Stem Design Philosophies

  • Nico Verdonschot


In this chapter various aspects of cemented stem designs such as shape, surface roughness and material properties are discussed. An attempt is made to provide some guidelines of design features, or combinations of them, that are known to lead to early failure. A design philosophy can be regarded as a good (or optimal) combination of design features. It will be shown that various design philosophies work equally well, but that an inferior design can result if their features are mixed. This will be illustrated by analysing the design philosophies of successful and unsuccessful cemented femoral hip stems.


Crevice Corrosion Cement Mantle Design Philosophy Symmetric Design Stem Design 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bergmann G, Deuretzbacher G, Heller M, Graichen F, Rohlmann A, Strauss J, Duda GN. Hip contact forces and gait patterns from routine activities.J Biomech 2001; 34(7):859–71CrossRefPubMedGoogle Scholar
  2. 2.
    Bowditch M, Villar R. Is titanium so bad? Medium-term outcome of cemented titanium stems.J Bone Joint Surg Br 2001; 83(5):680–5CrossRefPubMedGoogle Scholar
  3. 3.
    Chen CQ, Scott W, Barker TM Effect of metal surface topography on mechanical bonding at simulated total hip stem-cement interfaces. J Biomed Mater Res 1999; 48(4):440–6CrossRefPubMedGoogle Scholar
  4. 4.
    Collis DK, Mohler CG. Comparison of clinical outcomes in total hip arthroplasty using rough and polished cemented stems with essentially the same geometry. J Bone Joint Surg Am 2002; 84-A4):586–92PubMedGoogle Scholar
  5. 5.
    Crowninshield RD, Jennings JD, Laurent ML, Maloney WJ. Cemented femoral component surface finish mechanics. Clin Orthop 1998; (355):90–102Google Scholar
  6. 6.
    Davies JP, Harris WH.Strength of cement-metal interfaces in fatigue: comparison of smooth, porous and precoated specimens. Clin Mater 1993; 12(2):121–6CrossRefPubMedGoogle Scholar
  7. 7.
    Ebramzadeh E, Normand PL, Sangiorgio SN, Llinas A, Gruen TA, McKellop HA, Sarmiento A. Long-term radiographic changes in cemented total hip arthroplasty with six designs of femoral components. Biomaterials 2000; 24(19):3351–63Google Scholar
  8. 8.
    Gill HS, Alfaro-Adrian J, Alfaro-Adrian C, McLardy-Smith P, Murray DW. The effect of anteversion on femoral component stability assessed by radiostereometric analysis. J Arthroplasty 2002; 17(8):997–1005CrossRefPubMedGoogle Scholar
  9. 9.
    Hallam P, Haddad F, Cobb J. Pain in the well-fixed, aseptic titanium hip replacement. The role of corrosion. J Bone Joint Surg Br. 2004; 86(1):27–30PubMedGoogle Scholar
  10. 10.
    Havelin LI, Engesaeter LB, Espehaug B, Furnes O, Lie SA, Vollset SE. The Norwegian Arthroplasty Register: 11 years and 73,000 arthroplasties. Acta Orthop Scand 2000; 71(4):337–53CrossRefPubMedGoogle Scholar
  11. 11.
    Herberts P, Malchau H, Garellinck G. Annual report 2003, The Swedish National Hip Arthroplasty Register. 2004Google Scholar
  12. 12.
    Huiskes R, Boeklagen R. Mathematical shape optimization of hip prosthesis design. J Biomech. 1989; 22(8–9):793–804CrossRefPubMedGoogle Scholar
  13. 13.
    Huiskes R: Failed innovation in total hip replacement. Diagnosis and proposals for a cure. Acta Orthop Scand 64(6):699–716, 1996Google Scholar
  14. 14.
    Huiskes R, Verdonschot N, Nivbrant B. Migration, stem shape, and surface finish in cemented total hip arthroplasty. Clin Orthop 1998; (355):103–12Google Scholar
  15. 15.
    Janssen DW, Aquarius R, Stolk J, Verdonschot N. Inferior design characteristics of the Captital Hip can be detected by numerical analysis. ORS, 2005Google Scholar
  16. 16.
    Jacobsson SA, Djerf K, Gillquist J, Hammerby S, Ivarsson I.A prospective comparison of Butel and PCA hip arthroplasty. J Bone Joint Surg Br 1993; 75(4):624–9PubMedGoogle Scholar
  17. 17.
    Jergesen HE, Karlen JW. Clinical outcome in total hip arthroplasty using a cemented titanium femoral prosthesis. J Arthroplasty. 2002; 17(5):592–9CrossRefPubMedGoogle Scholar
  18. 18.
    Kärrholm J, Nivbrant B, Thanner J, Anderberg C, Börlin N, Herberts P, Malchau H. Radiosstereometric evaluation of hip implant design and surface finish. Scientific Exhibition, AAOS, Orlando, USA, 2000Google Scholar
  19. 19.
    Lichtinger TK, Schurmann N, Muller RT. Early loosening of a cemented hip endoprosthesis stem of titanium. Unfallchirurg 2000; 103(11):956–60CrossRefPubMedGoogle Scholar
  20. 20.
    Massoud SN, Hunter JB, Holdsworth BJ, Wallace WA, Juliusson R. Early femoral loosening in one design of cemented hip replacement. J Bone Joint Surg Br 1997; 79(4):603–8CrossRefPubMedGoogle Scholar
  21. 21.
    McGrath LR, Shardlow DL, Ingham E, Andrews M, Ivory J, Stone MH, Fisher J. A retrieval study of capital hip prostheses with titanium alloy femoral stems. J Bone Joint Surg Br 2001; 83(8):1195–201CrossRefPubMedGoogle Scholar
  22. 22.
    Muller RT, Heger I, Oldenburg M The mechanism of loosening in cemented hip prostheses determined from long-term results. Arch Orthop Trauma Surg. 1997; 116(1-2):41–5PubMedGoogle Scholar
  23. 23.
    Niinimaki T, Puranen J, Jalovaara P. Total hip arthroplasty using isoelastic femoral stems. A seven-to nine-year follow-up in 108 patients. J Bone Joint Surg Br. 1994; 76(3):413–8PubMedGoogle Scholar
  24. 24.
    Nivbrant B, Karrholm J, Soderlund P. Increased migration of the SHP prosthesis: radiostereometric comparison with the Lubinus SP2 design in 40 cases. Acta Orthop Scand 1999; 70(6):569–77PubMedGoogle Scholar
  25. 25.
    Peters CL, Bachus KN, Craig MA, Higginbotham TO. The effect of femoral prosthesis design on cement strain in cemented total hip arthroplasty. J Arthroplasty. 2001; 16(2):216–24PubMedGoogle Scholar
  26. 26.
    Thomas SR, Shukla D, Latham PD. Corrosion of cemented titanium femoral stems. J Bone Joint Surg Br 2004; 86(7):974–8CrossRefPubMedGoogle Scholar
  27. 27.
    Puolakka TJ, Pajamaki KJ, Halonen PJ, Pulkkinen PO, Paavolainen P, Nevalainen JK. The Finnish Arthroplasty Register: report of the hip register. Acta Orthop Scand. 2001; 72(5):433–41CrossRefPubMedGoogle Scholar
  28. 28.
    Race A, Miller MA, Ayers DC, Cleary RJ, Mann KA. The influence of surface roughness on stem-cement gaps. J Bone Joint Surg Br. 2002; 84(8):1199–204CrossRefPubMedGoogle Scholar
  29. 29.
    Ramamohan N, Grigoris P, Schmolz W, Chappell AM, Hamblen DL. Early failure of stainless steel 3M Captial femoral stem. J Bone Joint Surg Br. 2000 82-Bsuppl-1 p. 71Google Scholar
  30. 30.
    Royal College of Surgeons of England. 3M Capital Hip System: The lessons learned from an investigation, 2001aGoogle Scholar
  31. 31.
    Royal College of Surgeons of England. An Investigation of the Performance of the 3M Capital Hip System, 2001bGoogle Scholar
  32. 32.
    Sylvain GM, Kassab S, Coutts R, Santore R. Early failure of a roughened surface, precoated femoral component in total hip arthroplasty. J Arthroplasty. 2001; 16(2):141–8CrossRefPubMedGoogle Scholar
  33. 33.
    Thomas SR, Shukla D, Latham PD. Corrosion of cemented titanium femoral stems. J Bone Joint Surg Br 2004; 86(7):974–8CrossRefPubMedGoogle Scholar
  34. 34.
    Verdonschot N, Tanck E, Huiskes R. Effects of prosthesis surface roughness on the failure process of cemented hip implants after stem-cement debonding. J Biomed Mater Res 1998 15; 42(4):554–9CrossRefPubMedGoogle Scholar
  35. 35.
    Verdonschot N, Huiskes R. Surface roughness of debonded straight-tapered stems in cemented THA reduces subsidence but not cement damage. Biomaterials. 1998; 19(19):1773–9CrossRefPubMedGoogle Scholar
  36. 36.
    Verdonschot N, Barink M, Stolk J, Gardeniers JW, Schreurs BW. Do unloading periods affect migration characteristics of cemented femoral components? An in vitro evaluation with the Exeter stem. Acta Orthop Belg. 2002; 68(4):348–55PubMedGoogle Scholar
  37. 37.
    von Knoch M, Bluhm A, Morlock M, von Foerster G.Absence of surface roughness changes after insertion of one type of matte cemented femoral component during 2 to 15 years. J Arthroplasty. 2003 Jun;18(4):471–7.Google Scholar
  38. 38.
    Willert HG, Broback LG, Buchhorn GH, Jensen PH, Koster G, Lang I, Ochsner P, Schenk R. Crevice corrosion of cemented titanium alloy stems in total hip replacements. Clin Orthop 1996; (333):51–75Google Scholar

Copyright information

© Springer Medizin Verlag Heidelberg 2005

Authors and Affiliations

  • Nico Verdonschot
    • 1
  1. 1.Orthopaedic Research LaboratoryRadboud University Nijmegen Medical CentreThe Netherlands

Personalised recommendations