Skip to main content

Generation of Mesh Variants via Volumetrical Representation and Subsequent Mesh Optimisation

  • Conference paper

Summary

Having reliable finite element (FE) meshes is one of the basics of reliable FE simulations. As development times i.e. in the car industry are expected to decrease, engineers need to edit and optimise FE meshes without access to the underlying CAD geometry. If meshes are not only locally effected by the editing operation, simple mesh optimisations such as mesh relaxation or local remeshing are not sufficient to make the mesh suitable for numerical simulation again and global remeshing is needed. To avoid the traditionally used time-consuming remeshing strategy, we developed a tool to remesh an FE surface model — taking into account the needs for good FE meshes — via volumes. We first voxelise the surface and then generate a new quad mesh via isosurface extraction and subsequent mesh optimisation. This method provides the opportunity to directly couple editing operations on the volumetrical representation with the remeshing procedure.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K. Bidmon, D. Rose, and T. Ertl. Intuitive, Interactive, and Robust Modification and Optimization of Finite Element Models. In Procceedings 13th International Meshing Roundtable, pages 59–69, 2004.

    Google Scholar 

  2. T. D. Blacker and M. B. Stephenson. Paving: A new approach to automated quadrilateral mesh generation. International Journal for Numerical Methods in Engineering, 32:811–847, 1991.

    Article  Google Scholar 

  3. E. V. Chernyaev. Marching cubes 33: Construction of topologically correct iso-surfaces. Technical report, CERN CN 95-17, 1995.

    Google Scholar 

  4. D. Cohen-Or and A. Kaufman. Fundamentals of surface voxelization. Graph. Models Image Process., 57(6):453–461, 1995.

    Article  Google Scholar 

  5. S. F. F. Gibson. Using distance maps for accurate surface representation in sampled volumes. In VVS’ 98: Proceedings of the 1998 IEEE symposium on Volume visualization, pages 23–30, New York, NY, USA, 1998. ACM Press.

    Google Scholar 

  6. [HLC+01]_J. Huang, Y. Li, R. Crawfis, S. C. Lu, and S. Y. Liou. A complete distance field representation. In VIS’ 01: Proceedings of the conference on Visualization’ 01, pages 247–254. IEEE Computer Society, 2001.

    Google Scholar 

  7. J. Huang, R. Yagel, V. Filippov, and Y. Kurzion. An accurate method for voxelizing polygon meshes. In VVS’ 98: Proceedings of the 1998 IEEE symposium on Volume visualization, pages 119–126. ACM Press, 1998.

    Google Scholar 

  8. A. Kaufman. Efficient algorithms for 3d scan-conversion of parametric curves, surfaces, and volumes. In SIGGRAPH’ 87: Proceedings of the 14th annual conference on Computer graphics and interactive techniques, pages 171–179, New York, NY, USA, 1987. ACM Press.

    Google Scholar 

  9. L. P. Kobbelt, M. Botsch, U. Schwanecke, and H.-P. Seidel. Feature sensitive surface extraction from volume data. In SIGGRAPH’ 01: Proceedings of the 28th annual conference on Computer graphics and interactive techniques, pages 57–66. ACM Press, 2001.

    Google Scholar 

  10. A. Lopes and K. Brodlie. Improving the robustness and accuracy of the marching cubes algorithm for isosurfacing. IEEE Transactions on Visualization and Computer Graphics, 9(1):16–29, 2003.

    Article  Google Scholar 

  11. W. E. Lorensen and H. E. Cline. Marching cubes: A high resolution 3d surface construction algorithm. In SIGGRAPH’ 87: Proceedings of the 14th annual conference on Computer graphics and interactive techniques, pages 163–169. ACM Press, 1987.

    Google Scholar 

  12. T. Lewiner, H. Lopes, A. W. Vieira, and G. Tavares. Efficient implementation of Marching Cubes cases with topological guarantees. Journal of Graphics Tools, 8(2):1–15, 2003.

    Google Scholar 

  13. C. Montani, R. Scateni, and R. Scopigno. Discretized marching cubes. In VIS’ 94: Proceedings of the conference on Visualization’ 94, pages 281–287. IEEE Computer Society Press, 1994.

    Google Scholar 

  14. G. M. Nielson. Dual marching cubes. In VIS’ 04: Proceedings of the IEEE Visualization 2004 (VIS’04), pages 489–496. IEEE Computer Society, 2004.

    Google Scholar 

  15. science + computing ag. Efficient preprocessing using scFEMod. http://www.science-computing.de/en/software/scfemod.html, 2004.

    Google Scholar 

  16. M. Sramek. High precision non-binary voxelization of geometric objects. In SCCG’ 01: Proceedings of the 17th Spring conference on Computer graphics, page 220. IEEE Computer Society, 2001.

    Google Scholar 

  17. [VKK+03]_G. Varadhan, S. Krishnan, Y. J. Kim, S. Diggavi, and D. Manocha. Efficient max-norm distance computation and reliable voxelization. In SGP’ 03: Proceedings of the 2003 Eurographics/ACM SIGGRAPH symposium on Geometry processing, pages 116–126. Eurographics Association, 2003.

    Google Scholar 

  18. J. Z. Zhu, O. C. Zienkiewicz, E. Hinton, and J. Wu. A new approach to the development of automatic quadrilateral mesh generation. International Journal for Numerical Methods in Engineering, 32:849–866, 1991.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bidmon, K., Ertl, T. (2005). Generation of Mesh Variants via Volumetrical Representation and Subsequent Mesh Optimisation. In: Hanks, B.W. (eds) Proceedings of the 14th International Meshing Roundtable. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-29090-7_16

Download citation

  • DOI: https://doi.org/10.1007/3-540-29090-7_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-25137-8

  • Online ISBN: 978-3-540-29090-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics