Skip to main content
  • 1696 Accesses

Abstract

The brains of fetuses should be removed using the same procedure as for newborns. Examination of the fetal brain should be preceded by an estimation of the gestational age based primarily on a comparison of body mass and length at autopsy with normal values (cf. Chap. 20). When examining the brain itself factors other than brain mass should be considered for comparison with a pathological state: the pattern of sulcation, synaptogenesis, as well as the state of myelination and of the neuronal migration process. The development of olfactory bulbs, optic nerves, pituitary stalk, and cranial nerve roots is recorded, and the mass and occipital-frontal length of each hemisphere and its biparietal width are measured. Because of the friability and deformability of the fetal brain, these measurements are best obtained while the brain is floating in either fixative or water.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  • Encha-Razavi F (1995) Fetal neuropathy. In:Duckett S (ed) Pediatric neuropathology. William and Wilkins, Baltimore, Md., pp 108–122

    Google Scholar 

  • Friede RL (1989) Developmental neuropathology. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Volpe JJ (2001) Neurology of the newborn. WB Saunders, Philadelphia, Pa.

    Google Scholar 

References

  • Ahdab-Barmada M, Moossy J, Painter M (1980) Pontosubicular necrosis and hyperoxemia. Pediatrics 66:840–847

    PubMed  CAS  Google Scholar 

  • Anstrom JA, Brown WR, Moody DM, Thore CR, Challa VR, Block SM (2004) Subependymal veins in premature neonates: implications for hemorrhage. Pediatr Neurol 30:46–53

    Article  PubMed  Google Scholar 

  • Barkovich AJ, Kuzniecky RI, Jackson GD et al (2001) Classification system for malformations of cortical development. Neurology 57:2168–2178

    PubMed  CAS  Google Scholar 

  • Barone S, Das KP, Lassiter TL, White LD (2000) Vulnerable processes of nervous system development: a review of markers and methods. Neurotoxicology 21:15–36

    PubMed  CAS  Google Scholar 

  • Bays J, Feldman KW (2001) Child abuse by poisoning. In: Reese RM, Ludwig S (eds) Child abuse. Medical diagnosis and management. Lippincott, Williams and Wilkins, Philadelphia, Pa., pp 405–441

    Google Scholar 

  • Bingol N, Fuchs M, Diaz V et al (1987) Teratogenicity of cocaine in humans. J Pediatr 110:93–96

    PubMed  CAS  Google Scholar 

  • Brann AW Jr (1986) Hypoxic ischemic encephalopathy (asphyxia). Pediatr Clin North Am 33:451–464

    PubMed  Google Scholar 

  • Callahan DJ, Engle MJ, Volpe JJ (1990) Hypoxic injury to developing glial cells: protective effect of high glucose. Pediatr Res 27:186–190

    PubMed  CAS  Google Scholar 

  • Chasnoff IJ, Burns KA, Burns WJ, Schnoll SH (1986) Prenatal drug exposure: effects on neonatal and infant growth and development. Neurobehav Toxicol Teratol 8:357–362

    PubMed  CAS  Google Scholar 

  • Chavez CJ, Ostrea EM, Stryker JC, Smialek Z (1979) Sudden infant death syndrome among infants of drug-dependent mothers. J Pediatr 95:407–409

    PubMed  CAS  Google Scholar 

  • Darrow VC, Ellsworth CA, Mack LA, Hodson WA (1988) Histologic evolution of the reactions to hemorrhage in the premature human infant’s brain. Am J Pathol 130:44–58

    PubMed  CAS  Google Scholar 

  • Del Toro J, Louis PT, Goddard-Finegold J (1991) Cerebrovascular regulation and neonatal brain injury. Pediatr Neurol 7:3–12

    PubMed  Google Scholar 

  • Encha-Razavi F (1995) Fetal neuropathology. In: Duckett S (ed) Pediatric neuropathology. Williams and Wilkins, Baltimore, Md., pp 108–122

    Google Scholar 

  • Encha-Razavi F, Larroche JC, Vazeux R et al (1992) Correlation between HIV infection and the central nervous system (CNS) changes in fetal brain (abstract). J Acquir Immune Defic Syndr 4:540

    Google Scholar 

  • Goddard-Finegold J, Michael LH (1992) Brain vasoactive effects of phenobarbital during hypertension and hypoxia in newborn pigs. Pediatr Res 32:103–106

    PubMed  CAS  Google Scholar 

  • Greisen G, Børch K (2001) White matter injury in the preterm neonate: the role of perfusion. Dev Neurosci 23:209–212

    Article  PubMed  CAS  Google Scholar 

  • Larroche JC (ed) (1977) Developmental pathology of the neonate. Excerpta Medica, Amsterdam

    Google Scholar 

  • Larson EJ (1989) Intoxication in utero. In: Mason JK (ed) Paediatric forensic medicine and pathology. Chapman and Hall Medical, London, pp 37–47

    Google Scholar 

  • Liu Y, Silverstein FS, Skoff R, Barks JDE (2002) Hypoxic-ischemic oligodendroglial injury in neonatal rat brain. Pediatr Res 51:25–33

    PubMed  Google Scholar 

  • Mayor’s Task Force on Child Abuse and Neglect (1985) Executive summary. New York City Department of Health

    Google Scholar 

  • Roessmann U (1995) Pediatric neuropathology. In: Duckett S (ed) Pediatric neuropathology. Williams and Wilkins, Baltimore, Md., pp 123–148

    Google Scholar 

  • Rorke LB (1992) Perinatal brain damage. In: Adams JH, Corsellis JAN, Duchen LW (eds) Greenfield’s neuropathology, 5th edn. Edward-Arnold, London, pp 639–708

    Google Scholar 

  • Takashima S, Tanaka K (1978) Development of cerebrovascular architecture and its relationship to periventricular leukomalacia. Arch Neurol 35:11–16

    PubMed  CAS  Google Scholar 

  • Thom M, Holton JL, D’Arrigo C et al (2000) Microdysgenesis with abnormal cortical myelinated fibres in temporal lobe epilepsy: a histopathological study with calbindin D-28-K immunohistochemistry. Neuropathol Appl Neurobiol 26:251–257

    Article  PubMed  CAS  Google Scholar 

  • Vannucci RC (1992) Cerebral carbohydrate and energy metabolism in perinatal hypoxic-ischemic brain damage. Brain Pathol 2:229–234

    PubMed  CAS  Google Scholar 

  • Whiting S, Duchowny M (1999) Clinical spectrum of cortical dysplasia in childhood: diagnosis and treatment issue. J Child Neurol 14:759–771

    PubMed  CAS  Google Scholar 

  • Yamamoto T, Shibata N, Muramatsu F et al (2002) Oxidative stress in the human fetal brain: an immunohistochemical study. Pediatr Neurol 26:116–122

    Article  PubMed  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

(2006). Fetal Neuropathology. In: Forensic Neuropathology and Associated Neurology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-28995-X_21

Download citation

  • DOI: https://doi.org/10.1007/3-540-28995-X_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-23500-2

  • Online ISBN: 978-3-540-28995-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics