Advertisement

Forensic Types of Ischemia and Asphyxia

Keywords

Cervical Spine Cerebral Ischemia Glial Fibrillary Acidic Protein Brain Death Connective Tissue Growth Factor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. DiMaio VJ, DiMaio D (2001) Forensic pathology, 2nd edn. CRC, Boca Raton, Fla.Google Scholar
  2. Knight B (1996) Forensic pathology. Arnold, LondonGoogle Scholar
  3. Lipton P (1999) Ischemic cell death in brain neurons. Physiol Rev 79:1431–1567PubMedGoogle Scholar
  4. Schröder R (1983) Chronomorphologie der zerebralen Durchblutungsstörungen. Springer, Berlin Heidelberg New YorkGoogle Scholar

References

  1. Abe K, Aoki M, Kawagoe J et al (1995) Ischemic delayed neuronal death. A mitochondrial hypothesis. Stroke 26:1478–1489PubMedGoogle Scholar
  2. Ábrahám H, Lázár G (2000) Early microglial reaction following mild forebrain ischemia induced by common carotid artery occlusion in rats. Brain Res 862:63–73PubMedCrossRefGoogle Scholar
  3. Acarin L, González B, Castellano B (2000) STAT3 and NFB activation precedes glial reactivity in the excitotoxically injured young cortex but not in the corresponding distal thalamic nuclei. J Neuropathol Exp Neurol 59:151–163PubMedGoogle Scholar
  4. Adams JH, Grahams DI, Jennett B (2000) The neuropathology of the vegetative state after an acute brain insult. Brain 123:1327–1338PubMedCrossRefGoogle Scholar
  5. Ames A, Wright L, Masayoshi K et al (1968) Cerebral ischemia: the no-reflow phenomenon. Am J Pathol 52:437–443PubMedGoogle Scholar
  6. Archer DD, Walz W (2000) Astrocytic subtypes and the gliotic response. In: Oehmichen M (ed) Brain hypoxia and ischemia. In: Research in legal medicine, vol 24. Schmidt-Römhild, Lübeck, pp 101–113Google Scholar
  7. Arsenio-Nunes NL, Hossmann K-A, Farkas-Bargeton E (1973) Ultrastructural and histochemical investigation of the cerebral cortex of cat during and after complete ischemia. Acta Neuropathol (Berl) 26:329–344CrossRefGoogle Scholar
  8. Ashwal S, Perkin RM, Thompson JR et al (1991) CBF and CBF/ PCO2 reactivity in childhood strangulation. Pediatr Neurol 7:369–374PubMedCrossRefGoogle Scholar
  9. Ata KA (2000) Brain ischemia and expression of TGF-β. In: Oehmichen M (ed) Brain hypoxia and ischemia. In: Research in legal medicine, vol 24. Schmidt-Römhild, Lübeck, pp 131–143Google Scholar
  10. Ata KA, Funa K, Olsson Y (1997) Expression of various TGF-β isoforms and type I receptor in necrotizing human brain lesions. Acta Neuropathol (Berl) 93:326–333CrossRefGoogle Scholar
  11. Ata KA, Lennmyr F, Funa K et al (1999) Expression of transforming growth factor-β1, 2, 3 isoforms and type I and II receptors in acute focal cerebral ischemia: an immunohistochemical study in rat after transient and permanent occlusion of middle cerebral artery. Acta Neuropathol (Berl) 97:447–455CrossRefGoogle Scholar
  12. Baethmann A (2000) Brain edema and leukocyte-endothelial interactions in cerebral ischemia. In: Oehmichen M (ed) Brain hypoxia and ischemia. In: Research in legal medicine, vol 24. Schmidt-Römhild, Lübeck, pp 85–99Google Scholar
  13. Baggenstoss AH, Kernohan JW, Drapiewski JF (1943) The healing process in wounds of the brain. Am J Clin Pathol 13:333–348Google Scholar
  14. Barone FC, Hillegass LM, Tzimas MN et al (1995) Time-related changes in myeloperoxidase activity and leukotriene B4 receptor binding reflect leukocyte influx in cerebral focal stroke. Mol Cell Neuropathol 24:13–30Google Scholar
  15. Benavente O, Eliasziw M, Streifler JY et al (2001) Prognosis after transient monocular blindness associated with carotid-artery stenosis. N Engl J Med 345:1084–1090PubMedCrossRefGoogle Scholar
  16. Berek K, Jeschow M, Aichner F (1997) The prognostication of cerebral hypoxia after out-of-hospital cardiac arrest in adults. Eur Neurol 37:135–145PubMedCrossRefGoogle Scholar
  17. Beschorner B, Schluesener HJ, Gozalan F et al (2002) Infiltrating CD14+ monocyte and expression of CD14 by activated parenchymal microglia/macrophages contribute to the pool of CD14+ cells in ischemic brain lesions. J Neuroimmunol 126:107–115PubMedCrossRefGoogle Scholar
  18. Bierens JLM, van der Velde EA, van Berkel M et al (1990) Submersion in The Netherlands: prognostic indicators and results of resuscitation. Ann Emerg Med 19:1390–1394PubMedCrossRefGoogle Scholar
  19. Blakemore WF (1971) The ultrastructural appearance of astrocytes following thermal lesions of the rat cortex. J Neurol Sci 12:319–332PubMedCrossRefGoogle Scholar
  20. Bonnekoh P, Kuroiwa T, Kloiber O, Hossmann K (1992) Time profile of calcium accumulation in hippocampus, striatum and frontoparietal cortex after transient forebrain ischemia in the gerbil. Acta Neuropathol (Berl) 84:400–406CrossRefGoogle Scholar
  21. Camps FE, Hunt AC (1959) Pressure on the neck. J Forensic Med 6:116–135Google Scholar
  22. Chan PH (1998) Oxygen radical mechanisms in cerebral ischemia and reperfusion. Monogr Clin Neurosci 16:14–27CrossRefGoogle Scholar
  23. Chelnikov VS (1979) Dependence of the morphological changes in cerebral envelopes and brain substance on age of trauma (in Russian). Sud Med Ekspert 22:33–35Google Scholar
  24. Clark RK, Lee EV, White RF et al (1994) Reperfusion following focal stroke hastens inflammation and resolution of ischemic injured tissue. Brain Res Bull 35:387–392PubMedCrossRefGoogle Scholar
  25. Colbourne F, Sutherland GR, Auer RN (1999) Electron microscopic evidence against apoptosis as the mechanism of neuronal death in global ischemia. J Neurosci 19:4200–4210PubMedGoogle Scholar
  26. Connolly ES Jr, Winfree CJ, Springer TA et al (1996) Cerebral protection in homozygous null ICAM-1 mice after middle cerebral artery occlusion: role of neutrophil adhesion in the pathogenesis of stroke. J Clin Invest 97:209–216PubMedCrossRefGoogle Scholar
  27. Davies JWL (1991) Challenges for the future in burn research and burn care. Burns 17:25–36PubMedCrossRefGoogle Scholar
  28. Dutka AJ, Kochanek PM, Hallenbeck JM (1989) Influence of granulocytopenia on canine cerebral ischemia induced by air embolism. Stroke 20:390–395PubMedGoogle Scholar
  29. Escourolle R, Poirier J (1973) Manual of basic neuropathology (translated by Rubinstein LJ). Saunders, Philadelphia, Pa.Google Scholar
  30. Evans BA, Sicks JD, Whisnant JP (1994) Factors affecting survival and occurrence of stroke in patients with transient ischemic attacks. Mayo Clin Proc 69:416–421PubMedGoogle Scholar
  31. Feigin G (1999) Frequency of neck organ fractures in hanging. Am J Forensic Med Pathol 20:128–130PubMedCrossRefGoogle Scholar
  32. Feuerstein G-Z, Liu T, Barone FC (1994) Cytokines, inflammation, and brain injury: role of tumor necrosis factor-α. Cerebrovasc Brain Metab Rev 6:341–360PubMedGoogle Scholar
  33. Figols J, Cervós-Navarro J, Sampaolo S, Ferszt R (1987) Microthrombi in the development of ischemic irreversible brain infarct. In: Cervós-Navarro J, Ferszt R (eds) Stroke and microcirculation. Raven, New York, pp 69–74Google Scholar
  34. Fisher M, Levine PH, Cohen RA (1990) A 21-aminosteroid reduces hydrogen peroxide generation by and chemiluminescence of stimulated human leukocytes. Stroke 21:1435–1438PubMedGoogle Scholar
  35. Fitch SJ, Gerald B, Magill HL, Tonkin ILD (1985) Central nervous system hypoxia in children due to near drowning. Radiology 156:647–650PubMedGoogle Scholar
  36. Forbes ML, Clark RSB, Dixon CE et al (1998) Augmented neuronal death in CA3 hippocampus following hyperventilation early after controlled cortical impact. J Neurosurg 88:649–556Google Scholar
  37. Freund TF, Maglóczky ZS (1993) Early degeneration of calretinincontaining neurons in the rat hippocampus after ischemia. Neuroscience 56:581–596PubMedCrossRefGoogle Scholar
  38. Garcia JH, Kamijyo Y (1974) Cerebral infarction. Evolution of histopathological changes after occlusion of a middle cerebral artery in primates. J Neuropathol Exp Neurol 33:408–421PubMedCrossRefGoogle Scholar
  39. Garcia JH, Kamijyo Y, Kalimo H et al (1975) Cerebral ischemia: the early structural changes and correlation of these with known metabolic and dynamic abnormalities. In: Whisnant JP, Sandok B (eds) Cerebral vascular diseases. Grune and Stratton, New York, pp 313–323Google Scholar
  40. Garcia JH, Liu K-F, Ye Z-R (1997) Cytokines and reperfusion in ischemic stroke. Brain Pathol 7:1151–1161CrossRefGoogle Scholar
  41. Gregersen R, Lambertsen K, Finsen B (2000) Microglia and macrophages are the major source of tumor necrosis factor in permanent middle cerebral artery occlusion in mice. J Cereb Blood Flow Metab 20:53–65PubMedCrossRefGoogle Scholar
  42. Grubb A, Walsh P, Lambe N et al (1996) Survey of British clinicians’ views on management of patients in persistent vegetative state. Lancet 348:35–40PubMedCrossRefGoogle Scholar
  43. Hammes EM (1944) Reaction of the meninges to blood. Arch Neurol Psychiatry 52:505–504Google Scholar
  44. Hanigan WC, Aldag J, Sabo RA et al (1996) Strangulation injuries in children. Part 2. Cerebrovascular hemodynamics. J Trauma 40:73–77PubMedGoogle Scholar
  45. Harm T, Rajs J (1981) Types of injuries and interrelated conditions of victims and assailants in attempted and homicide strangulations. Forensic Sci Int 18:101–123PubMedCrossRefGoogle Scholar
  46. Hartshorne NJ, Reay DT (1995) Judicial hanging (letter). Am J Forensic Med Pathol 16:87PubMedCrossRefGoogle Scholar
  47. Hausmann R, Betz P (1997) Delayed death after attempted suicide by hanging. Int J Legal Med 110:164–166PubMedCrossRefGoogle Scholar
  48. Heron A, Pollard H, Dessi F (1993) Regional variability in DNA fragmentation after global ischemia evidenced by continued histology and gel electrophoresis observed in the rat brain. J Neurochem 61:1973–1976PubMedCrossRefGoogle Scholar
  49. Hori A, Hirose G, Kataoka S et al (1991) Delayed postanoxic encephalopathy after strangulation — serial neuroradiological and neurochemical studies. Arch Neurol 48:871–874PubMedGoogle Scholar
  50. Horn M, Schlote W (1992) Delayed neuronal death and delayed neuronal recovery in the human brain following global ischemia. Acta Neuropathol (Berl) 85:79–87CrossRefGoogle Scholar
  51. Hossmann K-A, Lechtape-Grüter H, Hossmann V (1973) The role of cerebral blood flow for the recovery of the brain after prolonged ischemia. Z Neurol 204:281–292PubMedCrossRefGoogle Scholar
  52. Iadecola C, Zhang F, Casey R et al (1996) Inducible nitric oxide synthase gene expression in vascular cells after transient focal cerebral ischemia. Stroke 27:1373–1380PubMedGoogle Scholar
  53. Iihara K, Sasahara M, Hashimoto N et al (1994) Ischemia induces the expression of the platelet-derived growth factor-B chain in neurons and brain macrophages in vivo. J Cereb Blood Flow Metab 14:818–824PubMedGoogle Scholar
  54. Ikeda N, Umetsu K, Takahashi H, Suzuki T (1988) A delayed drowning death with histological findings of shock. Z Rechtsmed 100:265–270PubMedCrossRefGoogle Scholar
  55. Ingvar DH, Brun A, Johansson L, Samuelsson SM (1978) Survival after severe cerebral anoxia with destruction of the cerebral cortex: the apallic syndrome. In: Korein J (ed) Brain death: interrelated medical and social issues. Ann NY Acad Sci 315:184–208Google Scholar
  56. Ito U, Spatz M, Walker JT, Klatzo I (1975) Experimental cerebral ischemia in Mongolian gerbils. Acta Neuropathol (Berl) 32:209–223CrossRefGoogle Scholar
  57. Jacob H, Pyrkosch W (1951) Frühe Hirnschäden bei Strangtod und in der Agonie. Arch Psychiatr Nervenkr 187:177–186CrossRefGoogle Scholar
  58. Jean WC, Spellmann SR, Nussbaum ES, Low WC (1998) Reperfusion injury after focal cerebral ischemia: the role of inflammation and the therapeutic horizon. Neurosurgery 43:1382–1397PubMedCrossRefGoogle Scholar
  59. Jellinger K (1977) 14. Pathology and pathogenesis of apallic syndromes following closed head injuries. Monogr Gesamtgeb Psychiatr Psychiatry Ser 14:88–103PubMedGoogle Scholar
  60. Jenkins LW, Povlishock JT, Lewelt W et al (1981) The role of postischemic recirculation in the development of ischemic neuronal injury following complete cerebral ischemia. Acta Neuropathol (Berl) 55:205–220CrossRefGoogle Scholar
  61. Jennet B, Plum F (1972) Persistent vegetative state after brain damage. Lancet I:734-737Google Scholar
  62. Jørgensen MB, Finsen BR, Jensen MB et al (1993) Microglial and astroglial reactions to ischemic and kainic acid-induced lesions of the adult rat hippocampus. Exp Neurol 120:70–88PubMedCrossRefGoogle Scholar
  63. Kabat H, Dennis C, Baker AB (1941) Recovery of function following arrest of the brain circulation. Am J Physiol 132:737–747Google Scholar
  64. Kalimo H, Rehncrona S, Söderfeldt B et al (1981) Brain lactic acidosis and ischemic cell damage: 2. Histopathology. J Cereb Blood Flow Metab 1:313–327PubMedGoogle Scholar
  65. Kalimo H, Olsson Y, Paljärvi L, Söderfeldt B (1982) Structural changes in brain tissue under hypoxic-ischemic conditions. J Cereb Blood Flow Metab 2:S19–S22PubMedGoogle Scholar
  66. Kalimo H, Paljärvi L, Olsson Y, Siesjö BK (1983) Structural aspects of energy failure states in brain. In: Wiedemann K, Hoyers J (eds) Problems and perspectives of brain protection. Springer, Berlin Heidelberg New York, pp 1–11Google Scholar
  67. Kaneko M, Sasahara M, Takayama S et al (1998) Expression of platelet-derived growth factor after transient forebrain ischemia in the gerbil hippocampus. Acta Neuropathol (Berl) 95:471–478CrossRefGoogle Scholar
  68. Kaur B, Rutty GN, Timperley WR (1999) The possible role of hypoxia in the formation of axonal bulbs. J Clin Pathol 52:203–209PubMedGoogle Scholar
  69. Kemp AM, Sibert JR (1991) Outcome in children who nearly drown: a British Isles Study. Br Med J 302:931–933Google Scholar
  70. Kemp A, Silbert JR (1992) Drowning and near drowning in children in the United Kingdom: lessons for prevention. Br Med J 302:1143–1146Google Scholar
  71. Kihara S, Shirashi T, Nakagawa S et al (1994) Visualization of DNA double-strand breaks in the gerbil hippocampal CA1 following transient ischemia. Neurosci Lett 175:133–136PubMedCrossRefGoogle Scholar
  72. Kinney HC, Korein J, Panigraphy A et al (1994) Neuropathological findings in the brain of Karen Ann Quinlan. N Engl J Med 330:1469–1475PubMedCrossRefGoogle Scholar
  73. Kirino T (1982) Delayed neuronal death in the gerbil hippocampus following ischemia. Brain Res 239:57–69PubMedCrossRefGoogle Scholar
  74. Kita T, Liu L, Tanaka N, Kinoshita Y (1997) The expression of tumor necrosis factor-α in the rat brain after fluid percussive injury. Int J Legal Med 110:305–311PubMedCrossRefGoogle Scholar
  75. Kontos MA (1989) Oxygen radicals in cerebral ischemia. In: Ginsberg MD, Dietrich WD (eds) Cerebrovascular diseases. 16th Princeton Conference. Raven, New York, pp 365–372Google Scholar
  76. Korein J (1978) Terminology, definition, and usage. Ann NY Acad Sci 315:6–10PubMedCrossRefGoogle Scholar
  77. Korein J, Braunstein P, George A et al (1977) Brain death: I. Angiographic correlation with the radioisotopic bolus technique for evaluation of critical deficit of cerebral blood flow. Ann Neurol 2:195–205PubMedCrossRefGoogle Scholar
  78. Környey S (1955) Histopathologie und klinische Symptomatologie der anoxisch-vasalen Hirnschädigungen. Akad Kiadó, BudapestGoogle Scholar
  79. Kretschmer E (1940) Das apallische Syndrom. Z Ges Neurol Psychiat 169:576–579CrossRefGoogle Scholar
  80. Kuroiwa T, Bonnekoh P, Hossmann K-A (1990) Therapeutic window of CA1 neuronal damage defined by an ultrashort-acting barbiturate after brain ischemia in gerbils. Stroke 21:1489–1493PubMedGoogle Scholar
  81. Li Y, Chopp M, Ilang N, Yao F, Zaloga C (1995) Temporal profile of in situ DNA fragmentation after transient middle cerebral artery occlusion in the rat. J Cereb Blood Flow Metab 15:389–198PubMedGoogle Scholar
  82. Lin B, Ginsberg MD, Busto R, Dietrich WD (1998) Sequential analysis of subacute and chronic neuronal, astrocytic and microglial alterations after transient global ischemia in rats. Acta Neuropathol (Berl) 95:511–523CrossRefGoogle Scholar
  83. Link K, Schleussing H (1955) Die offenen Verletzungen des Gehirns und Rückenmarks. In: Lubarsch D, Henke F, Rössle R (eds) Handbuch der speziellen pathologischen Anatomie und Histologie, Bd XIII/3. Springer, Berlin Heidelberg New York, pp 22–83Google Scholar
  84. Loddick SA, Turnbull AV, Rothwell NJ (1998) Cerebral interleukin-6 is neuroprotective during permanent focal cerebral ischemia in the rat. J Cereb Blood Flow Metab 18:176–179PubMedCrossRefGoogle Scholar
  85. Loihl AK, Murphy S (1998) Expression of nitric oxide synthase-2 in glia associated with CNS pathology. Prog Brain Res 118:253–267PubMedCrossRefGoogle Scholar
  86. Love S, Barber R, Wilcock GK (2000) Neuronal death in brain infarcts in man. Neuropathol Appl Neurobiol 26:55–66PubMedCrossRefGoogle Scholar
  87. Louw DF, Masada T, Sutherland GR (1998) Ischemic neuronal injury is ameliorated by astrocyte activation. Can J Neurol Sci 25:102–107PubMedGoogle Scholar
  88. Lukaszevicz A-C, Sampaïo N, Guégan C et al (2002) High sensitivity of protoplasmic cortical astroglia to focal ischemia. J Cereb Blood Flow Metab 22:289–298PubMedCrossRefGoogle Scholar
  89. Lumb PD, Milroy CM, Whitwell HL (2001) Neuropathological changes in delayed death after strangulation (abstract). Neuropathol Appl Neurobiol 27:151Google Scholar
  90. Mallach HJ, Oehmichen M (1982) Bolustod: Reflex oder Erstickung? Beitr Gerichtl Med 40:473–485PubMedGoogle Scholar
  91. Mantz J-M, Storck D, Tempe J-D, Hammann B (1965) Le coma dépassé. In: Paget M, Hartmann L (eds) Les comas, études cliniques et biologiques. L’Expansion Scientifique Française, Paris, pp 235–271Google Scholar
  92. Martí E, Ferrer I, Blasi J (2001) Differential regulation of chromogranin A, chromogranin B and secretoneurin protein expression after transient forebrain ischemia in the gerbil. Acta Neuropathol (Berl) 101:159–166Google Scholar
  93. Matsuo Y, Onodera H, Shiga Y et al (1994a) Correlation between myeloperoxidase-quantified neutrophil accumulation and ischemic brain injury in rat: effect of neutrophil depletion. Stroke 25:1469–1475PubMedGoogle Scholar
  94. Matsuo Y, Onodera H, Shiga Y et al (1994b) Role of cell adhesion molecules in brain injury after transient middle cerebral artery occlusion in the rat. Brain Res 656:344–352PubMedCrossRefGoogle Scholar
  95. Matsuo Y, Kihara T, Ikeda N et al (1995) Role of neutrophils in radical production during ischemia and reperfusion of the rat brain: effect of neutrophil depletion on extracellular ascorbyl radical formation. J Cereb Blood Flow Metab 15:941–947PubMedGoogle Scholar
  96. Maxeiner H (1987) Spättod nach Strangulation (Erhängen). Arch Kriminol 180:161–171PubMedGoogle Scholar
  97. Maxwell W, Povlishock JT, Graham DI (1997) A mechanical analysis of nondisruptive axonal injury: a review. J Neurotrauma 14:419–440PubMedGoogle Scholar
  98. McLellan DR, Adams JH, Graham DI et al (1986) Structural basis of the vegetative state and prolonged coma after non-missile head injury. In: Papo I, Cohadon F, Massarotti M (eds) Le coma traumatique. Liviana Editrice, Padova, pp 165–185Google Scholar
  99. McSweeny AJ, Grant I, Heaton RK, Adams KM (1985) Relationship of neuropsychological status to everyday functioning in healthy and chronically ill persons. J Clin Exp Neuropsychol 7:281–291PubMedCrossRefGoogle Scholar
  100. Memezawa H, Smith ML, Siesjo BK (1992) Penumbral tissues salvaged by reperfusion following middle cerebral artery occlusion in rats. Stroke 23:552–559PubMedGoogle Scholar
  101. Morioka T, Kalehua AH, Streit WJ (1991) The microglial reaction in the rat dorsal hippocampus following transient forebrain ischemia. J Cereb Blood Flow Metab 11:966–973PubMedGoogle Scholar
  102. Müller G (1930) Zur Frage der Altersbestimmung histologischer Veränderungen im menschlichen Gehirn unter Berücksichtigung der örtlichen Verteilung. Z Ges Neurol Psychiat 124:1–112CrossRefGoogle Scholar
  103. Murakami K, Kondo T, Kawase M (1998) Mitochondrial susceptibility to oxidative stress exacerbates cerebral infarction that follows permanent focal cerebral ischemia in mutant mice with magnese superoxide dismutase deficiency. J Neurosci 18:205–213PubMedGoogle Scholar
  104. Nacimiento W (1997) Das apallische Syndrom. Dtsch Ärztebl 94:C498–C502Google Scholar
  105. Obrenovitch TP, Hallenbeck JM (1985) Platelet accumulations in regions of low blood flow during the postischemic period. Stroke 16:224–234PubMedGoogle Scholar
  106. Oehmichen M (1990) Neuropathologie der forensisch relevanten Formen des Erstickens. In: Brinkmann B, Püschel K (eds) Ersticken. Fortschritte in der Beweisführung. Springer, Berlin Heidelberg New York, pp 151–157Google Scholar
  107. Oehmichen M, Meissner C (2000) Forensic neuropathological aspects of cerebral anoxia/ischemia and hypoxia/hypoxemia. In: Oehmichen M (ed) Brain hypoxia and ischemia. In: Research in legal medicine, vol 24. Schmidt-Römhild, Lübeck, pp 13–25Google Scholar
  108. Oehmichen M, Raff G (1980) Timing of cortical contusion. Correlation between histomorphologic alterations and post-traumatic interval. Z Rechtsmed 84:79–94PubMedCrossRefGoogle Scholar
  109. Oehmichen M, Meissner C, Schmidt V et al (1998) Axonal injury — a diagnostic tool in forensic neuropathology? A review. Forensic Sci Int 95:67–83PubMedCrossRefGoogle Scholar
  110. Oehmichen M, Meissner C, Schmidt V et al (1999) Pontine axonal injury after brain trauma and nontraumatic hypoxic-ischemic brain damage. Int J Legal Med 112:261–267PubMedCrossRefGoogle Scholar
  111. Oehmichen M, Gerling I, Meissner C (2000) Petechiae of the baby’s skin as differentiation symptom of infanticide versus SIDS. J Forensic Sci 45:602–607PubMedGoogle Scholar
  112. Oehmichen M, Meissner C, von Wurmb-Schwark N, Schwark T (2003) Methodical approach to brain hypoxia/ischemia as a fundamental problem in forensic neuropathology. Legal Med 5:190–201PubMedCrossRefGoogle Scholar
  113. Okada Y, Copeland BR, Fitridge R et al (1994) Fibrin contributes to microvascular obstructions and parenchymal changes during early focal cerebral ischemia and reperfusion. Stroke 25:1847–1854PubMedGoogle Scholar
  114. Paschal BM, Shpetner HS, Vallee RB (1987) MAP1C is a microtubule-activated ATPase which translocates microtubules in vitro and has dynein-like properties. J Cell Biol 105:1273–1282PubMedCrossRefGoogle Scholar
  115. Peters G (1955) Die gedeckten Gehirn-und Rückenmarkverletzungen. In: Lubarsch O, Henke F, Rössle R (eds) Handbuch der speziellen pathologischen Anatomie und Histologie, Bd XIII/3. Springer, Berlin Heidelberg New York, pp 84–143Google Scholar
  116. Peters G, Rothemund E (1977) Neuropathology of the traumatic apallic syndrome. In: Dalle OG, Gerstenbrand F, Lücking CH, Peters G, Peters UH (eds) The apallic syndrome. Springer, Berlin Heidelberg New York, pp 78–87Google Scholar
  117. Petito CK (1979) Platelet thrombi in experimental cerebral infarction. Stroke 10:192–196PubMedGoogle Scholar
  118. Petito CK, Feldman E, Pulsinelli WA, Plum F (1987) Delayed hippocampal damage in humans following cardiorespiratory arrest. Neurology 37:1281–1286PubMedGoogle Scholar
  119. Petito CK, Torres-Munoz J, Roberts B et al (1997) DNA fragmentation follows delayed neuronal death in CA1 neurons exposed to transient global ischemia in the rat. J Cereb Blood Flow Metab 17:967–976PubMedCrossRefGoogle Scholar
  120. Pollak S, Thurner W, Wimberger D (1987) Pathophysiologische Aspekte eines überlebten Erhä ngungsversuches. Medizin. Sachverständige 83:130–134Google Scholar
  121. Rand CW, Courville CB (1932) Histologic studies of the brain in cases of fatal injury to the head. IV. Reaction of the classic neuroglia. Arch Neurol Psychiatry 27:1342–1379Google Scholar
  122. Rao Vj, Weti CV (1988) The forensic significance of conjunctival petechiae. Am J Forensic Med Pathol 9:32–34PubMedGoogle Scholar
  123. Reay DT, Holloway F (1982) Changes in carotid blood flow produced by neck compression. Am J Forensic Med Pathol 3:199–202PubMedGoogle Scholar
  124. Reempts J van (1984) The hypoxic brain: histological and ultrastructural aspects. Behav Brain Res 14:99–108PubMedCrossRefGoogle Scholar
  125. Rehncrona S, Rosén I, Siesjö BK (1981) Brain lactic acidosis and ischemic cell damage. I. Biochemistry and neurophysiology. J Cereb Blood Flow Metab 1:297–311PubMedGoogle Scholar
  126. Rossen R, Kabat H, Anderson JP (1943) Acute arrest of cerebral circulation in man. Arch Neurol Psychiatry 50:510–528Google Scholar
  127. Sacco RL (2004) Risk factors for TIA and TIA as a risk factor for stroke. Neurology 62(Suppl 6):S7–S11PubMedGoogle Scholar
  128. Saternus K-S (1978) Verletzungen der Halswirbelsäule beim Suizid durch Erhängen. Z Rechtsmed 81:299–308PubMedCrossRefGoogle Scholar
  129. Saternus K-S, Messler H, Palm W (1978) Die knöcherne Verletzung der HWS beim Tod durch Erhängen. Z Rechtsmed 82:55–69PubMedCrossRefGoogle Scholar
  130. Saternus K-S, Dotzauer G, Imhäuser G (1979) Zum Stellenwert des Simonschen Zeichens. Z Rechtsmed 83:283–289PubMedCrossRefGoogle Scholar
  131. Scheller MS, Grafe MR, Zornow MH, Fleischer JE (1992) Effects of ischemic duration on neurological outcome, CA1 histopathology, and nonmatching to sample learning in monkeys. Stroke 23:1471–1478PubMedGoogle Scholar
  132. Schlote W (1970) Nervus opticus and experimentelles Trauma. Monographien aus dem Gesamtgebiet der Neurologie und Psychiatrie, Heft 131. Springer, Berlin Heidelberg New YorkGoogle Scholar
  133. Schneider RC, Livingstone KE, Cave AJE, Hamilton G (1965) “Hangman’s Fracture” of the cervical spine. J Neurosurg 22:141–154PubMedGoogle Scholar
  134. Schöchl H, Hofmann N, Miller K, Pieringer R (1994) Ertrinkungsnotfälle: eine retrospektive Untersuchung an 45 Patienten. Notfallmedizin 20:588–591Google Scholar
  135. Scholz W (1953) Die nicht zur Erweichung führenden unvollständigen Gewebsnekrosen. In: Lubarsch O, Henke F, Rössle R (eds) Handbuch der speziellen pathologischen Anatomie und Histologie, vol 13, Nervensystem, part 1, B: Erkrankungen des zentralen Nervensystems I, pp 1285–1325. Springer, Berlin Heidelberg New YorkGoogle Scholar
  136. Schröder R, Saternus K-S (1983) Stauungszeichen im Kopfbereich und Veränderungen am Gehirn beim suicidalen Erhängungstod. Z Rechtsmed 89:247–265PubMedCrossRefGoogle Scholar
  137. Schroeter M, Jander S, Huitinga I, Stoll G (2001) CD8+ phagocytes in focal ischemia of the rat brain: predominant origin from hematogenous macrophages and targeting to areas of pannecrosis. Acta Neuropathol (Berl) 101:440–448Google Scholar
  138. Schürer L, Grogaard B, Gerdin B, Arfors KE (1990) Effects of neutrophil depletion and superoxide dismutase on postischemic hypoperfusion of rat brain. Adv Neurol 52:57–62PubMedGoogle Scholar
  139. Schwab JM, Postler E, Nguyen TD et al (2000) Connective tissue growth factor is expressed by a subset of reactive astrocytes in human cerebral infarction. Neuropathol Appl Neurobiol 26:434–440PubMedCrossRefGoogle Scholar
  140. Shiga Y, Onodera H, Kogure K et al (1991) Neutrophil as a mediator of ischemic edema formation in the brain. Neurosci Lett 125:110–112PubMedCrossRefGoogle Scholar
  141. Shinnou M, Ueno M, Sakamato H, Ide M (1998) Blood-brain barrier damage in reperfusion following ischemia in the hippocampus of the Mongolian gerbil brain. Acta Neurol Scand 98:406–411PubMedGoogle Scholar
  142. Simon A (1968) Vitale Reaktionen im Bereich der Lendenwirbelsäule beim Erhängen. Wiss Z Univ Halle XVII, pp 591–597Google Scholar
  143. Spence MW, Shkrum MJ, Ariss A, Regan J (1999) Craniocervical injuries in judicial hangings: an anthropologic analysis of six cases. Am J Forensic Med Pathol 20:309–322PubMedCrossRefGoogle Scholar
  144. Stanimirovic DB, Satoh K (2000) Inflammatory mediators of cerebral endothelium: a role in ischemic brain inflammation. Brain Pathol 10:113–126PubMedGoogle Scholar
  145. Stanimirovic DB, Wong J, Shapiro A, Durkin JP (1997) Increase in surface expression of ICAM-1, VCAM-1 and E-selectin in human cerebromicrovascular endothelial cells subjected to ischemia-like insults. Acta Neurochir Suppl 70:12–16PubMedGoogle Scholar
  146. Steegmann AT (1968) The neuropathology of cardiac arrest. In: Minckler J (ed) Pathology of the nervous system, vol 1. Mc-Graw-Hill, New York, pp 1005–1029Google Scholar
  147. Stoll G, Jander S, Schroeter M (2000) Cytokines in CNS disorders: neurotoxicity versus neuroprotection. J Neural Transm Suppl 59:81–89PubMedGoogle Scholar
  148. Strassmann G (1945) Hemosiderin and tissue iron in the brain, its relationship, occurrence and importance. A study on ninety-three human brains. J Neuropathol Exp Neurol 4:393–401CrossRefGoogle Scholar
  149. Strich SJ (1969) The pathology of brain damage due to blunt head injuries. In: Walker AE, Caveness WF, Critchley M (eds) The late effects of head injury. Charles C Thomas, Springfield, Ill., pp 501–526Google Scholar
  150. Taylor SB, Quencer RM, Holzman BH, Naidich TP (1985) Central nervous system anoxic-ischemic insult in children due to near-drowning. Radiology 156:641–646PubMedGoogle Scholar
  151. Tipton MJ (1989) The initial responses to cold-water immersion in man. Clin Sci 77:581–588PubMedGoogle Scholar
  152. Tomimoto H, Yanagihara T (2000) Vulnerability of dendrites and nerve cell bodies in cerebral ischemia. In: Oehmichen M (ed) Brain hypoxia and ischemia. In: Research in legal medicine, vol 24. Schmidt-Römhild, Lübeck, pp 65–84Google Scholar
  153. Tomimoto H, Akiguchi I, Wakita H et al (1996) Glial expression of cytokines in the brains of cerebrovascular disease patients. Acta Neuropathol (Berl) 92:281–287CrossRefGoogle Scholar
  154. Tomimoto H, Shibata M, Ihara M et al (2002) A comparative study on the expression of cyclooxygenase and 5-lipoxygenase during cerebral ischemia in humans. Acta Neuropathol (Berl) 104:601–607Google Scholar
  155. Torvik A, Skjörten F (1971) Electron microscopic observations on nerve cell regeneration and degeneration after axon lesions. I. Changes in the nerve cell cytoplasm. Acta Neuropathol (Berl) 17:248–264CrossRefGoogle Scholar
  156. Wade D (2001) Ethical issues in diagnosis and management of patients in the permanent vegetative state. Br Med J 322:352–354CrossRefGoogle Scholar
  157. Wallace SK, Cohen WA, Stern EJ, Reay DT (1994) Judicial hanging: postmortem radiographic, CT, and MR imaging features with autopsy confirmation. Radiology 193:263–267PubMedGoogle Scholar
  158. Wintemute GJ (1990) Childhood drowning and near-drowning in the United States. Am J Dis Child 144:663–669PubMedGoogle Scholar
  159. Wisniewski H (1961) The pathogenesis of some cases of cerebral hemorrhage (a morphologic study of the margins of hemorrhagic foci and areas of the brain distant from the hemorrhage). Acta Med Pol 2:379–390PubMedGoogle Scholar
  160. Witte OW, Stoll G (1997) Delayed and remote effects of focal cortical infarctions: secondary damage and reactive plasticity. Adv Neurol 73:207–227PubMedGoogle Scholar
  161. Zhao X, Ahram A, Berman RF et al (2003) Early loss of astrocytes after experimental traumatic brain injury. Glia 44:140–152PubMedCrossRefGoogle Scholar
  162. Zhang RL, Chopp M, Chen H, Garcia JH (1994) Temporal profile of ischemic tissue damage, neutrophil response, and vascular plugging following permanent and transient (2H) middle cerebral artery occlusion in the rat. J Neurol Sci 125:3–10PubMedCrossRefGoogle Scholar
  163. Zoppo GJ del (2004) TIAs and the pathology of cerebral ischemia. Neurology 62(Suppl 6):S15–S19PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Personalised recommendations