorial linear programs. Operations Research 34 (1986), 250–256MathSciNetzbMATHCrossRefGoogle Scholar
  15. Vaidya, P.M. [1996]: A new algorithm for minimizing convex functions over convex sets. Mathematical Programming 73 (1996), 291–341CrossRefMathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Personalised recommendations