Skip to main content

Wireless Control of an LC Adaptive Lens

  • Conference paper
Adaptive Optics for Industry and Medicine

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 102))

  • 1005 Accesses

Summary

We consider using liquid crystal adaptive lenses to correct the accommodation loss and higher-order aberrations of the human eye. In this configuration, the adaptive lens is embedded into the eye lens implant and can be controlled through a wireless inductive link. In this work we experimentally demonstrate a wireless control of a liquid crystal adaptive lens in a wide range of its focusing power by using two coupled coils with the primary coil driven from a low-voltage source through a switching control circuit and the secondary coil used to drive the lens.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Liang, B. Grimm, S. Goelz, J.F. Bille: Objective measurement of wave aberrations of the human eye with the use of a Hartmann-Shack wavefront sensor. J. Opt. Soc. Am. 11, 1949 (1994)

    Article  ADS  Google Scholar 

  2. K.N. Ogle: On the resolving power of the human eye. J. Opt. Soc. Am. 41, 517 (1951)

    Article  ADS  Google Scholar 

  3. R. Navarro, E. Moreno-Barriuso, S. Bara, T. Mancebo: Phase plates for wave aberration compensation in the human eye. Opt. Lett. 25, 236 (2000)

    Article  ADS  Google Scholar 

  4. M.P. Cagigal, V.F. Canales, J.F. Castejon-Mochon, P.M. Prieto, N. Lopez-Gil, P. Artal: Statistical description of wavefront aberration in the human eye. Opt. Lett. 27, 37 (2002)

    Article  ADS  Google Scholar 

  5. N. Doble, G. Yoon, L. Chen, P. Bierden, S. Oliver, D.R. Williams: Use of a microelectromechanical mirror for adaptive optics in the human eye. Opt. Lett. 27, 1537 (2002)

    Article  ADS  Google Scholar 

  6. F. Vargas-Martin, P.M. Prieto, P. Artal: Correction of the aberrations in the human eye with a liquid crystal spatial light modulator: limits to performance. J. Opt. Soc. Am. A 15, 2552 (1998)

    Article  ADS  Google Scholar 

  7. E.J. Fernandez, I. Iglesias, P. Artal: Closed-loop adaptive optics in the human eye. Opt. Lett. 26, 746 (2001)

    Article  ADS  Google Scholar 

  8. C.W. Fowler, E.S. Pateras: Liquid crystal lens review. Ophthal. Physiol. Opt. 10, 186 (1990)

    Article  Google Scholar 

  9. A.F. Naumov, M.Y. Loktev, I.R. Guralnik, G. Vdovin: Liquid crystal adaptive lenses with modal control. Opt. Lett. 23, 992 (1998)

    Article  ADS  Google Scholar 

  10. A.F. Naumov, G. Vdovin: Multichannel liquid crystal based wavefront corrector with modal influence functions. Opt. Lett. 23, 1550 (1998)

    Article  ADS  Google Scholar 

  11. S.P. Kotova, M.Y. Kvashnin, M.A. Rakhmatulin, O.A. Zayakin, I.R. Guralnik, N.A. Klimov, P. Clark, G.D. Love, A.F. Naumov, C.D. Saunter, M.Y. Loktev, G.V. Vdovin, L.V. Toporkova: Modal liquid crystal wavefront corrector. Opt. Express 22, 1258 (2002), www.opticsexpress.org/abstract.cfm?URI=OPEX-10-22-1258

    ADS  Google Scholar 

  12. A.F. Naumov, G.D. Love, M.Y. Loktev, F.L. Vladimirov: Control optimization of spherical modal liquid crystal lenses. Opt. Express 4, 344 (1999), www.opticsexpress.org/abstract.cfm?URI=OPEX-4-9-344

    Article  ADS  Google Scholar 

  13. J. Bruines: Process outlook for analog and rf applications. Microelectronic Engineering 54, 35 (2000)

    Article  Google Scholar 

  14. B. Simon-Hettich, W. Becker: Toxicological investigations of liquid crystals. In: 28th Freiburg Workshop on Liquid Crystals. Freiburg 1999

    Google Scholar 

  15. W. Becker, B. Simon-Hettich, P. Hnicke: Toxicological and ecotoxicological investigations of liquid crystals and disposal of lcds. Merck brochure, Merck KGaA, Liquid Crystals Division and Institute of Toxicology. Darmstadt 2001

    Google Scholar 

  16. E. Hecht: Optics. 3rd edn. (Addison Wesley, Longman 1998), Chap. 5, pp. 203–205

    Google Scholar 

  17. R.E. Bedford, G. Wyszecki: Axial chromatic aberration of the human eye. J. Opt. Soc. Am. 47, 564 (1947)

    Google Scholar 

  18. L. Llorente, L. Diaz-Santana, D. Lara-Saucedo, S.L. Marcos: Aberrations of the human eye in visible and near infrared illumination. Optometry and Vision Science 80, 26 (2003)

    Article  Google Scholar 

  19. T.L. Kelly, A.F. Naumov, M.Y. Loktev, M.A. Rakhmatulin, O.A. Zayakin: Focusing of astigmatic laser diode beam by combination of adaptive liquid crystal lenses. Opt. Commun. 181, 295 (2000)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Vdovin, G., Loktev, M., Zhang, X. (2005). Wireless Control of an LC Adaptive Lens. In: Wittrock, U. (eds) Adaptive Optics for Industry and Medicine. Springer Proceedings in Physics, vol 102. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-28867-8_6

Download citation

Publish with us

Policies and ethics