Skip to main content

Zusammenfassung

Die erste Warmbluttransfusion zur Behandlung einer unkontrollierbaren Epistaxis bei einem jungen Mann mit einer Thrombozytopenie von 6/nl verlief erfolgreich, die Zahl der Thrombozyten stieg auf 123 G/l und die Blutung stand. Ein Student protokollierte parallel zur Transfusion die Blutungszeit, eine Methode, die er kurz zuvor entwickelt hatte. Die Verkürzung der Blutungszeit verlief parallel zum Sistieren der Schleimhautblutung. Im Jahre 1910 publizierte der Student namens W.W. Duke seine Beobachtungen in JAMA: »The relation of blood platelets to hemorrhagic disease. Description of a method for determining the bleeding time and the coagulation time and report of three cases of hemorrhagic disease relieved by transfusion.« Er konnte belegen, dass die niedrige Thrombozytenzahl ursächlich war für die Verlängerung der Blutungszeit und die klinischen Blutungszeichen, und dass eine normale Gerinnungszeit nicht gleichzeitig eine normale Blutungszeit bedeutet, wenn eine Thrombozytopenie vorliegt.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 34.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Behnke O, Forer A (1998) From megakaryocytes to platelets: platelet morphogenesis takes place in the bloodstream. Eur J Hematol 60:3–24

    Google Scholar 

  • Bizzozero G (1882) Über einen neuen Formbestandtheil des Blutes und dessen Rolle bei der Thrombose und der Blutgerinnung. Virchows Arch Pathol Anat Physiol 90:261–331

    Article  Google Scholar 

  • Clemetson KJ, McGregor JL, James E et al (1982) Characterization of the platelet membrane glycoprotein abnormalities in Bernhard-Soulier syndrome and comparison with normal by surface — labeling techniques and high-resolution two-dimensional gel-electrophoresis. J Clin Invest 70:304–311

    Article  PubMed  CAS  Google Scholar 

  • Cui L, Ramsfjell V, Borge OJ et al (1997) Thrombopoietin promotes adhesion of primitive human hemopoietic cells to fibronectin and vascular cell adhesion molecule-1: role of activation of very late antigen (VLA)-4 and VLA-5. J Immunol 159:1961–1969

    PubMed  CAS  Google Scholar 

  • Dame C (2001) Thrombopoietin in thrombocytopenias of childhood. Semin Thromb Hemost 27:215–28

    Article  PubMed  CAS  Google Scholar 

  • Debili N, Masse JM, Katz A et al (1993) Effects of the recombinant hematopoietic growth factors interleukin-3, interleukin-6, stem cell factor, and leukemia inhibitory factor on the megakaryocytic differentiation of CD34+ cells. Blood 82:84–95

    PubMed  CAS  Google Scholar 

  • Duke WW (1910) The relation of blood platelets to hemorrhagic disease. Description of a method for determining the bleeding time and report of three cases of hemorrhagic disease relieved by transfusion. JAMA 55:1185–1192

    Google Scholar 

  • Karpatkin S (2002) Tumor growth and metastasis. In: Michelson AD (ed) Platelets, pp 491–502. Academic Press, San Diego

    Google Scholar 

  • Klingler MHF (2002) Inflammation. In: Michelson AD (ed) Platelets, pp 459–467. Academic Press, San Diego

    Google Scholar 

  • Harker LA (1998) Platelets in thrombotic disorders: quantitative and qualitative platelet disorders predisposing to arterial thrombosis. Semin Hematol 35:241–252

    PubMed  CAS  Google Scholar 

  • Harrison P, Cramer EM (1993) Platelet-granules. Blood 7:52–62

    Article  CAS  Google Scholar 

  • Hartwig J, Italiano J Jr. (2003) The birth of the platelet. J Thromb Haemost 1:1580–1586

    Article  PubMed  CAS  Google Scholar 

  • Jin J, Kunapuli SP (1998) Coactivation of two different G protein-coupled receptors is essential for ADP-induced platelet aggregation. Proc Natl Acad Sci USA 95:8070–8074

    Article  PubMed  CAS  Google Scholar 

  • Kaufman RM, Airo R, Pollack S, Crosby HW (1965) Circulating megakaryocytes and platelet release in the lung. Blood 26:720–728

    PubMed  CAS  Google Scholar 

  • Kaushansky K (1995) Thrombopoietin: the primary regulator of platelet production. Blood 86:419–431

    PubMed  CAS  Google Scholar 

  • Nurden AT, Caen JP (1974) An abnormal platelet glycoprotein pattern in three cases of Glanzmann’s thrombasthenia. Br J Haematol 28:253–260

    Article  PubMed  CAS  Google Scholar 

  • Ruggeri ZM, Dent JA, Saldivar E (1999) Contribution of distinct adesive interactions to platelet aggregation in flowing blood. Blood 94:172–178

    PubMed  CAS  Google Scholar 

  • Shattil SJ, Kashiwagi H, Pampori N (1998) Integrin signalling: the platelet paradigm. Blood 918: 2645–2657

    Google Scholar 

  • Sungaran R, Markovic B, Chong BH (1997) Localization and regulation of thrombopoietin mRNa expression in human kidney, liver, bone marrow, and spleen using in situ hybridization. Blood 89:101–107

    PubMed  CAS  Google Scholar 

  • White JG, Rao GH (1998) Microtubuli coils versus the surface membrane cytoskeleton in maintenance and restoration of platelet discoid shape. Am J Pathol 152:597–609

    PubMed  CAS  Google Scholar 

  • Wolber EM, Dame C, Fahnenstich H et al (1999a) Expression of the thrombopoietin gene in human fetal and neonatal tissues. Blood 94:97–105

    PubMed  CAS  Google Scholar 

  • Wolber EM, Ganschow R, Burdelski M, Jelkmann W (1999b) Hepatic thrombopoietin mRNA levels in acute and chronic liver failure of childhood. Hepatology 29:1739–1742

    Article  PubMed  CAS  Google Scholar 

  • Yeaman MR, Bayer AS (2002) Antimicrobial host defense. In: Michelson AD (ed) Platelets, pp 469–490. Academic Press, San Diego

    Google Scholar 

  • Zauli G, Bassini A, Vitale M et al (1997) Thrombopoietin enhances the alpha IIb beta 3-dependent adhesion of megakaryocytic cells to fibrinogen or fibronectin through PI 3 kinase. Blood 89:883–895

    PubMed  CAS  Google Scholar 

  • Zucker-Franklin D (1970) The ultrastructure of megakaryocytes and platelets. In: Gordon A (ed) Regulation of hematopoiesis, vol 55, pp 1553–1586. Appleton-Century-Crofts, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Medizin Verlag Heidelberg

About this chapter

Cite this chapter

Bergmann, F. (2006). Physiologie des Thrombozyten. In: Gadner, H., Gaedicke, G., Niemeyer, C., Ritter, J. (eds) Pädiatrische Hämatologie und Onkologie. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-29036-2_32

Download citation

  • DOI: https://doi.org/10.1007/3-540-29036-2_32

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-03702-6

  • Online ISBN: 978-3-540-29036-0

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics