Hypoxia, Ischemia(Hypoglycemia)


The following three chapters describe the neuropathological features caused by a reduction of energy supply to the total brain. The morphological phenomena of a metabolic disturbance of single cells and tissue compartments are described in Chap. 4, while the focal disturbances of cerebral blood flow are discussed in Chap. 28. The present chapter describes the global oxygen depletion of the brain and its functional and neuropathological consequences.


Cerebral Blood Flow Purkinje Cell White Matter Lesion Brain Damage Global Ischemia 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Auer RN, Sutherland G (2002) Hypoxia and related conditions. In: Graham D, Lantos P (eds) Greenfield’s neuropathology, 7th edn, vol 1. Edward Arnold, London, pp 233–280Google Scholar
  2. DiMaio VJ, DiMaio D (2001) Forensic pathology, 2nd edn., CRC, Boca Raton, Fla.Google Scholar


  1. Adams JH, Brierley JB, Connor RCR, Treip CS (1966) The effects of systemic hypotension upon the human brain. Clinical and neuropathological observations in 11 cases. Brain 89:235–268PubMedCrossRefGoogle Scholar
  2. Agardh C-D, Siesjö BK (1981) Hypoglycemic brain injury: phospholipids, free fatty acids, and cyclic nucleotides in the cerebellum of the rat after 30 and 60 minutes of severe insulin-induced hypoglycemia. J Cereb Blood Flow Metab 1:267–275PubMedGoogle Scholar
  3. Agardh C-D, Folbergrová J, Siesjö BK (1978) Cerebral metabolic changes in profound insulin-induced hypoglycemia, and in the recovery period following glucose administration. J Neurochem 31:1135–1142PubMedCrossRefGoogle Scholar
  4. Amaral DG (1978) A Golgi study of cell types in the hilar region of the hippocampus in the rat. J Comp Neurol 182:851–914PubMedCrossRefGoogle Scholar
  5. Araki T, Kato H, Kogure K, Inoue T (1990) Regional neuroprotective effects of pentobarbital on ischemia-induced brain damage. Brain Res Bull 25:861–865PubMedCrossRefGoogle Scholar
  6. Auer RN (1986) Hypoglycemic brain damage. Stroke 17:699–708PubMedGoogle Scholar
  7. Auer RN (2004) Hypoglycemic brain damage. Forensic Sci Int 146:105–110PubMedCrossRefGoogle Scholar
  8. Auer RN, Siesjö BK (1993) Hypoglycaemia: brain neurochemistry and neuropathology. Baillieres Clin Endocrinol Metab 7:611–625PubMedCrossRefGoogle Scholar
  9. Auer RN, Sutherland G (2002) Hypoxia and related conditions. In: Graham D, Lantos P (eds) Greenfield’s neuropathology, 7th edn, vol 1. Edward Arnold, London, pp 233–280Google Scholar
  10. Auer RN, Olsson Y, Siesjö BK (1984a) Hypoglycemic brain injury in the rat. Correlation of density of brain damage with EEG isoelectric time: a quantitative study. Diabetes 33:1090–1098PubMedCrossRefGoogle Scholar
  11. Auer RN, Wieloch T, Olsson Y, Siesjö BK (1984b) The distribution of hypoglycemic brain damage. Acta Neuropathol (Berl) 64:177–191CrossRefGoogle Scholar
  12. Auer RN, Kalimo H, Olsson Y, Siesjö BK (1985a) The temporal evolution of hypoglycemic brain damage. I. Light and electron microscopic findings in the rat cerebral cortex. Acta Neuropathol (Berl) 67:13–24CrossRefGoogle Scholar
  13. Auer RN, Kalimo H, Olsson Y, Siesjö BK (1985b) The temporal evolution of hypoglycemic brain damage. II. Light and electron microscopic findings in the rat hippocampus. Acta Neuropathol (Berl) 67:25–36CrossRefGoogle Scholar
  14. Auer RN, Jensen ML, Whishaw IQ (1989) Neurobehavioural deficit due to ischemic brain damage limited to half of the CA1 sector of the hippocampus. J Neurosci 9:1641–1647PubMedGoogle Scholar
  15. Azzarelli B, Roessmann U (1977) Diffuse “anoxic” myelopathy. Neurology 27:1049–1052PubMedGoogle Scholar
  16. Baldelli RJ, Green FHY, Auer RN (1993) Sulfide toxicity: mechanical ventilation and hypotension determine survival rate and brain necrosis. J Appl Physiol 75:1348–1353PubMedGoogle Scholar
  17. Benveniste H, Diemer NH (1988) Early postischemic 45Ca accumulation in rat dentate hilus. J Cereb Blood Flow Metab 8:713–719PubMedGoogle Scholar
  18. Benveniste H, Drejer J, Schousboe A, Diemer NH (1984) Elevation of the extracellular concentrations of glutamate and aspartate in rat hippocampus during transient cerebral ischemia monitored by intracerebral microdialysis. J Neurochem 43:1369–1374PubMedCrossRefGoogle Scholar
  19. Berger R, Garnier Y (1999) Pathophysiology of perinatal brain damage. Brain Res Brain Res Rev 30:107–134PubMedCrossRefGoogle Scholar
  20. Blumbergs PC, Byrne E (1980) Hypotensive central infarction of the spinal cord. J Neurol Neurosurg Psychiatry 43:751–753PubMedGoogle Scholar
  21. Bodsch W, Takahashi K, Barbier A et al (1985) Cerebral protein synthesis and ischemia. Prog Brain Res 63:197–210PubMedCrossRefGoogle Scholar
  22. Bodsch W, Barbier A, Oehmichen M et al (1986) Recovery of monkey brain after prolonged ischemia. II. Protein synthesis and morphological alterations. J Cereb Blood Flow Metab 6:22–33PubMedGoogle Scholar
  23. Borgström L, Jóhannsson H, Siesjö BK (1975) The influence of acute normovolemic anemia on cerebral blood flow and oxygen consumption of anesthetized rats. Acta Physiol Scand 93:505–514PubMedGoogle Scholar
  24. Brierley JB, Brown AW, Meldrum BS (1971a) The nature and time course of the neuronal alterations resulting from oligaemia and hypoglycemia in the brain of Macaca mulatta. Brain Res 25:483–499PubMedCrossRefGoogle Scholar
  25. Brierley JB, Adams JH, Graham DI, Simpson JA (1971b) Neocortical death after cardiac arrest. A clinical, neurophysiological, and neuropathological report of two cases. Lancet 2:560–565PubMedCrossRefGoogle Scholar
  26. Burger PC, Vogel FS (1977) Hemorrhagic white matter infarction in three critically ill patients. Hum Pathol 8:121–132PubMedCrossRefGoogle Scholar
  27. Busto R, Dietrich WD, Globus MY-T et al (1987) Small differences in intraischemic brain temperature critically determine the extent of ischemic neuronal injury. J Cereb Blood Flow Metab 7:729–738PubMedGoogle Scholar
  28. Chan PH (2001) Reactive oxygen radicals in signaling and damage in the ischemic brain. J Cereb Blood Flow Metab 21:2–14PubMedCrossRefGoogle Scholar
  29. Cheshire WP, Santos CC, Massey EW, Howard JF Jr (1996) Spinal cord infarction: etiology and outcome. Neurology 47:321–330PubMedGoogle Scholar
  30. Choi D (1998) Antagonizing excitotoxicity: a therapeutic strategy for stroke? Mt Sinai J Med 65:133–138PubMedGoogle Scholar
  31. Cole G, Cowie VA (1987) Long survival after cardiac arrest: case report and neuropathological findings. Clin Neuropathol 6:104–109PubMedGoogle Scholar
  32. Courville CB (1957) Late cerebral changes incident to severe hypoglycemia (insulin shock). Their relation to cerebral anoxia. Arch Neurol Psychiatry 78:1–14Google Scholar
  33. D’Ambrosio AL, Pinsky DJ, Connolly ES (2001) The role of the complement cascade in ischemia/reperfusion injury: implications for neuroprotection. Mol Med 7:367–382Google Scholar
  34. DeGracia DJ, Neumar RW, White BC, Krause GS (1996) Global brain ischemia and reperfusion: modifications in eukaryotic initiation factors associated with inhibition of translation initiation. J Neurochem 67:2005–2012PubMedGoogle Scholar
  35. DeJong RN, Itabashi HH, Olson JR (1969) Memory loss due to hippocampal lesions. Arch Neurol 20:339–348PubMedGoogle Scholar
  36. Del Bigio MR, Becker LE (1994) Microglial aggregation in the dentate gyrus: a marker of mild hypoxic-ischaemic brain insult in human infants. Neuropathol Appl Neurobiol 20:144–151PubMedCrossRefGoogle Scholar
  37. Detre JA, Wanf Z, Bogdan AR et al (1991) Regional variation in brain lactate in Leigh syndrome by localized 1H magnetic resonance spectroscopy. Ann Neurol 29:218–221PubMedCrossRefGoogle Scholar
  38. Diemer NH, Siemkowicz E (1980) Increased 2-deoxyglucose uptake in hippocampus, globus pallidus and substantia nigra after cerebral ischemia. Acta Neurol Scand 61:56–63PubMedGoogle Scholar
  39. Drummond JC, Moore SS (1989) The influence of dextrose administration on neurologic outcome after temporary spinal cord ischemia in the rabbit. Anesthesiology 70:64–70PubMedCrossRefGoogle Scholar
  40. Feigin I, Budzilovich G, Weinberg S, Ogata J (1973) Degeneration of white matter in hypoxia, acidosis and edema. J Neuropath Exp Neurol 32:125–143PubMedCrossRefGoogle Scholar
  41. Freireich EJ, Thomas LB, Frei E III et al (1960) A distinctive type of intracerebral hemorrhage associated with “blastic crisis” in patients with leukemia. Cancer 13:146–154PubMedCrossRefGoogle Scholar
  42. Garcia JH (1988) Morphology of global cerebral ischemia. Crit Care Med 16:979–987PubMedCrossRefGoogle Scholar
  43. Garland H, Greenberg J, Harriman DG (1966) Infarction of the spinal cord. Brain 89:645–662PubMedCrossRefGoogle Scholar
  44. Gilles FH, Nag D (1971) Vulnerability of human spinal cord in transient cardiac arrest. Neurology 21:833–839PubMedGoogle Scholar
  45. Ginsberg MD, Hedley-Whyte T, Richardson EP (1976) Hypoxicischemic leukoencephalopathy in man. Arch Neurol 33:5–14PubMedGoogle Scholar
  46. Graham DI, Adams JH, Doyle D (1978) Ischaemic brain damage in fatal non-missile head injuries. J Neurol Sci 39:213–234PubMedCrossRefGoogle Scholar
  47. Graham SH, Chen J (2001) Programmed cell death in cerebral ischemia. J Cereb Blood Flow Metab 21:99–109PubMedCrossRefGoogle Scholar
  48. Gray FD Jr, Horner GJ (1970) Survival following extreme hypoxemia. J Am Med Assoc 211:1815–1817CrossRefGoogle Scholar
  49. Greenamyre JT, Olson JMM, Penney JB Jr, Young AB (1985) Autoradiographic characterization of N-methyl-D-aspartate-, quisqualate-and kainate-sensitive glutamate binding sites. J Pharmacol Exp Ther 233:254–263PubMedGoogle Scholar
  50. Grosse Ophoff B, Oehmichen M, Bodsch W, Hossmann KA (1984) Vulnerability of the central nervous system to prolonged ischemia in normothermia. Malades of Medicaments/Drugs and Diseases 1:102–109Google Scholar
  51. Hakim AM (1984) The induction and reversibility of cerebral acidosis in thiamine deficiency. Ann Neurol 16:673–679PubMedCrossRefGoogle Scholar
  52. Hakim AM (1986) Effect of thiamine deficiency and its reversal on cerebral blood flow in the rat. Observations on the phenomena of hyperperfusion, “no reflow,” and delayed hypoperfusion. J Cereb Blood Flow Metab 6:79–85PubMedGoogle Scholar
  53. Hamann GF, Okada Y, Fitridge R, del Zoppo GJ (1995) Microvascular basal lamina antigens disappear during cerebral ischemia and reperfusion. Stroke 26:2120–2126PubMedGoogle Scholar
  54. Harreveld A van, Schadé JP (1962) Nerve cell destruction by asphyxiation of the spinal cord. J Neuropath Exp Neurol 21:410–423Google Scholar
  55. Horn M, Schlote W (1992) Delayed neuronal death and delayed neuronal recovery in the human brain following global ischemia. Acta Neuropathol (Berl) 85:79–87CrossRefGoogle Scholar
  56. Hossmann K-A, Kobayashi K, Hossmann V, Kleihues P (1973) Recovery of cerebral energy metabolism after complete ischemia of one hour’s duration. Naturwissenschaften 60:53–54PubMedCrossRefGoogle Scholar
  57. Hossmann K-A, Behar KL, Rothman DL (1993) NMR-spectroscopic investigation of cerebral reanimation after prolonged ischemia. Acta Neurochir Suppl 57:21–29Google Scholar
  58. Hurley RA, Tomimoto H, Akiguchi I et al (2000) Binswanger’s disease: an ongoing controversy. J Neuropsychiatry Clin Neurosci 12:301–304PubMedGoogle Scholar
  59. Ihara M, Tomimoto H, Kinoshita M et al. (2001) Chronic cerebral hypoperfusion induces MMP-2 but not MMP-9 expression in the microglia and vascular endothelium of white matter. J Cereb Blood Flow Metab 21:828–834PubMedCrossRefGoogle Scholar
  60. Imaizumi H, Ujike Y, Asai Y et al (1994) Spinal cord ischemia after cardiac arrest. J Emerg Med 12:789–793PubMedCrossRefGoogle Scholar
  61. Janzer RC, Friede RL (1980) Hypotensive brain stem necrosis of cardiac arrest encephalopathy. Acta Neuropathol (Berl) 50:53–56CrossRefGoogle Scholar
  62. Jason GW, Pajurkova EM, Lee RG (1989) High-altitude mountaineering and brain function: neuropsychological testing of members of a Mount Everest expedition. Aviat Space Environ Med 60:170–173PubMedGoogle Scholar
  63. Jennings GH, Newton MA (1969) Persistent paraplegia after repeated cardiac arrests. Br Med J 3:572–573PubMedCrossRefGoogle Scholar
  64. Johansen FF, Jørgensen MB, Diemer NH (1986) Ischemic CA-1 pyramidal cell loss is prevented by preischemic colchicine destruction of dentate gyrus granule cells. Brain Res 377:344–347PubMedCrossRefGoogle Scholar
  65. Kannel WB, Gordon T, Wolf PA, McNamara P (1972) Hemoglobin and the risk of cerebral infarction: the Framingham study. Stroke 3:409–420PubMedGoogle Scholar
  66. Kieseier BC, Seifert T, Giovannoni G, Hartung HP (1999) Matrix metalloproteinases in inflammatory demyelination: targets for treatment. Neurology 53:20–25PubMedCrossRefGoogle Scholar
  67. Kiessling M, Auer RN, Kleihues P, Siesjö BK (1986) Cerebral protein synthesis during long term recovery from severe hypoglycemia. J Cereb Blood Flow Metab 6:42–51PubMedGoogle Scholar
  68. Kim SW, Kim RC, Choi BH, Gordon SK (1988) Non-traumatic ischaemic myelopathy: a review of 25 cases. Paraplegia 26:262–272PubMedGoogle Scholar
  69. Kirino T (1982) Delayed neuronal death in the gerbil hippocampus following ischemia. Brain Res 239:57–69PubMedCrossRefGoogle Scholar
  70. Kirino T, Tamura A, Sano K (1984) Delayed neuronal death in the rat hippocampus following transient forebrain ischemia. Acta Neuropathol (Berl) 64:139–147CrossRefGoogle Scholar
  71. Kleihues P, Hossmann K-A (1973) Regional incorporation of L-[3-3H] tyrosine into cat brain proteins after 1 hour of complete ischemia. Acta Neuropath (Berl) 25:313–324CrossRefGoogle Scholar
  72. Kol S, Ammar R, Weisz G, Melamed Y (1993) Hyperbaric oxygenation for arterial air embolism during cardiopulmonary bypass. Ann Thorac Surg 55:401–403PubMedCrossRefGoogle Scholar
  73. Kraig RP, Petito CK, Plum F, Pulsinelli WA (1987) Hydrogen ions kill brain at concentrations reached in ischemia. J Cereb Blood Flow Metab 7:379–386PubMedGoogle Scholar
  74. Krakauer J (1997) Into thin air: a personal account of the Mount Everest disaster. MacMillan LondonGoogle Scholar
  75. Krause GS, Tiffany BR (1993) Suppression of protein synthesis in the reperfused brain. Stroke 24:747–755PubMedGoogle Scholar
  76. Latour LL, Kang DW, Ezzeddine MA et al (2004) Early blood-brain barrier disruption in human focal brain ischemia. Ann Neurol 56:468–477PubMedCrossRefGoogle Scholar
  77. Lee GJ (1989) In vivo and in vitro staining of acidophilic neurons as indicative of cell death following kainic acid-induced lesions in rat brain. Acta Neuropathol (Berl) 77:519–524CrossRefGoogle Scholar
  78. LeMay DR, Gehua L, Zelenock GB, D’Alecy G (1988) Insulin administration protects neurologic function in cerebral ischemia in rats. Stroke 19:1411–1419PubMedGoogle Scholar
  79. MacMillan VH (1989) Cerebral energy metabolism in cyanide encephalopathy. J Cereb Blood Flow Metab 9:156–162PubMedGoogle Scholar
  80. Malese K (2001) The dynamics of cellular injury: transformation into neuronal and vascular protection. Histol Histopathol 16:633–644Google Scholar
  81. Mandel MM, Berry RG (1959) Human brain changes in cardiac arrest. Surg Gynecol Obstet 108:692–696PubMedGoogle Scholar
  82. Marsala M, Vanicky I, Yaksh TL (1994) Effect of graded hypothermia (27°C to 34 °C) on behavioral function, histopathology, and spinal blood flow after spinal ischemia in rat. Stroke 25:2038–2046PubMedGoogle Scholar
  83. Moody DM, Bell MA, Challa VR et al (1990) Brain microemboli during cardiac surgery or aortography. Ann Neurol 28:477–486PubMedCrossRefGoogle Scholar
  84. Nunn J (1993) Nunn’s applied respiratory physiology. Butterworth-Heinemann, OxfordGoogle Scholar
  85. Nussmeier NA, Arlund C, Slogoff S (1986) Neuropsychiatric complications after cardiopulmonary bypass: cerebral protection by a barbiturate. Anesthesiology 64:165–170PubMedGoogle Scholar
  86. Ohno K, Isotani E, Hirakawa K (1997) MELAS presenting as migraine complicated by stroke: case report. Neuroradiology 39:781–784PubMedCrossRefGoogle Scholar
  87. Ohshita T, Oka M, Imon Y et al (2000) Serial diffusion-weighted imaging in MELAS. Neuroradiology 42:651–656PubMedCrossRefGoogle Scholar
  88. Olson JM, Greenamyre JT, Penney JB, Young AB (1987) Autoradiographic localization of cerebellar excitatory amino acid binding sites in the mouse. Neuroscience 22:913–923PubMedCrossRefGoogle Scholar
  89. Oppenheim C, Galanaud D, Samson Y et al (2000) Can diffusion weighted magnetic resonance imaging help differentiate stroke from stroke-like events in MELAS? J Neurol Neurosurg Psychiatry 69:248–250PubMedCrossRefGoogle Scholar
  90. Palmer AC (1990) Target organs in decompression sickness. Prog Underwater Sci 15:15–23Google Scholar
  91. Palmer AC, Calder IM, McCallum RI, Mastaglia FL (1981) Spinal cord degeneration in a case of “ recovered” spinal decompression sickness. Br Med J 283:888Google Scholar
  92. Palmer AC, Calder IM, Hughes JT (1987) Spinal cord degeneration in divers. Lancet 2:1365–1366PubMedCrossRefGoogle Scholar
  93. Pantoni L, Garcia JH (1997a) Pathogenesis of leukoaraiosis: a review. Stroke 28:652–659PubMedGoogle Scholar
  94. Pantoni L, Garcia JH (1997b) Cognitive impairment and cellular/ vascular changes in the cerebral white matter. Ann N Y Acad Sci 826:92–102PubMedCrossRefGoogle Scholar
  95. Pappert EJ, Goetz CG, Vu TQ et al (1999) Animal model of posthypoxic myoclonus. Effects of serotonergic antagonists. Neurology 52:16–21PubMedGoogle Scholar
  96. Pearigen P, Ryder G, Simon RP (1996) The effects in vivo of hypoxia on brain injury (research report). Brain Res 725:184–191PubMedGoogle Scholar
  97. Pearson TC, Wetherley-Mein G (1978) Vascular occlusive episodes and venous hematocrit in primary proliferative polycythemia. Lancet 2:1219–1222PubMedCrossRefGoogle Scholar
  98. Persson L, Hardemark HG, Bolander HG et al (1989) Neurologic and neuropathologic outcome after middle cerebral artery occlusion in rats. Stroke 20:641–645PubMedGoogle Scholar
  99. Petito CK, Feldmann E, Pulsinelli WA, Plum F (1987) Delayed hippocampal damage in humans following cardiorespiratory arrest. Neurology 37:1281–1286PubMedGoogle Scholar
  100. Prayson RA, Wang N (1998) Mitochondrial myopathy, encephalopathy, lactic acidosis, and strokelike episodes (MELAS) syndrome: an autopsy report. Arch Pathol Lab Med 122:978–981PubMedGoogle Scholar
  101. Pulsinelli W (1992) Pathophysiology and treatment of focal cerebral ischemia. Part II: mechanisms of damage and treatment. J Neurosurg 77:337–354Google Scholar
  102. Pulsinelli WA, Brierley JB, Plum F (1982) Temporal profile of neuronal damage in a model of transient forebrain ischemia. Ann Neurol 11:491–498PubMedCrossRefGoogle Scholar
  103. Révész T, Geddes JF (1988) Symmetrical columnar necrosis of the basal ganglia and brain stem in an adult following cardiac arrest. Clin Neuropathol 7:294–298PubMedGoogle Scholar
  104. Ribak CE, Anderson L (1980) Ultrastructure of the pyramidal basket cells in the dentate gyrus of the rat. J Comp Neurol 192:903–916PubMedCrossRefGoogle Scholar
  105. Rie MA, Bernad PG (1980) Prolonged hypoxia in man without circulatory compromise fails to demonstrate cerebral pathology (abstract). Neurology 30:443Google Scholar
  106. Riggs HE, Rupp C (1963) Variations in form of Circle of Willis. Arch Neurol 8:24–30Google Scholar
  107. Sadove MS, Yon MK, Hollinger PH et al (1961) Severe prolonged cerebral hypoxic episode with complete recovery. J Am Med Assoc 175:1102–1104Google Scholar
  108. Sandberg M, Butcher SP, Hagberg H (1986) Extracellular overflow of neuroactive amino acids during severe insulin-induced hypoglycemia: in vivo dialysis of the rat hippocampus. J Neurochem 47:178–184PubMedGoogle Scholar
  109. Sandson TA, Friedman JH (1989) Spinal cord infarction. Report of 8 cases and review of the literature. Medicine (Baltimore) 68:282–292Google Scholar
  110. Schaller B, Graf R (2004) Cerebral ischemia and reperfusion: the pathophysiologic concept as a basis for clinical therapy. J Cereb Blood Flow Metab 24:351–371PubMedCrossRefGoogle Scholar
  111. Scholz W (1953) Die nicht zur Erweichung führenden unvollständigen Gewebsnekrosen. In: Lubarsch O, Henke F, Rössle R (eds) Handbuch der speziellen pathologischen Anatomie und Histologie, vol 13, Nervensystem, part 1, B: Erkrankungen des zentralen Nervensystems I. Springer, Berlin Heidelberg New York, pp 1285–1325Google Scholar
  112. Siebke H, Breivik H, Rod T, Lind B (1975) Survival after 40 minutes’ submersion without cerebral sequelae. Lancet i:1275–1277CrossRefGoogle Scholar
  113. Siesjö BK (1992) Pathophysiology and treatment of focal cerebral ischemia. Part II: mechanisms of damage and treatment. J Neurosurg 77:337–354PubMedGoogle Scholar
  114. Simon RP (1999) Hypoxia versus ischemia. Neurology 52:7–8PubMedGoogle Scholar
  115. Sladky JT, Rorke LB (1986) Perinatal hypoxic/ischemic spinal cord injury. Pediatr Pathol 6:87–101PubMedCrossRefGoogle Scholar
  116. Sliwa JA, Maclean IC (1992) Ischemic myelopathy: a review of spinal vasculature and related clinical syndromes. Arch Phys Med Rehabil 73:365–372PubMedCrossRefGoogle Scholar
  117. Smith L, Kruszyna H, Smith RP (1977) The effect of methemoglobin on the inhibition of cytochrome c oxidase by cyanide, sulfide or azide. Biochem Pharmacol 26:2247–2250PubMedCrossRefGoogle Scholar
  118. Smith M-L, Auer RN, Siesjö BK (1984) The density and distribution of ischemic brain injury in the rat after 2-10 minutes of forebrain ischemia. Acta Neuropathol (Berl) 64:319–332CrossRefGoogle Scholar
  119. Squire LR, Haist F, Shimamura AP (1989) The neurology of memory: quantitative assessment of retrograde amnesia in two groups of amnesic patients. J Neurosci 9:828–839PubMedGoogle Scholar
  120. Stehbens WE (1963) Aneurysms and anatomical variation of the cerebral arteries. Arch Pathol 75:45–64PubMedGoogle Scholar
  121. Taensch HW, Ballard RA, Avera MA (eds) (1991) Schaffer and Avery’s disease of the newborn. WB Saunders, Philadelphia, Pa.Google Scholar
  122. Thilmann R, Xie Y, Kleihues P, Kiessling M (1986) Persistent inhibition of protein synthesis precedes delayed neuronal death in postischemic gerbil hippocampus. Acta Neuropathol (Berl) 71:88–93CrossRefGoogle Scholar
  123. Tohgi H, Yamanouchi H, Murakami M, Kameyama M (1978) Importance of the hematocrit as a risk factor in cerebral infarction. Stroke 9:369–374PubMedGoogle Scholar
  124. Tomimoto H, Ihara M, Wakita H et al (2003) Chronic cerebral hypoperfusion induces white matter lesions and loss of oligodendroglia with DNA fragmentation in the rat. Acta Neuropathol (Berl) 106:527–534CrossRefGoogle Scholar
  125. Townes BD, Hornbein TF, Schoene RB et al (1984) Human cerebral function at extreme high altitude. In: West JB, Lahiri S (eds) High altitude and Man. American Physiological Society, Bethesda, Md., pp 31–36Google Scholar
  126. Victor M, Angevine JB, Mancall EL, Fisher CM (1961) Memory loss with lesions of hippocampal formation. Report of a case with some remarks on the anatomical basis of memory. Arch Neurol 5:26–45Google Scholar
  127. Voll CL, Auer RN (1988) The effect of postischemic blood glucose levels on ischemic brain damage in the rat. Ann Neurol 24:638–646PubMedCrossRefGoogle Scholar
  128. Voll CL, Auer RN (1991) Postischemic seizures and necrotizing ischemic brain damage: neuroprotective effect of postischemic diazepam and insulin. Neurology 41:423–428PubMedGoogle Scholar
  129. Volpe BT, Petito CK (1985) Dementia with bilateral medial temporal lobe ischemia. Neurology 35:1793–1796PubMedGoogle Scholar
  130. Wakita H, Tomimoto H, Akiguchi I, Kimura J (1994) Glial activation and white matter changes in the rat brain induced by chronic cerebral hypoperfusion: an immunohistochemical study. Acta Neuropathol (Berl) 87:484–492CrossRefGoogle Scholar
  131. Wakita H, Tomimoto H, Akiguchi I, Kimura J (1995) Protective effect of cyclosporin A on white matter changes in the rat brain after chronic cerebral hypoperfusion. Stroke 26:1415–1422PubMedGoogle Scholar
  132. Wakita H, Tomimoto H, Akiguchi I, Kimura J (1998) Dose-dependent protective effect of FK506 against white matter changes in the rat brain after chronic cerebral ischemia. Brain Res 792:105–113PubMedCrossRefGoogle Scholar
  133. Walpoth BH (2004) Accidental hypothermia: diagnosis and treatment. In: Oehmichen M (ed) Hypothermia. Clinical, pathomorphological and forensic features. In: Research in legal medicine, vol 31. Schmidt-Römhild, Lübeck, pp 263–273Google Scholar
  134. Weathers B (2000) Left for dead. Villard, New YorkGoogle Scholar
  135. White BC, Sullivan JM, DeGracia DJ et al (2000) Brain ischemia and reperfusion: molecular mechanisms of neuronal injury. J Neurol Sci 179:1–33PubMedCrossRefGoogle Scholar
  136. Wolf HK, Anthony DC, Fuller GN (1990) Arterial border zone necrosis of the spinal cord. Clin Neuropathol 9:60–65PubMedGoogle Scholar
  137. Woods BT, Schoene W, Kneisley L (1982) Are hippocampal lesions sufficient to cause lasting amnesia? J Neurol Neurosurg Psychiatry 45:243–247PubMedCrossRefGoogle Scholar
  138. Yamamoto T, Iwasaki Y, Konno H, Iizuka H (1986) Identification of cells undergoing physiological neuronal death in the neonatal rat brain by the Fink-Heimer method. Brain Res 374:419–424PubMedCrossRefGoogle Scholar
  139. Zola-Morgan S, Squire LR, Amaral DG (1986) Human amnesia and the medial temporal region: enduring memory impairment following a bilateral lesion limited to field CA1 of the hippocampus. J Neurosci 6:2950–2967PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Personalised recommendations