Man-Induced Changes of Palladium in Polar and Alpine Snow and Ice Archives



Snow Sample Palladium Concentration Inductively Couple Plasma Sector Field Mass Spectrometry Antarctic Snow Purify Terephthalic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barbante C, Cozzi G, et al. (1999) Determination of Rh, Pd and Pt in Polar and Alpine snow and ice by double focusing ICP-MS with microconcentric nebulization. Anal.Chem. 71: 4125–4133CrossRefGoogle Scholar
  2. Barbante C, Veysseyre A, et al. (2001) Greenland snow evidence of large scale atmospheric pollution for platinum, palladium and rhodium. Environ. Sci. Tech. 35: 835–839Google Scholar
  3. Barbante C, Boutron C, et al. (2003) Seasonal variations of heavy metals in central Greenland snow deposited from 1991 to 1995. J.Environ.Monit. 5: 328–335.CrossRefGoogle Scholar
  4. Barbante C, Schwikowski M, et al. (2004) Historical record of European emissions of heavy metals to the atmosphere since the 1650s from Alpine snow/ice drilled near Monte Rosa. Environ. Sci. Tech. 38: 4085–4090.Google Scholar
  5. Boutron CF (1990) A clean laboratory for ultralow concentration heavy metal analysis. Fresenius J. Anal. Chem. 337: 482–491.CrossRefGoogle Scholar
  6. Boutron CF, Görlach U, et al. (1991) Decrease in anthropogenic lead, cadmium and zinc in Greenland snows since the late 1960s. Nature 353: 153–156.CrossRefGoogle Scholar
  7. Boutron CF (1995) Historical reconstruction of the earth’s past atmospheric environment from Greenland and Antarctic snow and ice cores. Environ. Rev. 3: 1–28.Google Scholar
  8. Candelone JP, Hong S, et al. (1994) An improved method for decontaminating polar snow and ice cores for heavy metals analysis. Anal. Chim. Acta 299: 9–16.CrossRefGoogle Scholar
  9. Dansgaard W, Johnsen SJ, et al. (1993) Evidence for general instability of past climate from a 250-kyr ice core record. Nature 364: 218–220.CrossRefGoogle Scholar
  10. Döscher A, Gaggeler HW, et al. (1995) A 130 years deposition record of sulfate, nitrate and chloride from a high-alpine glacier. Water, Air Soil Poll. 85: 603–609.Google Scholar
  11. Field MP and Sherrell RM (2003) Direct determination of ultra-trace levels of metals in fresh water using desolvating micronebulization and HR-ICP-MS: application to Lake Superior waters. J. Anal. At. Spectrom. 18: 254–259.Google Scholar
  12. Gabrielli P, Barbante C, et al. (2004) Meteoric smoke fallout over the Holocene epoch revealed by iridium and platinum in Greenland ice. Nature 432: 1011–1014.CrossRefGoogle Scholar
  13. Gabrielli P, Varga A, et al. (2004) Determination of Ir and Pt down to the sub-femtogram per gram level in polar ice by ICP-SFMS using preconcentration and a desolvation system. J. Anal. At. Spectrom. 19: 831–837.CrossRefGoogle Scholar
  14. Hammer CU (1989) Dating by physical and chemical seasonal variations and reference horizons. In: H Oeschger and J C.C. Langway (eds) The Environmental Record in Glaciers and Ice Sheets. Wiley, New York, pp. 99–121.Google Scholar
  15. Hong S, Candelone JP, et al. (1994) Greenland ice evidence of hemispheric lead pollution two millennia ago by Greek and Roman civilizations. Science 265: 1841–1843.Google Scholar
  16. Hong S, Candelone JP, et al. (1996) History of ancient copper smelting pollution during Roman and Medieval times recorded in Greenland ice. Science 272: 246–249.Google Scholar
  17. Hong S, Boutron CF, et al. (2004) Past natural changes in Cu, Zn and Cd in Vostok Antarctic ice dated back to the penultimate interglacial period. Geophys. Res. Lett. 31 (L20111, doi:10.1029/2004GL021075).Google Scholar
  18. Hoppstock K and Sures B (2004) Platinum-Group Metals. In: E Merian, M Anke, M Ihnat and M Stoeppler (ed) Elements and their Compounds in the Environment. Wiley-VCH, Weinheim, pp. 1047–1086.Google Scholar
  19. Johnson Matthey (various issues, 1987–2004). Platinum. London, Johnson Matthey.Google Scholar
  20. Kahl JDW, Martinez DA, et al. (1997) Air mass trajectories to Summit, Greenland: A 44-year climatology and some episodic events. J. Geophys Res. 102(C12): 26,861–826,875.CrossRefGoogle Scholar
  21. Pacyna JM (1984) Estimation of atmospheric emissions of trace elements from anthropogenic sources in Europe. Atmos. Environ. 18: 41–50.Google Scholar
  22. Pacyna JM and Pacyna EG (2001) An assessment of global and regional emissions of trace metals to the atmosphere from anthropogenic sources worldwide. Environ. Rev. 9: 269–298.CrossRefGoogle Scholar
  23. Parrenin F, RÈmy F, et al. (2004) New modeling of the Vostok ice flow line and implication for the glaciological chronology of the Vostok ice core. J. Geophys Res. 109(D20102, doi:10.1029/2004JD004561).Google Scholar
  24. Planchon FAM, Boutron CF, et al. (2001) Ultrasensitive determination of heavy metals at the sub-picogram per gram level in ultraclean Antarctic snow samples by inductively coupled plasma sector field mass spectrometry. Anal. Chim. Acta 450: 193–205.CrossRefGoogle Scholar
  25. Planchon FAM, Boutron CF, et al. (2002) Changes in atmospheric heavy metals in Antarctic snow from Coats Land since the mid-nineteenth century. Earth Planet. Sci. Lett. 200: 207–222.CrossRefGoogle Scholar
  26. Planchon FAM, Van de Velde K, et al. (2003) One hundred fifty-year record of lead isotopes in Antarctic snow from Coats Land. Geochim. Cosmochim. Acta 67: 693–708.CrossRefGoogle Scholar
  27. Rauch S (2005). Evidence of widespread dispersion of platinum group elements from automobile catalysts. Personal communication.Google Scholar
  28. Reeh N (1989) Dating by ice flow modeling: a useful tool or an exercise in applied mathematics? In: H Oeschger and CC Langway (eds) The Environmental Record in Glaciers and Ice Sheets. Wiley, Chichester, U.K., pp. 141–159.Google Scholar
  29. Schwikowski M, Barbante C, et al. (2004) Post 17th Century changes of European lead emissions recorded in high altitude Alpine snow and ice. Environ. Sci. Tech. 38: 957–964.Google Scholar
  30. Southon J (2002) A first step to reconciling the GRIP and the GISP2 ice-core chronologies, 0-14,500 yr B.P. Quatern. Res. 57: 32–37CrossRefGoogle Scholar
  31. Stauffer B (1989) Dating of ice by radioactive isotopes. In: H Oeschger and J C.C. Langway (eds) The Environmental Record in Glaciers and Ice Sheets. Wiley, Chichester, U.K., pp. 123–139.Google Scholar
  32. Vallelonga P, Van de Velde K, et al. (2002) Recent advances in measurement of Pb isotopes in polar ice and snow at sub-picogram per gram concentrations using thermal ionisation mass spectrometry. Anal. Chim. Acta 453: 1–12.CrossRefGoogle Scholar
  33. Vallelonga P, Gabrielli P, et al. (2005) A 220 kyr record of Pb isotopes at Dome C Antarctica from anlysis of the EPICA ice core. Geophys. Res. Lett. 32(L01706, doi:10.1029/2004GL021449).Google Scholar
  34. Van de Velde K, Barbante C, et al. (2000) Changes in the occurrence of silver, gold, platinum, palladium and rhodium in Mont Blanc ice and snow since the 18th century. Atmos. Environ. 34: 3117–3127Google Scholar
  35. Wedepohl KH (1995) The composition of the continental crust. Geochim. Cosmochim. Acta 59: 1217–1232.Google Scholar
  36. Zoller WH, Parrington JR, et al. (1983) Iridium enrichment in airborn particles from Kilauea volcano, January 1983. Science 222: 1118–1121.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  1. 1.Laboratoire de Glaciologie et Géophysique de l’Environnement (UMR CNRS/UJF 5183)Saint Martin d’Hères, CedexFrance
  2. 2.Unité de Formation et de Recherche de Physique et Observatoire des Sciences de l’UniversUniversité Joseph Fourier de Grenoble (Institut Universitaire de France)GrenobleFrance
  3. 3.Department of Environmental SciencesUniversity of Venice, Ca’FoscariVeniceItaly
  4. 4.Institute for the Dynamics of Environmental Processes - CNRUniversity of Venice, Ca’FoscariVeniceItaly

Personalised recommendations