Advertisement

Alarmone: Signalfaktoren in der lokalen Regulation

  • Hartmut Schlüter
Part of the Molekulare Medizin book series (MOLMED)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

1.8.7 Literatur

  1. Andersson M, Lewan L (1988) Early increase in diadenosine tetraphosphate in regenerating rat liver. Exp Cell Res 175: 414–418PubMedCrossRefGoogle Scholar
  2. Baker JC, Ames BN (1988) Alterations in levels of 5′-adenyl dinucleotides following DNA damage in normal human fibroblasts and fibroblasts derived from patients with xeroderma pigmentosum. Mutat Res 208: 87–93PubMedGoogle Scholar
  3. Baker JC, Jacobson MK (1986) Alteration of adenyl dinucleotide metabolism by environmental stress. Proc Natl Acad Sci USA 83: 2350–2352PubMedCrossRefGoogle Scholar
  4. Baker JC, Smale ST, Tjian R, Ames BN (1987) Inhibition of simian virus 40 DNA replication in vitro by poly(ADP-ribosyl)ated diadenosine tetraphosphate. J Biol Chem 262: 14855–14858PubMedGoogle Scholar
  5. Baril E, Bonin P, Burstein D, Mara K, Zamecnik P (1983) Resolution of the diadenosine 5′,5‴-P1,P4-tetraphosphate binding subunit from a multiprotein form of HeLa cell DNA polymerase alpha. Proc Natl Acad Sci USA 80: 4931–4935PubMedCrossRefGoogle Scholar
  6. Barnes LD, Garrison PN, Siprashvili Z et al. (1996) Fhit, a putative tumor suppressor in humans, is a dinucleoside 5′,5‴-P1,P3-triphosphate hydrolase. Biochemistry 35: 11529–11535PubMedCrossRefGoogle Scholar
  7. Baxi MD, McLennan AG, Vishwanatha JK (1994) Characterization of the HeLa cell DNA polymerase alpha-associated Ap4A binding protein by photoaffinity labeling. Biochemistry 33: 14601–14607PubMedCrossRefGoogle Scholar
  8. Bessman M, Frick D, O’Handley S (1996) The MutT proteins or “nudix” hydrolases, a family of versatile, widely distributed, “housecleaning” enzymes. J Biol Chem 271: 25059–25062PubMedCrossRefGoogle Scholar
  9. Bianchi BR, Lynch KJ, Touma E et al. (1999) Pharmacological characterization of recombinant human and rat P2X receptor subtypes. Eur J Pharmacol 376: 127–138PubMedCrossRefGoogle Scholar
  10. Bochner BR, Lee PC, Wilson SW, Cutler CW, Ames BN (1984) AppppA and related adenylylated nucleotides are synthesized as a consequence of oxidation stress. Cell 37: 225–232PubMedCrossRefGoogle Scholar
  11. Bodin P, Burnstock G (2001) Purinergic signalling: ATP release. Neurochem Res 26: 959–969PubMedCrossRefGoogle Scholar
  12. Boehm S (2003) Signaling via nucleotide receptors in the sympathetic nervous system. Drug News Perspect 16: 141–148PubMedCrossRefGoogle Scholar
  13. Bogdanov Y, Wildman S, Clements M, King B, Burnstock G (1998) Molecular cloning and characterization of rat P2Y4 nucleotide receptor. Br J Pharmacol 124: 428–430PubMedCrossRefGoogle Scholar
  14. Bornstein JC, Costa M, Grider JR (2004) Enteric motor and interneuronal circuits controlling motility. Neurogastroenterol Motil 16Suppl 1: 34–38PubMedCrossRefGoogle Scholar
  15. Boulpaep E (2003) Integrated control of the cardiovascular system. Saunders, PhiladelphiaGoogle Scholar
  16. Bowler WB, Buckley KA, Gartland A, Hipskind RA, Bilbe G, Gallagher JA (2001) Extracellular nucleotide signaling: A mechanism for integrating local and systemic responses in the activation of bone remodeling. Bone 28: 507–512PubMedCrossRefGoogle Scholar
  17. Brandts B, Brandts A, Wellner-Kienitz MC, Zidek W, Schlüter H, Pott L (1998) Non-receptor-mediated activation of IK(ATP) and inhibition of IK(ACh) by diadenosine polyphosphates in guinea-pig atrial myocytes. J Physiol 512: 407–420PubMedCrossRefGoogle Scholar
  18. Brenner C, Bieganowski P, Pace HC, Huebner K (1999) The histidine triad superfamily of nucleotide-binding proteins. J Cell Physiol 181: 179–187PubMedCrossRefGoogle Scholar
  19. Brevet A, Coste H, Fromant M, Plateau P, Blanquet S (1987) Yeast diadenosine 5′,5″,-P1,P4-tetraphosphate alpha.beta-phosphorylase behaves as a dinucleoside tetraphosphate synthetase. Biochemistry 26: 4763–4768PubMedCrossRefGoogle Scholar
  20. Brevet A, Chen J, Leveque F, Plateau P, Blanquet S (1989) In vivo synthesis of adenylylated bis(5′-nucleosidyl) tetraphosphates (Ap4N) by Escherichia coli aminoacyl-tRNA synthetases. Proc Natl Acad Sci USA 86: 8275–8279PubMedCrossRefGoogle Scholar
  21. Brossmer R, Harrison MJ, Goody RS (1975) Proceedings: alpha, omega-diadenosine polyphosphates, a new class of substances, and ADP-methylester inhibit platelet aggregation and the release reaction. Thromb Diath Haemorrh 34: 553PubMedGoogle Scholar
  22. Burbee DG, Forgacs E, Zochbauer-Muller S et al. (2001) Epigenetic inactivation of RASSF1A in lung and breast cancers and malignant phenotype suppression. J Natl Cancer Inst 93: 691–699PubMedCrossRefGoogle Scholar
  23. Burnstock G (1995) Noradrenaline and ATP: Cotransmitters and neuromodulators. J Physiol Pharmacol 46: 365–384PubMedGoogle Scholar
  24. Cartwright JL, Britton P, Minnick MF, McLennan AG (1999) The IalA invasion gene of Bartonella bacilliformis encodes a (de)nucleoside polyphosphate hydrolase of the MutT motif family and has homologs in other invasive bacteria. Biochem Biophys Res Commun 256: 474–479PubMedCrossRefGoogle Scholar
  25. Cartwright JL, McLennan AG (1999) The Saccharomyces cerevisiae YOR163w gene encodes a diadenosine 5′,5‴-P1,P6-hexaphosphate (Ap6A) hydrolase member of the MutT motif (Nudix hydrolase) family. J Biol Chem 274: 8604–8610PubMedCrossRefGoogle Scholar
  26. Castillo CJ, Moro MA, Del Valle M, Sillero A, Garcia AG, Sillero MA (1992) Diadenosine tetraphosphate is co-released with ATP and catecholamines from bovine adrenal medulla. J Neurochem 59: 723–732PubMedGoogle Scholar
  27. Chambers JK, Macdonald LE, Sarau HM et al. (2000) A G protein-coupled receptor for UDP-glucose. J Biol Chem 275: 10767–10771PubMedCrossRefGoogle Scholar
  28. Chan CM, Unwin RJ, Burnstock G (1998) Potential functional roles of extracellular ATP in kidney and urinary tract. Exp Nephrol 6: 200–207PubMedCrossRefGoogle Scholar
  29. Chatterji D, Ojha AK (2001) Revisiting the stringent response, ppGpp and starvation signaling. Curr Opin Microbiol 4: 160–165PubMedCrossRefGoogle Scholar
  30. Chaudhuri AR, Khan IA, Prasad V, Robinson AK, Luduena RF, Barnes LD (1999) The tumor suppressor protein Fhit. A novel interaction with tubulin. J Biol Chem 274: 24378–24382PubMedCrossRefGoogle Scholar
  31. Chrousos G, Gold P (1988) The concept of stress and its historical development. Adv Exp Med Biol 245: 3–7Google Scholar
  32. Cinkilic O, King BF, Giet M van der, Schlüter H, Zidek W, Burnstock G (2001) Selective agonism of group I P2X receptors by dinucleotides dependent on a single adenine moiety. J Pharmacol Exp Ther 299: 131–136PubMedGoogle Scholar
  33. Cohen AJ, Li FP, Berg S, Marchetto DJ, Tsai S, Jacobs SC, Brown RS (1979) Hereditary renal-cell carcinoma associated with a chromosomal translocation. N Engl J Med 301: 592–595PubMedCrossRefGoogle Scholar
  34. Communi D, Robaye B, Boeynaems J (1999) Pharmacological characterization of the human P2Y11 receptor. Br J Pharmacol 128: 1199–1206PubMedCrossRefGoogle Scholar
  35. Coste H, Brevet A, Plateau P, Blanquet S (1987) Non-adenylylated bis(5′-nucleosidyl) tetraphosphates occur in Saccharomyces cerevisiae and in Escherichia coli and accumulate upon temperature shift or exposure to cadmium. J Biol Chem 262: 12096–12103PubMedGoogle Scholar
  36. Di Virgilio F, Chiozzi P, Ferrari D et al. (2001) Nucleotide receptors: An emerging family of regulatory molecules in blood cells. Blood 97: 587–600PubMedCrossRefGoogle Scholar
  37. Donnelly LE, Rogers DF (2003) Therapy for chronic obstructive pulmonary disease in the 21st century. Drugs 63: 1973–1998PubMedCrossRefGoogle Scholar
  38. Drygalski A von, Ogilvie A (2000) Ecto-diadenosine 5′,5′,-P1,P4-tetraphosphate (Ap4A)-hydrolase is expressed as an ectoenzyme in a variety of mammalian and human cells and adds new aspects to the turnover of Ap4A. Biofactors 11: 179–187Google Scholar
  39. Dubyak GR (2000) Purinergic signaling at immunological synapses. J Auton Nerv Syst 81: 64–68PubMedCrossRefGoogle Scholar
  40. Dubyak GR (2003) Knock-out mice reveal tissue-specific roles of P2Y receptor subtypes in different epithelia. Mol Pharmacol 63: 773–776PubMedCrossRefGoogle Scholar
  41. Edgecombe M, Craddock HS, Smith DC, McLennan AG, Fisher MJ (1997) Diadenosine polyphosphate-stimulated gluconeogenesis in isolated rat proximal tubules. Biochem J 323: 451–456PubMedGoogle Scholar
  42. Edgecombe M, McLennan AG, Fisher MJ (1999) Diadenosine polyphosphates and the control of cyclic AMP concentrations in isolated rat liver cells. FEBS Lett 457: 455–458PubMedCrossRefGoogle Scholar
  43. Evans SW, Linnekin D, Farrar WL (1990) Interleukin-2 regulation of diadenosine 5′,5″-p1,p4-tetraphosphate (Ap4A) levels and DNA synthesis in cloned murine T lymphocytes. Eur Cytokine Netw 1: 229–233PubMedGoogle Scholar
  44. Filippov A, Webb T, Barnard E, Brown D (1999) Dual coupling of heterologously-expressed rat P2Y6 nucleotide receptors to N-type Ca2+ and M-type K+ currents in rat sympathetic neurones. Br J Pharmacol 126: 1009–1017PubMedCrossRefGoogle Scholar
  45. Flodgaard H, Klenow H (1982) Abundant amounts of diadenosine 5′,5‴-P1,P4-tetraphosphate are present and releasable, but metabolically inactive, in human platelets. Biochem J 208: 737–742PubMedGoogle Scholar
  46. Fontes R, Gunther Sillero MA, Sillero A (1999) Acyl-CoA synthetase catalyzes the synthesis of diadenosine hexaphosphate (Ap6 A). Biochimie 81: 229–233PubMedCrossRefGoogle Scholar
  47. Fredholm B (1997) Purines and Neutrophil Leukocytes. Gen Pharmac 28: 345–350Google Scholar
  48. Garrison P, Barnes L (1992) Determination of dinucleoside polyphosphates. CRC Press, Boca Raton, FLGoogle Scholar
  49. Gasmi L, McLennan AG, Edwards SW (1994) Priming of the respiratory burst of human neutrophils by the diadenosine polyphosphates, AP4A and AP3A: role of intracellular calcium. Biochem Biophys Res Commun 202: 218–224PubMedCrossRefGoogle Scholar
  50. Gasmi L, McLennan AG, Edwards SW (1996) The diadenosine polyphosphates Ap3A and Ap4A and adenosine triphosphate interact with granulocyte-macrophage colony-stimulating factor to delay neutrophil apoptosis: Implications for neutrophil: Platelet interactions during inflammation. Blood 87: 3442–3449PubMedGoogle Scholar
  51. Gasmi L, McLennan AG, Edwards SW (1997) Diadenosine polyphosphates induce intracellular Ca2+ mobilization in human neutrophils via a pertussis toxin sensitive G-protein. Immunology 90: 154–159PubMedCrossRefGoogle Scholar
  52. Giet M van der, Khattab M, Borgel J, Schlüter H, Zidek W (1997) Differential effects of diadenosine phosphates on purinoceptors in the rat isolated perfused kidney. Br J Pharmacol 120: 1453–1460PubMedGoogle Scholar
  53. Giet M van der, Westhoff T, Cinkilic O, Jankowski J, Schlüter H, Zidek W, Tepel M (2001) The critical role of adenosine and guanosine in the affinity of dinucleoside polyphosphates to P(2X)-receptors in the isolated perfused rat kidney. Br J Pharmacol 132: 467–474PubMedCrossRefGoogle Scholar
  54. Gilson G, Ebel JP, Remy P (1988) Is Ap4A involved in DNA repair processes? Exp Cell Res 177: 143–153PubMedCrossRefGoogle Scholar
  55. Goerlich O, Foeckler R, Holler E (1982) Mechanism of synthesis of adenosine(5′)tetraphospho(5′)adenosine (AppppA) by aminoacyl-tRNA synthetases. Eur J Biochem 126: 135–142PubMedCrossRefGoogle Scholar
  56. Green AK, Cobbold PH, Dixon CJ (1995) Cytosolic free Ca2+oscillations induced by diadenosine 5′,5‴-P1,P3-triphosphate and diadenosine 5′,5‴-P1,P4-tetraphosphate in single rat hepatocytes are indistinguishable from those induced by ADP and ATP respectively. Biochem J 310: 629–635PubMedGoogle Scholar
  57. Grummt F (1979) Diadenosine tetraphosphate triggers in vitro DNA replication. Cold Spring Harb Symp Quant Biol 43: 649–653PubMedGoogle Scholar
  58. Günther Sillero M, Cameselle J (1992) Interactions of dinucleoside polyphosphates with enzymes and other proteins. CRC Press, Boca Raton, FLGoogle Scholar
  59. Guranowski A (2000) Specific and nonspecific enzymes involved in the catabolism of mononucleoside and dinucleoside polyphosphates. Pharmacol Ther 87: 117–139PubMedCrossRefGoogle Scholar
  60. Guranowski A, Just G, Holler E, Jakubowski H (1988) Synthesis of diadenosine 5′,5′-P1,P4-tetraphosphate (AppppA) from adenosine 5′-phosphosulfate and adenosine 5′-triphosphate catalyzed by yeast AppppA phosphorylase. Biochemistry 27: 2959–2964PubMedCrossRefGoogle Scholar
  61. Guranowski A, Sillero MA, Sillero A (1990) Firefly luciferase synthesizes P1,P4-bis(5′-adenosyl)tetraphosphate (Ap4A) and other dinucleoside polyphosphates. FEBS Lett 271: 215–218PubMedCrossRefGoogle Scholar
  62. Hankin S, Matthew N, Thorne H, McLennan AG (1995) Diadenosine 5′,5‴-P1,P4-tetraphosphate hydrolase is present in human erythrocytes, leukocytes and platelets. Int J Biochem Cell Biol 27: 201–206PubMedCrossRefGoogle Scholar
  63. Hankin S, Wintero AK, McLennan AG (1997) Molecular cloning of diadenosine tetraphosphatase from pig small intestinal mucosa and identification of sequence blocks common to diadenosine polyphosphate hydrolases and phosphorylases. Int J Biochem Cell Biol 29: 317–323PubMedCrossRefGoogle Scholar
  64. Harrison MJ, Brossmer R (1975) Inhibition of platelet aggregation and the platelet release reaction by alpha, omega diadenosine polyphosphates. FEBS Lett 54: 57–60PubMedCrossRefGoogle Scholar
  65. Heidenreich S, Tepel M, Schlüter H, Harrach B, Zidek W (1995) Regulation of rat mesangial cell growth by diadenosine phosphates. J Clin Invest 95: 2862–2867PubMedGoogle Scholar
  66. Hilderman RH (1983) Characterization of a homogeneous complex of arginyl-and lysyl-tRNA synthetase: zinc and adenosine 5′-phosphate dependent synthesis of diadenosine 5′,5′-P1,P4-tetraphosphate. Biochemistry 22: 4353–4357PubMedCrossRefGoogle Scholar
  67. Ho WL, Chang JW, Tseng RC, Chen JT, Chen CY, Jou YS, Wang YC (2002) Loss of heterozygosity at loci of candidate tumor suppressor genes in microdissected primary non-small cell lung cancer. Cancer Detect Prev 26: 343–349PubMedCrossRefGoogle Scholar
  68. Huebner K, Croce CM (2003) Cancer and the FRA3B/FHIT fragile locus: it’s a HIT. Br J Cancer 88: 1501–1506PubMedCrossRefGoogle Scholar
  69. Ingram SW, Barnes LD (2000) Disruption and overexpression of the Schizosaccharomyces pombe aph1 gene and the effects on intracellular diadenosine 5′,5′-P1,P4-tetra-phosphate (Ap4A), ATP and ADP concentrations. Biochem J 350: 663–669PubMedCrossRefGoogle Scholar
  70. Ingram SW, Stratemann SA, Barnes LD (1999) Schizosaccharomyces pombe Aps1, a diadenosine 5′,5‴-P1,P6-hexaphosphate hydrolase that is a member of the nudix (MutT) family of hydrolases: cloning of the gene and characterization of the purified enzyme. Biochemistry 38: 3649–3655PubMedCrossRefGoogle Scholar
  71. Inscho EW (1996) Purinoceptor-mediated regulation of the renal microvasculature. J Auton Pharmacol 16: 385–388PubMedGoogle Scholar
  72. Ishii H, Dumon KR, Vecchione A, Fong LY, Baffa R, Huebner K, Croce CM (2001) Potential cancer therapy with the fragile histidine triad gene: Review of the preclinical studies. JAMA 286: 2441–2449PubMedCrossRefGoogle Scholar
  73. Ishii H, Ozawa K, Furukawa Y (2003) Alteration of the fragile histidine triad gene early in carcinogenesis: An update. J Exp Ther Oncol 3: 291–296PubMedCrossRefGoogle Scholar
  74. Iwata K, Haruki S, Kimura T (1995) High-performance liquid chromatographic determination of diadenosine 5′,5‴-p1,p4-tetraphosphate with precolumn fluorescence derivatization and its application to metabolism study in whole blood. J Chromatogr B Biomed Appl 667: 339–343PubMedCrossRefGoogle Scholar
  75. Jakubowski H (1983) Synthesis of diadenosine 5′,5‴-P1,P4-tetraphosphate and related compounds by plant (Lupinus luteus) seryl-tRNA and phenylalanyl-tRNA synthetases. Acta Biochim Pol 30: 51–69PubMedGoogle Scholar
  76. Jakubowski H, Guranowski A (1983) Enzymes hydrolyzing ApppA and/or AppppA in higher plants. Purification and some properties of diadenosine triphosphatase, diadenosine tetraphosphatase, and phosphodiesterase from yellow lupin (Lupinus luteus) seeds. J Biol Chem 258: 9982–9989PubMedGoogle Scholar
  77. Jankowski J, Tepel M, Giet M van der et al. (1999) Identification and characterization of P(1), P(7)-Di(adenosine-5′)-heptaphosphate from human platelets. J Biol Chem 274:23926–23931PubMedCrossRefGoogle Scholar
  78. Jankowski J, Hagemann J, Tepel M et al. (2001) Dinucleotides as growth-promoting extracellular mediators. Presence of dinucleoside diphosphates Ap2A, Ap2G, and Gp2G in releasable granules of platelets. J Biol Chem 276:8904–8909PubMedCrossRefGoogle Scholar
  79. Jankowski J, Jankowski V, Laufer U et al. (2003 a) Identification and quantification of diadenosine polyphosphate concentrations in human plasma. Arterioscler Thromb Vasc Biol 23: 1231–1238PubMedCrossRefGoogle Scholar
  80. Jankowski J, Jankowski V, Seibt B, Henning L, Zidek W, Schlüter H (2003 b) Identification of dinucleoside polyphosphates in adrenal glands. Biochem Biophys Res Commun 304: 365–370PubMedCrossRefGoogle Scholar
  81. Janssens R, Paindavoine P, Parmentier M, Boeynaems J (1999) Human P2Y2 receptor polymorphism: identification and pharmacological characterization of two allelic variants. Br J Pharmacol 127: 709–716PubMedCrossRefGoogle Scholar
  82. Jimenez AI, Castro E, Delicado EG, Miras-Portugal MT (2002) Specific diadenosine pentaphosphate receptor coupled to extracellular regulated kinases in cerebellar astrocytes. J Neurochem 83: 299–308PubMedCrossRefGoogle Scholar
  83. Johnston DJ, Hart CA, McLennan AG (1990) Variation in intracellular P1P4-bis(5′-adenosyl) tetraphosphate (Ap4A) in virus-infected cells. Biochem J 268: 791–793PubMedGoogle Scholar
  84. Johnstone DB, Farr SB (1991) AppppA binds to several proteins in Escherichia coli, including the heat shock and oxidative stress proteins DnaK, GroEL, E89, C45 and C40. Embo J 10: 3897–3904PubMedGoogle Scholar
  85. Jovanovic A, Alekseev AE, Terzic A (1997) Intracellular diadenosine polyphosphates: A novel family of inhibitory ligands of the ATP-sensitive K+ channel. Biochem Pharmacol 54: 219–225PubMedCrossRefGoogle Scholar
  86. Jovanovic S, Jovanovic A (2001) Diadenosine tetraphosphate-gating of recombinant pancreatic ATP-sensitive K(+) channels. Biosci Rep 21: 93–99PubMedCrossRefGoogle Scholar
  87. Jovanovic A, Jovanovic S, Mays DC, Lipsky JJ, Terzic A (1998) Diadenosine 5′,5″-P1,P5-pentaphosphate harbors the properties of a signaling molecule in the heart. FEBS Lett 423: 314–318PubMedCrossRefGoogle Scholar
  88. Kennedy C, Qi AD, Herold CL, Harden TK, Nicholas RA (2000) ATP, an agonist at the rat P2Y(4) receptor, is an antagonist at the human P2Y(4) receptor. Mol Pharmacol 57: 926–931PubMedGoogle Scholar
  89. Keppens S (1996) Effects of diadenosine triphosphate and diadenosine tetraphosphate on rat liver cells. Differences and similarities with ADP and ATP. Biochem Pharmacol 52: 441–445PubMedCrossRefGoogle Scholar
  90. King B, Townsend-Nicholson A, Wildman S, Thomas T, Spyer K, Burnstock G (2000) Coexpression of rat P2X2 and P2X6 subunits in Xenopus oocytes. J Neurosci 20:4871–4877PubMedGoogle Scholar
  91. Kunapuli SP, Daniel JL (1998) P2 receptor subtypes in the cardiovascular system. Biochem J 336: 513–523PubMedGoogle Scholar
  92. la Sala A, Ferrari D, Di Virgilio F, Idzko M, Norgauer J, Girolomoni G (2003) Alerting and tuning the immune response by extracellular nucleotides. J Leukoc Biol 73:339–343PubMedCrossRefGoogle Scholar
  93. Lazarowski ER, Watt WC, Stutts MJ, Boucher RC, Harden TK (1995) Pharmacological selectivity of the cloned human P2U-purinoceptor: Potent activation by diadenosine tetraphosphate. Br J Pharmacol 116: 1619–1627PubMedGoogle Scholar
  94. Lee PC, Bochner BR, Ames BN (1983) AppppA, heat-shock stress, and cell oxidation. Proc Natl Acad Sci USA 80:7496–7500PubMedCrossRefGoogle Scholar
  95. Leventhal PS, Bertics PJ (1991) Kinetic analysis of protein kinase C: Product and dead-end inhibition studies using ADP, poly(L-lysine), nonhydrolyzable ATP analogues, and diadenosine oligophosphates. Biochemistry 30: 1385–1390PubMedCrossRefGoogle Scholar
  96. Levy BT, Sorge LK, Drum CC, Maness PF (1983) Differential inhibition of cellular and viral pp60src kinase by P1,P4-di(adenosine-5′)tetraphosphate. Mol Cell Biol 3:1718–1723PubMedGoogle Scholar
  97. Lewis CJ, Gitterman DP, Schlüter H, Evans RJ (2000) Effects of diadenosine polyphosphates (Ap(n)As) and adenosine polyphospho guanosines (Ap(n)Gs) on rat mesenteric artery P2X receptor ion channels. Br J Pharmacol 129:124–130PubMedCrossRefGoogle Scholar
  98. Liu M, King B, Dunn P, Rong N, Townsend-Nicholson A, Burnstock G (2001) Coexpression of P2X3 and P2X2 receptor subunits in varying amounts generates heterogeneous populations of P2X receptors that evoke a spectrum of agonist responses comparable to that seen in sensory neurons. J Pharmacol Exp Ther 296: 1043–1050PubMedGoogle Scholar
  99. Louie S, Kim BK, Zamecnik P (1988) Diadenosine 5′,5′-P1,P4-tetraphosphate, a potential antithrombotic agent. Thromb Res 49: 557–565PubMedCrossRefGoogle Scholar
  100. Luo J, Jankowski J, Knobloch M et al. (1999) Identification and characterization of diadenosine 5′,5‴-P1,P2-diphosphate and diadenosine 5′,5‴-P1,P3-triphosphate in human myocardial tissue. Faseb J 13: 695–705PubMedGoogle Scholar
  101. Luo J, Jankowski V, Gungar N et al. (2004) Endogenous diadenosine tetraphosphate, diadenosine pentaphosphate, and diadenosine hexaphosphate in human myocardial tissue. Hypertension 43: 1055–1059PubMedCrossRefGoogle Scholar
  102. Lüthje J, Baringer J, Ogilvie A (1985) Effects of diadenosine triphosphate (Ap3A) and diadenosine tetraphosphate (Ap4A) on platelet aggregation in unfractionated human blood. Blut 51: 405–413PubMedCrossRefGoogle Scholar
  103. Lüthje J, Ogilvie A (1983) The presence of diadenosine 5′,5′-P1,P3-triphosphate (Ap3A) in human platelets. Biochem Biophys Res Commun 115: 253–260PubMedCrossRefGoogle Scholar
  104. Lüthje J, Ogilvie A (1987) Catabolism of Ap4A and Ap3A in human serum. Identification of isoenzymes and their partial characterization. Eur J Biochem 169: 385–388PubMedCrossRefGoogle Scholar
  105. Lüthje J, Baringer J, Ogilvie A (1985) Highly efficient induction of human platelet aggregation in heparinized platelet-rich plasma by diadenosine triphosphate (Ap3A). Thromb Haemost 54: 469–471PubMedGoogle Scholar
  106. Marques A, Teixeira N, Gambaretto C, Sillero A, Günther Sillero M (1998) IMP-GMP 59-nucleotidase from rat brain: activation by polyphosphates. J Neurochem 71: 1241–1250PubMedCrossRefGoogle Scholar
  107. Marteau F, Le Poul E, Communi D, Labouret C, Savi P, Boeynaems JM, Gonzalez NS (2003) Pharmacological characterization of the human P2Y13 receptor. Mol Pharmacol 64: 104–112PubMedCrossRefGoogle Scholar
  108. Martin F, Pintor J, Rovira JM, Ripoll C, Miras-Portugal MT, Soria B (1998) Intracellular diadenosine polyphosphates: a novel second messenger in stimulus-secretion coupling. Faseb J 12: 1499–1506PubMedGoogle Scholar
  109. Mateo J, Miras-Portugal MT, Rotllan P (1997) Ecto-enzymatic hydrolysis of diadenosine polyphosphates by cultured adrenomedullary vascular endothelial cells. Am J Physiol 273: C918–927PubMedGoogle Scholar
  110. McLennan AG (2000) Dinucleoside polyphosphates — friend or foe? Pharmacol Ther 87: 73–89PubMedCrossRefGoogle Scholar
  111. McLennan AG, Mayers E, Hankin S, Thorne NM, Prescott M, Powls R (1994) The green alga Scenedesmus obliquus contains both diadenosine 5′,5′-P1,P4-tetraphosphate (asymmetrical) pyrophosphohydrolase and phosphorylase activities. Biochem J 300: 183–189PubMedGoogle Scholar
  112. McLennan AG, Flannery AV, Morten JE, Ridanpaa M (1998) Chromosomal localization of the human diadenosine 5′,5‴-P1,P4-tetraphosphate pyrophosphohydrolase (Ap4A hydrolase) gene (APAH1) to 9pl3. Genomics 47: 307–309PubMedCrossRefGoogle Scholar
  113. Miras-Portugal MT, Gualix J, Pintor J (1998) The neurotransmitter role of diadenosine polyphosphates. FEBS Lett 430: 78–82PubMedCrossRefGoogle Scholar
  114. Miras-Portugal MT, Pintor J, Gualix J (2003) Ca2+ signalling in brain synaptosomes activated by dinucleotides. J Membr Biol 194: 1–10PubMedCrossRefGoogle Scholar
  115. Murcia G de, Schreiber V, Molinete M et al. (1994) Structure and function of poly(ADP-ribose) polymerase. Mol Cell Biochem 138: 15–24PubMedCrossRefGoogle Scholar
  116. Nakajima H, Tomioka I, Kitabatake S, Tomita K (1990) Enzymatic synthesis of diadenosine polyphosphates by leucyl tRNA synthetase coupled with ATP regeneration. Ann N Y Acad Sci 613: 734–737PubMedGoogle Scholar
  117. Neumann J, Meissner A, Boknik P et al. (1999) Inotropic effects of diadenosine tetraphosphate in isolated canine cardiac preparations. J Cardiovasc Pharmacol 33: 151–156PubMedCrossRefGoogle Scholar
  118. Nicke A, Rettinger J, Schmalzing G (2003) Monomeric and dimeric byproducts are the principal functional elements of higher order P2X1 concatamers. Mol Pharmacol 63:243–252PubMedCrossRefGoogle Scholar
  119. Nishimura A, Moriya S, Ukai H, Nagai K, Wachi M, Yamada Y (1997) Diadenosine 5′,5′-P1,P4-tetraphosphate (Ap4A) controls the timing of cell division in Escherichia coli. Genes Cells 2: 401–413PubMedCrossRefGoogle Scholar
  120. Norenberg W, Illes P (2000) Neuronal P2X receptors: Localisation and functional properties. Naunyn Schmiedebergs Arch Pharmacol 362: 324–339PubMedCrossRefGoogle Scholar
  121. Ogilvie A, Blasius R, Schulze-Lohoff E, Sterzel RB (1996) Adenine dinucleotides: A novel class of signalling molecules. J Auton Pharmacol 16: 325–328PubMedGoogle Scholar
  122. Ohta M, Inoue H, Cotticelli MG et al. (1996) The FHIT gene, spanning the chromosome 3pl4.2 fragile site and renal carcinoma-associated t(3;8) breakpoint, is abnormal in digestive tract cancers. Cell 84: 587–597PubMedCrossRefGoogle Scholar
  123. Ortiz B, Sillero A, Gunther Sillero MA (1993) Specific synthesis of adenosine(5′)tetraphospho(5′)nucleoside and adenosine(5′)oligophospho(5′)adenosine (n > 4) catalyzed by firefly luciferase. Eur J Biochem 212: 263–270PubMedCrossRefGoogle Scholar
  124. Oury C, Toth-Zsamboki E, Van Geet C et al. (2000) A natural dominant negative P2X1 receptor due to deletion of a single amino acid residue. J Biol Chem 275: 22611–22614PubMedCrossRefGoogle Scholar
  125. Pace HC, Garrison PN, Robinson AK et al. (1998) Genetic, biochemical, and crystallographic characterization of Fhit-substrate complexes as the active signaling form of Fhit. Proc Natl Acad Sci USA 95: 5484–5489PubMedCrossRefGoogle Scholar
  126. Pace HC, Hodawadekar SC, Draganescu A et al. (2000) Crystal structure of the worm NitFhit Rosetta Stone protein reveals a Nit tetramer binding two Fhit dimers. Curr Biol 10: 907–917PubMedCrossRefGoogle Scholar
  127. Pandis N, Bardi G, Mitelman F, Heim S (1997) Deletion of the short arm of chromosome 3 in breast tumors. Genes Chromosomes Cancer 18: 241–245PubMedCrossRefGoogle Scholar
  128. Patel K, Barnes A, Camacho J, Paterson C, Boughtflower R, Cousens D, Marshall F (2001) Activity of diadenosine polyphosphates at P2Y receptors stably expressed in 1321N1 cells. Eur J Pharmacol 430: 203–210PubMedCrossRefGoogle Scholar
  129. Pintor J, Miras-Portugal MT (1995 a) A novel receptor for diadenosine polyphosphates coupled to calcium increase in rat midbrain synaptosomes. Br J Pharmacol 115: 895–902PubMedGoogle Scholar
  130. Pintor J, Miras-Portugal MT (1995 b) P2 purinergic receptors for diadenosine polyphosphates in the nervous system. Gen Pharmacol 26: 229–235PubMedCrossRefGoogle Scholar
  131. Pintor J, Miras-Portugal MT (2000) Receptors for diadenosine polyphosphates P2D, P2YApnA, P4 and dinucleotide receptors: Are there too many? Trends Pharmacol Sci 21:135PubMedCrossRefGoogle Scholar
  132. Pintor J, Torres M, Miras-Portugal MT (1991) Carbachol induced release of diadenosine polyphosphates — Ap4 A and Ap5A — from perfused bovine adrenal medulla and isolated chromaffin cells. Life Sci 48: 2317–2324PubMedCrossRefGoogle Scholar
  133. Pintor J, Diaz-Rey MA, Torres M, Miras-Portugal MT (1992) Presence of diadenosine polyphosphates — Ap4A and Ap5A — in rat brain synaptic terminals. iCa2+ dependent release evoked by 4-aminopyridine and veratridine. Neurosci Lett 136: 141–144PubMedCrossRefGoogle Scholar
  134. Pintor J, King BF, Miras-Portugal MT, Burnstock G (1996) Selectivity and activity of adenine dinucleotides at recombinant P2X2 and P2Y1 purinoceptors. Br J Pharmacol 119: 1006–1012PubMedGoogle Scholar
  135. Pintor J, Diaz-Hernandez M, Gualix J, Gomez-Villafuertes R, Hernando F, Miras-Portugal MT (2000) Diadenosine polyphosphate receptors. from rat and guinea-pig brain to human nervous system. Pharmacol Ther 87: 103–115PubMedCrossRefGoogle Scholar
  136. Plateau P, Mayaux JF, Blanquet S (1981) Zinc(II)-dependent synthesis of diadenosine 5′,5‴-P(1),P(4)-tetraphosphate by Escherichia coli and yeast phenylalanyl transfer ribonucleic acid synthetases. Biochemistry 20: 4654–4662PubMedCrossRefGoogle Scholar
  137. Purich D, Fromm H (1972) Inhibition of rabbit skeletal muscle adenylate kinase by the transition state analogue, P1,P4-di(adenosine-)tetraphosphate. Biochim Biophys Acta 276: 563–567PubMedGoogle Scholar
  138. Pype S, Siegers H (1993) Inhibition of casein kinase II by dinucleoside polyphosphates. Enzyme Protein 47: 14–21PubMedGoogle Scholar
  139. Ralevic V, Burnstock G (1998) Receptors for purines and pyrimidines. Pharmacol Rev 50: 413–492PubMedGoogle Scholar
  140. Ralevic V, Jankowski J, Schlüter H (2001) Structure-activity relationships of diadenosine polyphosphates (Ap(n)As), adenosine polyphospho guanosines (Ap(n)Gs) and guanosine polyphospho guanosines (Gp(n)Gs) at P2 receptors in the rat mesenteric arterial bed. Br J Pharmacol 134: 1073–1083PubMedCrossRefGoogle Scholar
  141. Ramos A, Pintor J, Miras-Portugal MT, Rotllan P (1995) Use of fluorogenic substrates for detection and investigation of ectoenzymatic hydrolysis of diadenosine polyphosphates: A fluorometric study on chromaffin cells. Anal Biochem 228: 74–82PubMedCrossRefGoogle Scholar
  142. Rapaport E, Zamecnik PC (1976) Presence of diadenosine 5′,5′-P1,P4-tetraphosphate (Ap4A) in mammalian cells in levels varying widely with proliferative activity of the tissue: A possible positive “pleiotypic activator”. Proc Natl Acad Sci USA 73: 3984–3988PubMedCrossRefGoogle Scholar
  143. Rapaport E, Zamecnik PC, Baril EF (1981) Association of diadenosine 5′,5‴-P1,P4-tetraphosphate binding protein with HeLa cell DNA polymerase alpha. J Biol Chem 256: 12148–12151PubMedGoogle Scholar
  144. Ripoll C, Martin F, Manuel Rovira J, Pintor J, Miras-Portugal MT, Soria B (1996) Diadenosine polyphosphates. A novel class of glucose-induced intracellular messengers in the pancreatic beta-cell. Diabetes 45: 1431–1434PubMedGoogle Scholar
  145. Robertson SJ, Ennion SJ, Evans RJ, Edwards FA (2001) Synaptic P2X receptors. Curr Opin Neurobiol 11: 378–386PubMedCrossRefGoogle Scholar
  146. Rodriguez del Castillo A, Torres M, Delicado EG, Miras-Portugal MT (1988) Subcellular distribution studies of diadenosine polyphosphates — Ap4A and Ap5A — in bovine adrenal medulla: presence in chromaffin granules. J Neurochem 51: 1696–1703PubMedGoogle Scholar
  147. Roman RM, Fitz JG (1999) Emerging roles of purinergic signaling in gastrointestinal epithelial secretion and hepatobiliary function. Gastroenterology 116: 964–979PubMedCrossRefGoogle Scholar
  148. Rongen GA, Floras JS, Lenders JW, Thien T, Smits P (1997) Cardiovascular pharmacology of purines. Clin Sci (Lond) 92: 13–24Google Scholar
  149. Roz L, Gramegna M, Ishii H, Croce CM, Sozzi G (2002) Resoration of fragile histidine triad (FHIT) expression induces apoptosis and suppresses tumorigenicity in lung and cervical cancer cell lines. Proc Natl Acad Sci USA 99: 3615–3620PubMedCrossRefGoogle Scholar
  150. Safrany ST, Ingram SW, Cartwright JL, Falck JR, McLennan AG, Barnes LD, Shears SB (1999) The diadenosine hexaphosphate hydrolases from Schizosaccharomyces pombe and Saccharomyces cerevisiae are homologues of the human diphosphoinositol polyphosphate phosphohydrolase. Overlapping substrate specificities in a MutT-type protein. J Biol Chem 274: 21735–21740PubMedCrossRefGoogle Scholar
  151. Savi P, Labouret C, Delesque N, Guette F, Lupker J, Herbert JM (2001) P2y(12), a new platelet ADP receptor, target of clopidogrel. Biochem Biophys Res Commun 283: 379–383PubMedCrossRefGoogle Scholar
  152. Sawai H, Lohrmann R, Orgel LE (1975) Prebiotic peptideformation in the solid state. II. Reaction of glycine with adenosine 5′-triphosphate and P1,P2-diadenosine-pyrophosphate. J Mol Evol 6: 165–184PubMedCrossRefGoogle Scholar
  153. Schachter J, Li Q, Boyer J, Nicholas R, Harden T (1996) Second messenger cascade specificity and pharmacological selectivity of the human P2Y1 purinoceptor. Br J Pharmacol 118: 167–173PubMedGoogle Scholar
  154. Schimmel P, Wang C (1999) Getting tRNA synthetases into the nucleus. Trends Biochem Sci 24: 127–128PubMedCrossRefGoogle Scholar
  155. Schlüter H, Offers E, Bruggemann G et al. (1994) Diadenosine phosphates and the physiological control of blood pressure. Nature 367: 186–188PubMedCrossRefGoogle Scholar
  156. Schlüter H, Grobeta I, Bachmann J et al. (1998) Adenosine(5′) oligophospho-(5′) guanosines and guanosine(5′) oligophospho-(5′) guanosines in human platelets. J Clin Invest 101: 682–688PubMedCrossRefGoogle Scholar
  157. Schulze-Lohoff E, Zanner S, Ogilvie A, Sterzel RB (1995) Vasoactive diadenosine polyphosphates promote growth of cultured renal mesangial cells. Hypertension 26: 899–904PubMedGoogle Scholar
  158. Schwiebert EM (2001) ATP release mechanisms, ATP receptors and purinergic signalling along the nephron. Clin Exp Pharmacol Physiol 28: 340–350PubMedCrossRefGoogle Scholar
  159. Shi Y, Zou M, Farid NR, Paterson MC (2000) Association of FHIT (fragile histidine triad), a candidate tumour suppressor gene, with the ubiquitin-conjugating enzyme hUBC9. Biochem J 352: 443–448PubMedCrossRefGoogle Scholar
  160. Sillero A, Günther Sillero G (2000) Synthesis of dinucleoside polyphosphates catalyzed by firefly luciferase and several ligases. Pharmacol Ther 87Google Scholar
  161. Sillero MA, Guranowski A, Sillero A (1991) Synthesis of dinucleoside polyphosphates catalyzed by firefly luciferase. Eur J Biochem 202: 507–513PubMedCrossRefGoogle Scholar
  162. Silvestre RA, Rodriguez-Gallardo J, Egido EM, Marco J (1999) Stimulatory effect of exogenous diadenosine tetraphosphate on insulin and glucagon secretion in the perfused rat pancreas. Br J Pharmacol 128: 795–801PubMedCrossRefGoogle Scholar
  163. Siprashvili Z, Sozzi G, Barnes LD et al. (1997) Replacement of Fhit in cancer cells suppresses tumorigenicity. Proc Natl Acad Sci USA 94: 13771–13776PubMedCrossRefGoogle Scholar
  164. Sitkovsky MV (1998) Extracellular purines and their receptors in immunoregulation. Review of recent advances. Nippon Ika Daigaku Zasshi 65: 351–357PubMedGoogle Scholar
  165. Sozzi G, Pastorino U, Moiraghi L et al. (1998) Loss of FHIT function in lung cancer and preinvasive bronchial lesions. Cancer Res 58: 5032–5037PubMedGoogle Scholar
  166. Stephens JC, Artz SW, Ames BN (1975) Guanosine 5′-diphosphate 3′-diphosphate (ppGpp): Positive effector for histidine operon transcription and general signal for amino-acid deficiency. Proc Natl Acad Sci USA 72: 4389–4393PubMedCrossRefGoogle Scholar
  167. Sumiyoshi R, Nishimura J, Kawasaki J, Kobayashi S, Takahashi S, Kanaide H (1997) Diadenosine polyphosphates directly relax porcine coronary arterial smooth muscle. J Pharmacol Exp Ther 283: 548–556PubMedGoogle Scholar
  168. Surowy CS, Berger NA (1983) Diadenosine 5′,5‴-P1,P4-tetraphosphate stimulates processing of adp-ribosylated poly-(ADP-ribose) polymerase. J Biol Chem 258: 579–583PubMedGoogle Scholar
  169. Takahashi K, Kasai K, Ochi K (2004) Identification of the bacterial alarmone guanosine 5′-diphosphate 3′-diphosphate (ppGpp) in plants. Proc Natl Acad Sci USA 101: 4320–4324PubMedCrossRefGoogle Scholar
  170. Terzic A, Jahangir A, Kurachi Y (1995) Cardiac ATP-sensitive K+ channels regulation by intracellular nucleotides and K+ channel opening drugs. Am J Physiol 269: C525–C545PubMedGoogle Scholar
  171. Thorne NM, Hankin S, Wilkinson MC, Nunez C, Barraclough R, McLennan AG (1995) Human diadenosine 5′,5‴-P1,P4-tetraphosphate pyrophosphohydrolase is a member of the MutT family of nucleotide pyrophosphatases. Biochem J 311: 717–721PubMedGoogle Scholar
  172. Unwin RJ, Bailey MA, Burnstock G (2003) Purinergic signaling along the renal tubule: the current state of play. News Physiol Sci 18: 237–241PubMedGoogle Scholar
  173. Vahlensieck U, Boknik P, Knapp J et al. (1996) Negative chronotropic and inotropic effects exerted by diadenosine hexaphosphate (AP6 A) via Al-adenosine receptors. Br J Pharmacol 119: 835–844PubMedGoogle Scholar
  174. Vartanian A, Narovlyansky A, Amchenkova A, Turpaev K, Kisselev L (1996) Interferons induce accumulation of diadenosine triphosphate (Ap3A) in human cultured cells. FEBS Lett 381: 32–34PubMedCrossRefGoogle Scholar
  175. Vartanian A, Prudovsky I, Suzuki H, Dal Pra I, Kisselev L (1997) Opposite effects of cell differentiation and apoptosis on Ap3A/Ap4A ratio in human cell cultures. FEBS Lett 415: 160–162PubMedCrossRefGoogle Scholar
  176. Vartanian A, Alexandrov I, Prudowski I, McLennan A, Kisselev L (1999) Ap4A induces apoptosis in human cultured cells. FEBS Lett 456: 175–180PubMedCrossRefGoogle Scholar
  177. Vartanian AA, Suzuki H, Poletaev AI (2003) The involvement of diadenosine 5′,5‴-P1,P4-tetraphosphate in cell cycle arrest and regulation of apoptosis. Biochem Pharmacol 65: 227–235PubMedCrossRefGoogle Scholar
  178. Verspohl EJ, Johannwille B (1998) Diadenosine polyphosphates in insulin-secreting cells: interaction with specific receptors and degradation. Diabetes 47: 1727–1734PubMedGoogle Scholar
  179. Verspohl EJ, Blackburn GM, Hohmeier N, Hagemann J, Lempka M (2003) Synthetic, nondegradable diadenosine polyphosphates and diinosine polyphosphates: T effects on insulin-secreting cells and cultured vascular smooth muscle cells. J Med Chem 46: 1554–1562PubMedCrossRefGoogle Scholar
  180. Vollmayer P, Clair T, Goding JW, Sano K, Servos J, Zimmermann H (2003) Hydrolysis of diadenosine polyphosphates by nucleotide pyrophosphatases/phosphodiesterases. Eur J Biochem 270: 2971–2978PubMedCrossRefGoogle Scholar
  181. Wang N, Perkins KL (1984) Involvement of band 3p14 in t(3;8) hereditary renal carcinoma. Cancer Genet Cytogenet 11: 479–481PubMedCrossRefGoogle Scholar
  182. Warner AH, Finamore FJ (1965) Isolation, purification, and characterization of P1,P3-diguanosine 5′-triphosphate from brine shrimp eggs. Biochim Biophys Acta 108: 525–530PubMedGoogle Scholar
  183. Warner AH, Huang FL (1974) Biosynthesis of the diguanosine nucleotides. II. Mechanism of action of GTP:GTP guanylyltransferase on nucleotide metabolism in brine shrimp embryos. Can J Biochem 52: 241–251PubMedCrossRefGoogle Scholar
  184. Warner AH, Beers PC, Huang FL (1974) Biosynthesis of the diguanosine nucleotides. I. Purification and properties of an enzyme from yolk platelets of brine shrimp embryos. Can J Biochem 52: 231–240PubMedCrossRefGoogle Scholar
  185. Weinmann-Dorsch C, Hedl A, Grummt I et al. (1984) Drastic rise of intracellular adenosine(5′)tetraphospho(5′)adenosine correlates with onset of DNA synthesis in eukaryotic cells. Eur J Biochem 138: 179–185PubMedCrossRefGoogle Scholar
  186. Westfall DP, Todorov LD, Mihaylova-Todorova ST (2002) ATP as a cotransmitter in sympathetic nerves and its inactivation by releasable enzymes. J Pharmacol Exp Ther 303: 439–444PubMedCrossRefGoogle Scholar
  187. Wildman SS, Brown SG, King BF, Burnstock G (1999) Selectivity of diadenosine polyphosphates for rat P2X receptor subunits. Eur J Pharmacol 367: 119–123PubMedCrossRefGoogle Scholar
  188. Yamaguchi N, Kodama M, Ueda K (1985) Diadenosine tetraphosphate as a signal molecule linked with the functional state of rat liver. Gastroenterology 89: 723–731PubMedGoogle Scholar
  189. Yoshihara K, Tanaka Y (1981) ADP-ribosylation of diadenosine 5′,5″-P1,P4-tetraphosphate by poly(ADP-ribose) polymerase in vitro. J Biol Chem 256: 6756–6761PubMedGoogle Scholar
  190. Zamecnik PC, Stephenson ML, Janeway CM, Randerath K (1966) Enzymatic synthesis of diadenosine tetraphosphate and diadenosine triphosphate with a purified lysyl-sRNA synthetase. Biochem Biophys Res Commun 24: 91–97PubMedCrossRefGoogle Scholar
  191. Zamecnik PC, Rapaport E, Baril EF (1982) Priming of DNA synthesis by diadenosine 5′,5‴-P1,P4-tetraphosphate with a double-stranded octadecamer as a template and DNA polymerase alpha. Proc Natl Acad Sci USA 79: 1791–1794PubMedCrossRefGoogle Scholar
  192. Zhang FL, Luo L, Gustafson E et al. (2001) ADP is the cognate ligand for the orphan G protein-coupled receptor SP1999. J Biol Chem 276: 8608–8615PubMedCrossRefGoogle Scholar
  193. Zimmermann H, Braun N (1996) Extracellular metabolism of nucleotides in the nervous system. J Auton Pharmacol 16: 397–400PubMedGoogle Scholar
  194. Zimmermann H, Volknandt W, Wittich B, Hausinger A (1993) Synaptic vesicle life cycle and synaptic turnover. J Physiol Paris 87: 159–170PubMedCrossRefGoogle Scholar
  195. Zourgui L, Tharaud D, Solari A, Litvak S, Tarrago-Litvak L (1984) Stimulation of DNA synthesis by microinjection of diadenosine 5′,5″-P1,P4-tetraphosphate (Ap4A) into Xenopus laevis oocytes. Dev Biol 103: 409–413PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Hartmut Schlüter
    • 1
  1. 1.Campus Benjamin Franklin Nephrologie (Med. Klinik IV)Charité — Universitätsmedizin BerlinBerlin

Personalised recommendations