Advertisement

Facility Location

Part of the Algorithms and Combinatorics 21 book series (AC, volume 21)

Keywords

Feasible Solution Approximation Algorithm Facility Location Local Search Algorithm Service Cost 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

General Literature

  1. Cornuéjols, G., Nemhauser, G.L., and Wolsey, L.A. [1990]: The uncapacitated facility location problem. In: Discrete Location Theory (P. Mirchandani, R. Francis, eds.), Wiley, New York 1990, pp. 119–171Google Scholar
  2. Shmoys, D.B. [2000]: Approximation algorithms for facility location problems. Proceedings of the 3rd International Workshop on Approximation Algorithms for Combinatorial Optimization; LNCS 1913 (K. Jansen, S. Khuller, eds.) Springer, Berlin 2000, pp. 27–33Google Scholar
  3. Vygen, J. [2005a]: Approximation algorithms for facility location problems (lecture notes). Report No. 05950-OR, Research Institute for Discrete Mathematics, University of Bonn, 2005Google Scholar

Cited References

  1. Archer, A., Rajagopalan, R., and Shmoys, D.B. [2003]: Lagrangian relaxation for the k-median problem: new insights and continuity properties. Algorithms — Proceedings of the 11th Annual European Symposium on Algorithms, Springer, Berlin 2003, pp. 31–42.Google Scholar
  2. Arora, S., Raghavan, P., and Rao, S. [1998]: Approximation schemes for Euclidean k-medians and related problems. Proceedings of the 30th Annual ACM Symposium on Theory of Computing (1998), 106–113Google Scholar
  3. Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., and Pandit, V. [2004]: Local search heuristics for k-median and facility location problems. SIAM Journal on Computing 33 (2004), 544–562CrossRefMathSciNetMATHGoogle Scholar
  4. Balinski, M.L. [1965]: Integer programming: methods, uses, computation. Management Science 12 (1965), 253–313MathSciNetMATHGoogle Scholar
  5. Balinski, M.L., and Wolfe, P. [1963]: On Benders decomposition and a plant location problem. Working paper ARO-27. Mathematica, Princeton 1963Google Scholar
  6. Charikar, M., Guha, S., Tardos, É., and Shmoys, D.B. [2002]: A constant-factor approximation algorithm for the k-median problem. Journal of Computer and System Sciences 65 (2002), 129–149CrossRefMathSciNetMATHGoogle Scholar
  7. Charikar, M., and Guha, S. [1999]: Improved combinatorial algorithms for the facility location and k-median problems. Proceedings of the 40th Annual IEEE Conference on Foundations of Computer Science (1999), 378–388Google Scholar
  8. Chudak, F.A., and Shmoys, D.B. [1998]: Improved approximation algorithms for uncapacitated facility location. In: Integer Programming and Combinatorial Optimization; Proceedings of the 6th International IPCO Conference; LNCS 1412 (R.E. Bixby, E.A. Boyd, R.Z. Rios-Mercado, eds.) Springer, Berlin 1998, pp. 180–194; to appear in SIAM Journal on ComputingGoogle Scholar
  9. Feige, U. [1998]: A threshold of ln n for the approximating set cover. Journal of the ACM 45 (1998), 634–652CrossRefMathSciNetMATHGoogle Scholar
  10. Guha, S., and Khuller, S. [1999]: Greedy strikes back: improved facility location algorithms. Journal of Algorithms 31 (1999), 228–248CrossRefMathSciNetMATHGoogle Scholar
  11. Hochbaum, D.S. [1982]: Heuristics for the fixed cost median problem. Mathematical Programming 22 (1982), 148–162CrossRefMathSciNetMATHGoogle Scholar
  12. Jain, K., Mahdian, M., Markakis, E., Saberi, A., and Vazirani, V.V. [2003]: Greedy facility location algorithms analyzed using dual fitting with factor-revealing LP. Journal of the ACM 50 (2003), 795–824CrossRefMathSciNetGoogle Scholar
  13. Jain, K., and Vazirani, V.V. [2001]: Approximation algorithms for metric facility location and k-median problems using the primal-dual schema and Lagrangian relaxation. Journal of the ACM 48 (2001), 274–296CrossRefMathSciNetMATHGoogle Scholar
  14. Kolliopoulos, S.G., and Rao, S. [1999]: A nearly linear-time approximation scheme for the Euclidean k-median problem. Algorithms-Proceedings of the 7th European Symposium on Algorithms (ESA); LNCS 1643 (J. Nešetřil, ed.), Springer, Berlin 1999, pp. 378–389Google Scholar
  15. Korupolu, M., Plaxton, C., and Rajaraman, R. [2000]: Analysis of a local search heuristic for facility location problems. Journal of Algorithms 37 (2000), 146–188CrossRefMathSciNetMATHGoogle Scholar
  16. Kuehn, A.A., and Hamburger, M.J. [1963]: A heuristic program for locating warehouses. Management Science 9 (1963), 643–666Google Scholar
  17. Levi, R., Shmoys, D.B., and Swamy, C. [2004]: LP-based approximation algorithms for capacitated facility location. In: Integer Programming and Combinatorial Optimization; Proceedings of the 10th International IPCO Conference; LNCS 3064 (G. Nemhauser, D. Bienstock, eds.), Springer, Berlin 2004, pp. 206–218Google Scholar
  18. Mahdian, M., and Pál, M. [2003]: Universal facility location. In: Algorithms-Proceedings of the 11th European Symposium on Algorithms (ESA); LNCS 2832 (G. di Battista, U. Zwick, eds.), Springer, Berlin 2003, pp. 409–421Google Scholar
  19. Mahdian, M., Ye, Y., and Zhang, J. [2002]: Improved approximation algorithms for metric facility location problems. Proceedings of the 5th International Workshop on Approximation Algorithms for Combinatorial Optimization; LNCS 2462 (K. Jansen, S. Leonardi, V. Vazirani, eds.) Springer, Berlin 2002, pp. 229–242Google Scholar
  20. Mahdian, M., Ye, Y., and Zhang, J. [2003]: A 2-approximation algorithm for the softcapacitated facility location problem. Approximation, Randomization, and Combinatorial Optimization: Algorithms and Techniques; LNCS 2764 (S. Arora, K. Jansen, J.D.P. Rolim, A. Sahai, eds.), Springer, Berlin 2003, pp. 129–140Google Scholar
  21. Manne, A.S. [1964]: Plant location under economies-of-scale-decentralization and computation. Management Science 11 (1964), 213–235CrossRefGoogle Scholar
  22. Pál, M., Tardos, É., and Wexler, T. [2001]: Facility location with hard capacities. Proceedings of the 42nd Annual IEEE Symposium on the Foundations of Computer Science (2001), 329–338Google Scholar
  23. Shmoys, D.B., Tardos, É., and Aardal, K. [1997]: Approximation algorithms for facility location problems. Proceedings of the 29th Annual ACM Symposium on the Theory of Computing (1997), 265–274Google Scholar
  24. Stollsteimer, J.F. [1963]: A working model for plant numbers and locations. Journal of Farm Economics 45 (1963), 631–645Google Scholar
  25. Sviridenko, M. [2002]: An improved approximation algorithm for the metric uncapacitated facility location problem. In: Integer Programming and Combinatorial Optimization; Proceedings of the 10th International IPCO Conference; LNCS 2337 (W. Cook, A. Schulz, eds.), Springer, Berlin 2002, pp. 240–257Google Scholar
  26. Vygen, J. [2005b]: From stars to comets: improved local search for universal facility location. Report No. 05947-OR, Research Institute for Discrete Mathematics, University of Bonn, 2005Google Scholar
  27. Zhang, J., Chen, B., and Ye, Y. [2004]: Multi-exchange local search algorithm for the capacitated facility location problem. In: Integer Programming and Combinatorial Optimization; Proceedings of the 10th International IPCO Conference; LNCS 3064 (G. Nemhauser, D. Bienstock, eds.), Springer, Berlin 2004, pp. 219–233Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Personalised recommendations