Advertisement

Adaptive Shaping of High-Power Broadband Femtosecond Laser Pulses

  • T. Witting
  • G. Tsilimis
  • J. Kutzner
  • H. Zacharias
  • M. Köller
  • H. Maurer
Part of the Springer Proceedings in Physics book series (SPPHY, volume 102)

Summary

We demonstrate the implementation of a feedback controlled pulse shaping device in a femtosecond high-power Ti:sapphire laser system. The laser system consists of a mirror dispersion controlled oscillator and a multipass amplifier with a pairing double prism compressor. The system provides pulses with a duration of 30 fs and an energy of up to 1.2 mJ per pulse at 1 kHz repetition rate. The phase distorted output pulses are phase modulated with a high resolution spatial light modulator (SLM). The pulse shaper consists of an all-reflective zero-dispersion compressor equipped with a liquid crystal array. For adaptive compression of the amplified pulses a feedback loop is implemented. A two-photon process is used to monitor the temporal pulse characteristics. To achieve the shortest possible pulse an evolutionary algorithm controls the pulse shaper utilizing the two-photon signal as feedback. With this set-up transform limited pulses are achieved. Detailed investigations of algorithm parameters and their effect on convergence behaviour have been performed and are compared with the experimental findings.

Keywords

Femtosecond Laser Pulse Spatial Light Modulator Spectral Phase Acousto Optic Modulator Reproduction Probability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R.S. Judson, H. Rabitz: Teaching lasers to control molecules. Phys. Rev. Lett. 68, 1500 (1992)CrossRefADSGoogle Scholar
  2. 2.
    J.J. Gerdy, M. Dantus, R.M. Bowman, A.H. Zewail: Femtosecond selective control of wave packet population. Chem. Phys. Lett. 171, 1 (1990)CrossRefADSGoogle Scholar
  3. 3.
    A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, G. Gerber: Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses. Science 282, 919 (1998)CrossRefADSGoogle Scholar
  4. 4.
    B.J. Pearson, J.L. White, T.C. Weinacht, P.H. Bucksbaum: Coherent control using adaptive learning algorithms. Phys. Rev. A 63, 0634121 (2001)CrossRefGoogle Scholar
  5. 5.
    A.M. Weiner: Femtosecond pulse shaping using spatial light modulators. Rev. Sci. Instr. 71, 1929 (2000)CrossRefADSGoogle Scholar
  6. 6.
    A. Stingl, M. Lenzner, C. Spielmann, F. Krausz, R. Szipöcs: Sub-10-fs mirror-dispersion-controlled Ti: sapphire laser. Opt. Lett. 20, 602 (1995)ADSCrossRefGoogle Scholar
  7. 7.
    M. Lenzer, C. Spielmann, E. Wintner, F. Krausz, A.J. Schmidt: Sub-20-fs, kilohertz-repetition-rate Ti:sapphire amplifier. Opt. Lett. 20, 1379 (1995)Google Scholar
  8. 8.
    F. Verluise, V. Laude, Z. Cheng, C. Spielmann, P. Tournois: Amplitude and phase control of ultrashort pulses by use of an acousto-optic programmable dispersive filter: pulse compression and shaping. Opt. Lett. 25, 575 (2000)ADSCrossRefGoogle Scholar
  9. 9.
    R. Bartels, S. Backus, E. Zeek, L. Misoguti, G. Vdovin, I.P. Christov, M.M. Murnane, H.C. Kapteyn: Shaped-pulse optimization of coherent emission of high-harmonic soft X-rays. Nature 406, 164 (2000)ADSzbMATHCrossRefGoogle Scholar
  10. 10.
    G. Stobrawa, M. Hacker, T. Feurer, D. Zeidler, M. Motzkus, F. Reichel: A new high-resolution femtosecond pulse shaper. Appl. Phys. B 72, 627 (2001)ADSGoogle Scholar
  11. 11.
    J.K. Ranka, A.L. Gaeta, A. Baltuska, M.S. Pshenichnikov, D.A. Wiersma: Autocorrelation measurement of 6-fs pulses based on the two-photon-induced photocurrent in a GaAsP photodiode. Opt. Lett. 22, 1344 (1997)ADSCrossRefGoogle Scholar
  12. 12.
    J.-C. M. Diels, J.J. Fontaine, I.C. McMichael, F. Simoni: Control and measurement of ultrashort pulse shapes (in amplitude and phase) with femtosecond accuracy. Appl. Opt. 24, 1270 (1985)ADSCrossRefGoogle Scholar
  13. 13.
    H. Pohlheim: Evolutionäre Algorithmen. Verfahren, Operatoren und Hinweise für die Praxis (Springer, Berlin Heidelberg New York 1999)Google Scholar
  14. 14.
    D. Zeidler, S. Frey, K.-L. Kompa, M. Motzkus: Evolutionary algorithms and their application to optimal control studies. Phys. Rev. A 71, 023420 (2001)ADSCrossRefGoogle Scholar
  15. 15.
    W.H. Press, B.P. Flannery, S.A. Teukolsky, W.T. Vetterling: Numerical Recipes in C (Cambridge University Press, 1988)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • T. Witting
    • 1
  • G. Tsilimis
    • 1
  • J. Kutzner
    • 1
  • H. Zacharias
    • 1
  • M. Köller
    • 2
  • H. Maurer
    • 2
  1. 1.Physikalisches InstitutWestfälische Wilhelms-Universität MünsterMünsterGermany
  2. 2.Institut für Numerische und instrumentelleMathematik Westfälische Wilhelms-Universität MünsterMünsterGermany

Personalised recommendations