Advertisement

Abstract

Physiological brain changes associated with the aging process do not lead to sudden, unexpected death; in fact the older the person, the less unexpected death becomes. As mean life expectancy has increased in the industrialized Western world, so has the exposure of the forensic neuropathologist to the normal changes and pathology of the aging brain. Neuropathological examination must make a clear distinction between age-related and disease-related alterations of brain tissue (Braak et al. 2002). The task of the forensic neuropathologist is to distinguish changes due to acute or chronic exogenous effects from changes attributable to physiological endogenous effects. Neuropathological findings can also provide additional — though limited — information regarding the psychopathological state of the deceased. For these reasons the editors have deemed it necessary to discuss the neuropathological aspects of aging and brain pathology in this Part on clinical neuropathology.

Keywords

Alzheimer Disease Lewy Body Dementia With Lewy Body Neurofibrillary Tangle Vascular Dementia 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. Berg L, Morris JC (1990) Aging and dementia. In: Pearlman AL, Collins RC (eds) Neurobiology of disease. Oxford University Press, New York, pp 299–322Google Scholar
  2. Hayflick L (2002) Aging, longevity determination and the telomere replicometer. In: Oehmichen M, Ritz-Timme S, Meissner C (eds) Aging. Morphological, biochemical, molecular and social aspects. In: Research in legal medicine, vol 27. Schmidt-Römhild, Lübeck, pp 275–294Google Scholar
  3. Lowe JS, Leigh N (2002) Disorders of movement and system degenerations. In: Graham DI, Lantos PL (eds) Greenfield’s neuropathology, 7th edn, vol 2. Arnold, London, pp 325–430Google Scholar
  4. Mirra SS, Hyman BT (2002) Ageing and dementia. In: Graham DI, Lantos PL (eds) Greenfield’s neuropathology, 7th edn, vol 2. Arnold, London, pp 195–271Google Scholar

References

  1. Aharon-Peretz J, Daskovski E, Mashiach T, Tomer R (2002) Natural history of dementia associated with lacunar infarctions. Neurol Sci 15:203–204Google Scholar
  2. Arnold SE, Hyman BT, Flory J et al (1991) The topographical and neuroanatomical distribution of neurofibrillary tangles and neuritic plaques in the cerebral cortex of patients with Alzheimer’s disease. Cereb Cortex 1:103–116PubMedGoogle Scholar
  3. Bancher C, Jellinger KA (1994) Neurofibrillary tangle predominant form of senile dementia of Alzheimer type: a rare subtype in very old subjects. Acta Neuropathol (Berl) 88:565–570Google Scholar
  4. Böck P (1989) Romeis mikroskopische Technik. Urban and Schwarzenberg, MunichGoogle Scholar
  5. Bodian D (1937) The staining of paraffin sections with Protargol. The role of fixatives. Anat Rec 69:153CrossRefGoogle Scholar
  6. Bodnar AG, Quellette M, Frolkis M et al (1998) Extension of life-span by introduction of telomerase into normal human cells. Science 279:349–352PubMedCrossRefGoogle Scholar
  7. Bogousslavsky J (1993) Subcortical infarcts. In: Fisher M, Bogousslavsky J (eds) Current review of cerebrovascular disease, 1st edn. Current Medicine, Philadelpha, Pa., pp 31–40Google Scholar
  8. Braak H, Braak E (1988) Neuropil threads occur in dendrites of tangle-bearing nerve cells. Neuropathol Appl Neurobiol 14:39–44PubMedGoogle Scholar
  9. Braak H, Braak E (1991) Neuropathological staging of Alzheimerrelated changes. Acta Neuropathol 82:239–259PubMedCrossRefGoogle Scholar
  10. Braak H, Tredici K del, Bratzke H et al (2002) Age-and disease-related changes of the human cerebral cortex: some implications for forensic medicine. In: Oehmichen M, Ritz-Timme S, Meissner C (eds) Aging. Morphological, biochemical, molecular and social aspects. In: Research in legal medicine, vol 27. Schmidt-Römhild, Lübeck, pp 145–159Google Scholar
  11. Braak H, Tredici K del, Rub U et al (2003) Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging 24:197–211PubMedCrossRefGoogle Scholar
  12. Bretsky P, Guralnik JM, Launer L et al (2003) The role of ApoE-epsilon4 in longitudinal cognitive decline: MacArthur studies of successful aging. Neurology 60:1077–1081PubMedGoogle Scholar
  13. Brookmeyer R, Corrada MM, Curriero FC, Kawas C (2002) Survival following a diagnosis of Alzheimer disease. Arch Neurol 59:1764–1767PubMedCrossRefGoogle Scholar
  14. Churchyard A, Less AJ (1997) The relationship between dementia and direct involvement of the hippocampal and amygdala in Parkinson’s disease. Neurology 49:1570–1576PubMedGoogle Scholar
  15. Coleman PD, Flood DG (1987) Neuron numbers and dendritic extent in normal aging and Alzheimer’s disease. Neurobiol Aging 8:521–545PubMedGoogle Scholar
  16. Coleman PD, Yao PJ (2003) Synaptic slaughter in Alzheimer’s disease. Neurobiol Aging 24:1023–1027PubMedGoogle Scholar
  17. Constantinidis J (1985) Pick dementia. Anatomoclinical correlations and pathophysiological considerations. In: Rose FC (ed) Modern approaches to the dementias. Part I: Etiology and pathophysiology, interdisciplinary topics in gerontology, vol 19. Karger, Basel, pp 72–97Google Scholar
  18. Cras P, Kawai M, Lowery D et al (1991) Senile plaque neurites in Alzheimer’s disease accumulate amyloid precursor protein. Proc Natl Acad Sci USA 88:7552–7556PubMedGoogle Scholar
  19. Dickson DW (2001) Neuropathology of Pick’s disease. Neurology 56:S16–S20PubMedGoogle Scholar
  20. Dickson DW, Crystal HA, Mattiace LA et al (1992) Identification of normal and pathological aging in prospectively studied nondemented elderly humans. Neurobiol Aging 13:179–189PubMedGoogle Scholar
  21. Ditter SM, Mirra SS (1987) Neuropathologic and clinical features of Parkinson’s disease in Alzheimer’s disease patients. Neurology 37:754–760PubMedGoogle Scholar
  22. Dizdaroglu M (1998) Mechanisms of free radical damage to DNA. In: Arnoma OJ, Halliwell B (eds) DNA and free radicals: techniques, mechanisms and applications. Oica International, Saint Lucia, pp 3–26Google Scholar
  23. Dizdaroglu M (1999) Mechanisms of oxidative damage; lesions and their measurement. In: Dizdaroglu M, Karakaya AE (eds) Advances in DNA damage and repair. Oxygen radical effects, cellular protection and biological consequences. Kluwer, New York, pp 567–587Google Scholar
  24. Eikelenboom P, Bate C, van Gool WA et al (2002) Neuroinflammation in Alzheimer’s disease and prion disease. Glia 40:232–239PubMedCrossRefGoogle Scholar
  25. Elbaz A, Bower JH, Peterson BJ et al (2003) Survival study of Parkinson’s disease in Olmsted County, Minnesota. Arch Neurol 60:91–96PubMedCrossRefGoogle Scholar
  26. Esiri MM, Wilcock GK, Morris JH (1997) Neuropathological assessment of the lesions of significance in vascula dementia. J Neurol Neurosurg Psychiatry 63:749–753PubMedCrossRefGoogle Scholar
  27. Foltynie T, Sawcer S, Brayne C, Barker RA (2002) The genetic basis of Parkinson’s disease. J Neurol Neurosurg Psychiatry 73:363–370PubMedCrossRefGoogle Scholar
  28. Frank RA, Galasko D, Hampel H et al (2003) Biological markers for therapeutic trials in Alzheimer’s disease. Proceedings of the biological markers working group; NIA initiative on neuroimaging in Alzheimer’s disease. Neurobiol Aging 24:521–536Google Scholar
  29. Gallyas F (1971) Silver staining of Alzheimer’s neurofibrillary changes by means of physical development. Acta Morph Acad Sci Hung 19:1–8Google Scholar
  30. Giannakopoulos P, Hof PR, Michel JP et al (1997) Cerebral cortex pathology in aging and Alzheimer’s disease: a quantitative survey of large hospital-based geriatric and psychiatric cohorts. Brain Res Rev 25:217–245PubMedCrossRefGoogle Scholar
  31. Gibb WRG, Lees A (1989) The significance of the Lewy body in the diagnosis of idiopathic Parkinson’s disease. Neuropathol Appl Neurobiol 15:27–44PubMedCrossRefGoogle Scholar
  32. Glenner GG, Wong CW (1984) Alzheimer’s disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem Biophys Res Commun 120:885–890PubMedCrossRefGoogle Scholar
  33. Grundke-Iqbal I, Iqbal K, Tung YC et al (1986) Abnormal phosphorylation of microtubule-associated protein tau in Alzheimer cytoskeletal pathology. Proc Natl Acad Sci USA 83:4913–4917PubMedGoogle Scholar
  34. Guillozet AL, Weintraub S, Mash DC, Mesulam MM (2003) Neurofibrillary tangles, amyloid, and memory in aging and mild cognitive impairment. Arch Neurol 60:729–736PubMedCrossRefGoogle Scholar
  35. Hamilton JB, Mestler GE (1969) Mortality and survival: comparison of eunuchs with intact men and women in a mentally retarded population. J Gerontol 24:395–411PubMedGoogle Scholar
  36. Hansen LA, Armstrong DM, Terry RD (1987) An immunohistochemical quantification of fibrous astrocytes in the aging human cerebral cortex. Neurobiol Aging 8:1–6PubMedCrossRefGoogle Scholar
  37. Hansen LA, DeTeresa R, Davies P, Terry RD (1988) Neocortical morphometry, lesion counts, and choline acetyltransferase levels in the age spectrum of Alzheimer’s disease. Neurology 38:48–54PubMedGoogle Scholar
  38. Harman D (2002) The aging process: major risk factor for disease and death. In: Oehmichen M, Ritz-Timme S, Meissner C (eds) Aging. Morphological, biochemical, molecular and social aspects. In: Research in legal medicine, vol 27._Schmidt-Römhild, Lübeck, pp 53–78Google Scholar
  39. Haug H (1977) The aging cerebral cortex: morphometry of areal differences and their functional meaning. In: Dami SU, Hori A, Walter GF (eds) Principles of neuronal aging. Elsevier, Amsterdam, pp 247–261Google Scholar
  40. Hayflick L (1968) Human cells and aging. Sci Am 218:32–37PubMedCrossRefGoogle Scholar
  41. Hayflick L (1994) How and why we age. Ballantine, New York [German edition (1996) Auf ewig jung? Cologne]Google Scholar
  42. Hayflick L (2002) Aging, longevity determination and the telomere replicometer. In: Oehmichen M, Ritz-Timme S, Meissner C (eds) Aging. Morphological, biochemical, molecular and social aspects. In: Research in legal medicine, vol 27. Schmidt-Römhild, Lübeck, pp 275–294Google Scholar
  43. Heyman A, Peterson B, Fillenbaum G, Pieper C (1996) The consortium to establish a registry for Alzheimer’s disease (CERAD). Part XIV. Demographic and clinical predictors of survival in patients with Alzheimer’s disease. Neurology 46:656–660PubMedGoogle Scholar
  44. Heyman A, Peterson B, Fillenbaum G, Pieper C (1997) Predictors of time to institutionalization of patients with Alzheimer’s disease: the CERAD experience, part XVII. Neurology 48:1304–1309PubMedGoogle Scholar
  45. Heyman A, Fillenbaum GG, Welsh-Bohmer KA et al (1998) Cerebral infarcts in patients with autopsy-proven Alzheimer’s disease. CERAD, part XVIII. Consortium to Establish a Registry for Alzheimer’s Disease. Neurology 51:159–162PubMedGoogle Scholar
  46. Hodes RJ (1999) Telomere length, aging, and somatic cell turnover. J Exp Med 190:153–156PubMedCrossRefGoogle Scholar
  47. Holt SE, Aisner DL, Shay JW, Wright WE (1997) Lack of cell cycle regulation of telomerase activity in human cells. Proc Nat Acad Sci USA 94:10687–10692PubMedCrossRefGoogle Scholar
  48. Horner PJ, Gage FH (2002) Regeneration in the adult and aging brain. Arch Neurol 59:1717–1720PubMedCrossRefGoogle Scholar
  49. Hughes AJ, Daniel SE, Blankson S, Lees AJ (1993) A clinicopathologic study of 100 cases of Parkinson’s disease. Arch Neurol 50:140–148PubMedGoogle Scholar
  50. Hulstaert F, Blennow K, Ivanoiu A et al (1999) Improved discrimination of AD patients using beta-amyloid(1-42) and tau levels in CSF. Neurology 52:1555–1562PubMedGoogle Scholar
  51. Hurtig HI, Trojanowski JQ, Galvin J et al (2000) Alpha-synuclein cortical Lewy bodies correlate with dementia in Parkinson’s disease. Neurology 54:1916–1921PubMedGoogle Scholar
  52. Hyman BT, Trojanowski JQ (1997) Editorial on consensus recommendations for the postmortem diagnosis of Alzheimer disease from the National Institute on Aging and the Reagan Institute Working Group on diagnostic criteria for the neuropathological assessment of Alzheimer disease. J Neuropathol Exp Neurol 56:695–1097Google Scholar
  53. Hyman BT, Van Hoesen GW, Wolozin BL et al (1988) Alz-50 antibody recognizes Alzheimer-related neuronal changes. Ann Neurol 23:371–379PubMedCrossRefGoogle Scholar
  54. Iqbal K, Grundke-Iqbal I, Zaidi T et al (1986) Defective brain micro-tubule assembly in Alzheimer’s disease. Lancet II:421–426Google Scholar
  55. Jellinger KA (1998) The neuropathological diagnosis of Alzheimer disease. J Neural Transm Suppl 53:97–118PubMedGoogle Scholar
  56. Jellinger KA (2004) Lewy body-related α-synucleinopathy in aged human brain. J Neurol Transm 111:1219–1235Google Scholar
  57. Jellinger KA (2005) The pathology of Parkinson’s disease — recent advances. In: Galvez-Jimenez N (ed) The scientific basis for the treatment of Parkinson’s disease, 2nd ed, London, Parthenon Publishing, pp. 53–85Google Scholar
  58. Jellinger KA, Bancher C (1998) Senile dementia with tangles (tangle predominant form of senile dementia). Brain Pathol 8:367–376PubMedGoogle Scholar
  59. Jellinger K, Bancher C, Fischer P, Lassmann H (1992) Quantitative histopathologic validation of senile dementia of the Alzheimer type. Eur J Gerontol 3:146–156Google Scholar
  60. Kawas CH, Katzman R (1999) Epidemiology of dementia and Alzheimer disease. In: Terry RD, Katzman R, Bick KL, Sisodia SS (eds) Alzheimer disease. Lippincott Williams and Wilkins, Philadelphia, Pa., pp 95–116Google Scholar
  61. Kaye JA (2002) Healthy brain aging. Arch Neurol 59:1721–1723PubMedCrossRefGoogle Scholar
  62. Kenessey A, Yen SH, Liu WK et al (1995) Detection of D-aspartate in tau protein associated with Alzheimer paired helical filaments. Brain Res 675:183–189PubMedCrossRefGoogle Scholar
  63. Kertesz A, Munoz DG (2002) Frontotemporal dementia. Med Clin N Am 86:501–518PubMedCrossRefGoogle Scholar
  64. Khachaturian ZS (1985) Progress of research on Alzheimer’s disease. Research opportunities for behavioral scientists. Am Psychol 40:1251–1255PubMedCrossRefGoogle Scholar
  65. Kimura H, Aimi Y, Minnasch P et al (2002) Molecular mechanisms in Alzheimer’s disease. In: Oehmichen M, Ritz-Timme S, Meissner C (eds) Aging. Morphological, biochemical, molecular and social aspects. In: Research in legal medicine, vol 27. Schmidt-Römhild, Lübeck, pp 161–174Google Scholar
  66. Klatka LA, Schiffer RB, Powers JM, Kazee AM (1996) Incorrect diagnosis of Alzheimer’s disease. A clinicopathological study. Arch Neurol 53:35–42PubMedGoogle Scholar
  67. Knopman DS, Rocca WA, Cha RH et al (2002) Incidence of vascular dementia in Rochester, Minn, 1985–1989. Arch Neurol 59:1605–1610PubMedGoogle Scholar
  68. Knopman DS, Parisi JE, Salviati A et al (2003) Neuropathology of cognitively normal elderly. J Neuropathol Exp Neurol 62:1087–1095PubMedGoogle Scholar
  69. Kretzschmar HA, Neumann M (2000) Die neuropathologische Diagnostik neurodegenerativer and demenzieller Krankheiten. Pathologe 21:364–374PubMedCrossRefGoogle Scholar
  70. Kuo H-K, Lipsitz LA (2004) Cerebral white matter changes and geriatric syndromes: Is there a link? J Gerontol: Med Sci 59A:818–826Google Scholar
  71. Lautenschläger N, Kurz A, Müller U (1999) Erbliche Ursachen und Risikofaktoren der Alzheimer-Krankheit. Nervenarzt 70:195–205PubMedGoogle Scholar
  72. Lopez OL, Wisniewski S, Hamilton RL et al (2000) Predictors of progression in patients with AD and Lewy bodies. Neurology 54:1774–1779PubMedGoogle Scholar
  73. Lowe JS, Leigh N (2002) Disorders of movement and system degenerations. In: Graham DI, Lantos PL (eds) Greenfield’s neuropathology, 7th edn, vol 2. Arnold, London, pp 325–430Google Scholar
  74. Lund and Manchester Groups (1994) Clinical and neuropathological criteria for frontotemporal dementia. J Neurol Neurosurg Psychiatry 57:416–418Google Scholar
  75. Mann DMA, Yates PQ (1987) Ageing nucleic acids and pigments. In: Cavanagh JB (ed) Recent advances in neuropathology. Churchill Livingstone, Edinburgh, pp 109–137Google Scholar
  76. Marder K, Tang MX, Cote T et al (1995) The frequency and associated risk factors for dementia in patients with Parkinson’s disease. Arch Neurol 52:695–701PubMedGoogle Scholar
  77. Markesbery WR, Carney JM (1999) Oxidative alterations in Alzheimer’s disease. Brain Pathol 9:133–146PubMedGoogle Scholar
  78. Masliah E, Mallory M, Hansen L et al (1993) Quantitative synaptic alterations in the human neocortex during normal aging. Neurology 43:192–197PubMedGoogle Scholar
  79. Mayeux R, Chen J, Mirabello E et al (1990) An estimate of the incidence of dementia in idiopathic Parkinson’s disease. Neurology 40:1513–1517PubMedGoogle Scholar
  80. McGeer PL, McGeer EG (2001) Polymorphisms in inflammatory genes and the risk of Alzheimer disease. Arch Neurol 58:1790–1792PubMedCrossRefGoogle Scholar
  81. McKee AC, Kosik KS, Kowall NW (1991) Neuritic pathology and dementia in Alzheimer’s disease. Ann Neurol 30:156–165PubMedCrossRefGoogle Scholar
  82. McKeel DW Jr, Price JL, Miller JP et al (2004) Neuropathologic criteria for diagnosing Alzheimer disease in persons with pure dementia of Alzheimer type. J Neuropathol Exp Neurol 63:1028–1037PubMedGoogle Scholar
  83. McKeith IG, Galaske D, Kosaka K et al (1996) Consensus guidelines for the clinical and pathologic diagnosis of dementia with Lewy bodies (DLB): report of the Consortium on DLB International Workshop. Neurology 47:1113–1124PubMedGoogle Scholar
  84. McKhann GM, Albert MS, Grossman M et al (2001) Clinical and pathological diagnosis of frontotemporal dementia. Arch Neurol 58:1803–1809PubMedCrossRefGoogle Scholar
  85. Meissner C (2003) Deletionen der mitochondrialen DNA in Skelettmuskulatur, Herzmuskulatur, Gehirn und Blut. Habil.-Schrift (typescript), LübeckGoogle Scholar
  86. Meissner C, Wurmb N von, Oehmichen M (1997) Detection of the age-dependent 4977 bp deletion of mitochondrial DNA. A pilot study. Int J Legal Med 110:288–291PubMedGoogle Scholar
  87. Meissner C, Wurmb N von, Schimansky B, Oehmichen M (1998) Einflussfaktoren der Akkumulation der 4977 bp Deletion in Skelettmuskulatur. Rechtsmedizin 8(Suppl I):A28Google Scholar
  88. Miller JW, Green R, Mungas DM et al (2002) Homocysteine, vitamin B6, and vascular disease AD patients. Neurology 58:1471–1475PubMedGoogle Scholar
  89. Mirra SS, Hyman BT (2002) Ageing and dementia. In: Graham DI, Lantos PL (eds) Greenfield’s neuropathology, 7th edn, vol 2. Arnold, London, pp 195–271Google Scholar
  90. Mirra SS, Heyman A, McKeel D et al (1991) The Consortium to Establish a Registry for Alzheimer’s Disease (CERAD). Part II. Standardization of the neuropathologic assessment of Alzheimer’s disease. Neurology 41:479–486PubMedGoogle Scholar
  91. Mirra SS, Hart MN, Terry RD (1993) Making the diagnosis of Alzheimer’s disease. A primer for practicing pathologists. Arch Pathol Lab Med 117:132–144PubMedGoogle Scholar
  92. Mirra SS, Gearing M, McKeel DW et al (1994) Interlaboratory comparison of neuropathology assessments in Alzheimer’s disease: a study of the consortium to establish a registry for Alzheimer’s disease (CERAD). J Neuropathol Exp Neurol 53:303–315PubMedGoogle Scholar
  93. Mori H, Ishii K, Tomiyama T et al (1994) Racemization: its biological significance on neuropathogenesis of Alzheimer’s disease. Tohoku J Exp Med 174:251–262PubMedCrossRefGoogle Scholar
  94. Morris HR, Khan MN, Janssen JC et al (2001) The genetic and pathological classification of familial frontotemporal dementia. Arch Neurol 58:1813–1816PubMedGoogle Scholar
  95. Morris MC, Evans DA, Bienias JL et al (2002) Dietary intake of anti-oxidant nutrients and the risk of incident Alzheimer disease in a biracial community study. J Am Med Assoc 287:3230–3237CrossRefGoogle Scholar
  96. Mrak RE, Griffin ST, Graham DI (1997) Aging-associated changes in human brain. J Neuropathol Exp Neurol 56:1269–1275PubMedGoogle Scholar
  97. National Institute on Aging, and Reagan Institute Working Group on diagnostic criteria for the neuropathological assessment of Alzheimer’s disease (1997) Consensus recommendations for the postmortem diagnosis of Alzheimer’s disease. Neurobiol Aging 18:51–52Google Scholar
  98. Neary D, Snowden JS, Gustafson L et al (1998) Frontotemporal lobar degeneration: a consensus on clinical diagnostic criteria. Neurology 51:1546–1554PubMedGoogle Scholar
  99. Newell KL, Hyman BT, Growdon JH, Hedley-Whyte ET (1999) Application of the National Institute on Aging (NIA)-Reagan Institute criteria for the neuropathological diagnosis of Alzheimer disease. J Neuropathol Exp Neurol 58:1147–1155PubMedGoogle Scholar
  100. Oehmichen M, Ritz-Timme S, Meissner C (2002) Aging as a “naturalprocess”: socioepidemiological and biological principles. In: Oehmichen M, Ritz-Timme S, Meissner C (eds) Aging. Morphological, biochemical, molecular and social aspects. In: Research in legal medicine, vol 27. Schmidt-Römhild, Lübeck, pp 17–31Google Scholar
  101. O’Meara ES, Kukull WA, Sheppard L et al (1997) Head injury and risk of Alzheimer’s disease by apolipoprotein E genotype. Am J Epidemiol 146:373–384Google Scholar
  102. Ostrow PT, Miller LL (1993) Pathology of small artery disease. Adv Neurol 62:93–123PubMedGoogle Scholar
  103. Parwaresch R, Krupp G (2002) Molecular basis of aging. In: Oehmichen M, Ritz-Timme S, Meissner C (eds) Aging. Morphological, biochemical, molecular and social aspects. In: Research in legal medicine, vol 27. Schmidt-Römhild, Lübeck, pp 295–300Google Scholar
  104. Perry R, Irving D, Tomlinson B (1990) Lewy body prevalence in the aging brain: relationship in neuropsychiatric disorders Alzheimer-type pathology and catecholaminergic nuclei. J Neurol Sci 100:223–233PubMedCrossRefGoogle Scholar
  105. Peters A (2002) The effects of normal aging on myelin and nerve fibers: a review. J Neurocytol 31:581–593PubMedGoogle Scholar
  106. Peters A, Morrison JH, Rosene DL, Hyman BT (1998) Are neurons lost from the primate cerebral cortex during normal aging? Cereb Cortex 8:295–300PubMedGoogle Scholar
  107. Prencipe M, Ferretti C, Casini AR et al (1997) Stroke, disability, and dementia. Results of a population survey. Stroke 28:531–536PubMedGoogle Scholar
  108. Price JL, Morris JC (1999) Tangles and plaques in nondemented aging and “preclinical” Alzheimer’s disease. Ann Neurol 45:358–368PubMedCrossRefGoogle Scholar
  109. Ráliš HM, Beesley RA, Ráliš ZA (1973) Techniques in neurohistology. Butterworths, LondonGoogle Scholar
  110. Reusche E (1991) Silver staining of senile plaques and neurofibrillary tangles in paraffin sections — a simple and effective method. Pathol Res Pract 187:1045–1048PubMedGoogle Scholar
  111. Ritz-Timme S (1999) Lebensaltersbestimmung aufgrund des Razemisierungsgrades von Asparaginsäure. Schmidt-Römhild, LübeckGoogle Scholar
  112. Ritz-Timme S (2002) Protein modifications and aging. In: Oehmichen M, Ritz-Timme S, Meissner C (eds) Aging. Morphological, biochemical, molecular and social aspects. In: Research in legal medicine, vol 27. Schmidt-Römhild, Lübeck, pp 261–270Google Scholar
  113. Román GC (2002) Vascular dementia revisited: diagnosis, pathogenesis, treatment, and prevention. Med Clin N Am 86:477–499PubMedGoogle Scholar
  114. Román GC, Goldstein M (1993) A population-based study of dementia in 85-year-olds. N Engl J Med 329:63PubMedGoogle Scholar
  115. Ross GW, Bowen JD (2002) The diagnosis and differential diagnosis of dementia. Med Clin N Am 86:455–476PubMedCrossRefGoogle Scholar
  116. Saunders AM, Strittmatter WJ, Schmechel D et al (1993) Association of apolipoprotein E allele ε4 with late-onset familial and sporadic Alzheimer’s disease. Neurology 43:1467–1472PubMedGoogle Scholar
  117. Scheff SW, Price DA (2003) Synaptic pathology in Alzheimer’s disease: a review of ultrastructural studies. Neurobiol Aging 24:1029–1046PubMedCrossRefGoogle Scholar
  118. Shapira R, Austin GE, Mirra SS (1988) Neuritic plaque amyloid in Alzheimer’s disease is highly racemized. J Neurochem 50:69–74PubMedGoogle Scholar
  119. Sloane JA, Hollander W, Moss MB et al (1999) Increased microglial activation and protein nitration in white matter of the aging monkey. Neurobiol Aging 20:395–405PubMedCrossRefGoogle Scholar
  120. St. George-Hyslop PH (2000) Molecular genetics of Alzheimer’s disease. Biol Psychiatry 47:183–199PubMedGoogle Scholar
  121. Steele JC, Richardson JC, Olszewski J (1964) Progressive supranuclear palsy: a heterogenous degeneration involving the brainstem, basal ganglia and cerebellum with vertical gaze and pseudobulbar palsy, nuchal dystonia and dementia. Arch Neurol 10:333–359PubMedGoogle Scholar
  122. Stern Y, Jacobs D, Goldman J et al (2001) An investigation of clinical correlates of Lewy bodies in autopsy-proven Alzheimer disease. Arch Neurol 58:460–465PubMedGoogle Scholar
  123. Storm T, Rath S, Mohamed SA et al (2002) Mitotic brain cells are just as prone to mitochondrial deletions as neurons: a large-scale single-cell PCR study of the human caudate nucleus. Exp Gerontol 37:1389–1400PubMedCrossRefGoogle Scholar
  124. Strasser A, Stanimirovic D, Kawai N et al (1997) Hypoxia modulates free radical formation in brain microvascular endothelium. Acta Neurochir Suppl (Wien) 70:8–11Google Scholar
  125. Streit WJ (2004) Microglia and Alzheimer’s disease pathogenesis. J Neurosci Res 77:1–8PubMedCrossRefGoogle Scholar
  126. Streit WJ, Sammons NW, Kuhns AJ, Sparks DL (2004) Dystrophic microglia in the aging human brain. Glia 45:208–212PubMedCrossRefGoogle Scholar
  127. Swieten JC van, Caplan LR (1993) Binswanger’s disease. Adv Neurol 62:193–211PubMedGoogle Scholar
  128. Tomlinson BE, Blesed G, Roth M (1970) Observations on the brains of demented old people. J Neurol Sci 11:205–242PubMedGoogle Scholar
  129. Tredici K del, Rüb U, de Vos RAI et al (2002) Where does Parkinson disease pathology begin in the brain? J Neuropathol Exp Neurol 61:413–426PubMedGoogle Scholar
  130. Trojanowski JQ, Lee VM-Y (2002) The role of tau in Alzheimer’s disease. Med Clin N Am 86:615–627PubMedCrossRefGoogle Scholar
  131. Vassar PS, Culling CFA (1959) Fluorescent stain, with special reference to amyloid and connective tissue. Arch Pathol 68:487–498PubMedGoogle Scholar
  132. Vehmas AK, Kawas CH, Stewart WF, Troncoso JC (2003) Immune reactive cells in senile plaques and cognitive decline in Alzheimer’s disease. Neurobiol Aging 24:321–331PubMedCrossRefGoogle Scholar
  133. Walker LC, LeVine H (2000) The cerebral proteopathies. Neurobiol Aging 21:559–561PubMedGoogle Scholar
  134. Wang D, Munoz DG (1995) Qualitative and quantitative differences in senile plaque dystrophic neurites of Alzheimer’s disease and normal aged brain. J Neuropathol Exp Neurol 55:131–132Google Scholar
  135. Wei Y-M (1998) Oxidative stress and mitochondrial DNA mutations in human aging. Proc Soc Exp Biol Med 217:53–63PubMedGoogle Scholar
  136. Wickens AP (1998) The causes of aging. Harwood, AmsterdamGoogle Scholar
  137. Wisniewski K, Jervis GA, Moretz RC, Wisniewski HM (1979) Alzheimer neurofibrillary tangles in diseases other than senile and presenile dementia. Ann Neurol 5:288–294PubMedCrossRefGoogle Scholar
  138. Wolozin BL, Pruchnicki A, Dickson DW, Davies P (1986) A neuronal antigen in the brains of Alzheimer patients. Science 232:648–650PubMedGoogle Scholar
  139. Wurmb N von, Oehmichen M, Meissner C (1998) Demonstration of the 4977 bp deletion in human mitochondrial DNA from intravital and postmortem blood. Mutat Res 422:247–254Google Scholar
  140. Yamaguchi H, Nakazato Y, Shoji M et al (1990) Ultrastructure of the neuropil threads in the Alzheimer brain: their dendritic origin and accumulation in the senile plaques. Acta Neuropathol (Berl) 80:368–374Google Scholar
  141. Zglinicki T von (2000) Role of oxidative stress in telomere length regulation and replicative senescence. Ann NY Acad Sci 908:99–110Google Scholar
  142. Ziesmer C (1969) Demonstration of neurofibrils in paraffin sections by Bodian’s method. Anat An 125:143–146Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Personalised recommendations