Regulation der Entwicklung der Hypophyse

  • Roland Pfäffle
  • Johannes Weigel
  • Antje Böttner
Part of the Molekulare Medizin book series (MOLMED)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

1.4.7 Literatur

  1. Achermann JC, Meeks JJ, Jameson JL (2001) Phenotypic spectrum of mutations in DAX-1 and SF-1. Mol Cell Endocrinol 185: 17–25PubMedCrossRefGoogle Scholar
  2. Agarwal G, Bhatia V, Cook S, Thomas PQ (2000) Adrenocorticotropin deficiency in combined pituitary hormone deficiency patients homozygous for a novel PROP1 deletion. J Clin Endocrinol Metab 85: 4556–4561PubMedCrossRefGoogle Scholar
  3. Albrecht AN, Kornak U, Boddrich A et al. (2004) A molecular pathogenesis for transcription factor associated polyalanine tract expansions. Hum Mol GenetGoogle Scholar
  4. Amendt BA, Sutherland LB, Semina EV, Russo AF (1998) The molecular basis of Rieger syndrome. Analysis of Pitx2 homeodomain protein activities. J Biol Chem 273: 20066–20072PubMedCrossRefGoogle Scholar
  5. Amendt BA, Sutherland LB, Russo AF (1999) Multifunctional role of the Pitx2 homeodomain protein C-terminal tail. Mol Cell Biol 19: 7001–7010PubMedGoogle Scholar
  6. Appel B (1999) LIMitless combinations? Neuron 22: 3–5PubMedCrossRefGoogle Scholar
  7. Asa SL, Kovacs K (1984) Functional morphology of the human fetal pituitary. Pathol Annu 19 Pt 1: 275–315PubMedGoogle Scholar
  8. Asa SL, Kovacs K, Horvath E, Losinski NE, Laszlo FA, Domokos I, Halliday WC (1988) Human fetal adenohypophysis. Electron microscopic and ultrastructural immunocytochemical analysis. Neuroendocrinology 48: 423–431PubMedGoogle Scholar
  9. Asa SL, Bamberger AM, Cao B, Wong M, Parker KL, Ezzat S. (1996) The transcription activator steroidogenic factor-1 is preferentially expressed in the human pituitary gonadotroph. J Clin Endocrinol Metab 81: 2165–2170PubMedCrossRefGoogle Scholar
  10. Atasay B, Aycan Z, Evliyaoglu O et al. (2004) Congenital early onset isolated adrenocorticotropin deficiency associated with a TPIT gene mutation. J Pediatr Endocrinol Metab 17: 1017–1020PubMedGoogle Scholar
  11. Bach I, Rhodes SJ, Pearse RV2 et al. (1995) P-Lim, a LIM homeodomain factor, is expressed during pituitary organ and cell commitment and synergizes with Pit-1. Proc Natl Acad Sci USA 92: 2720–2724PubMedCrossRefGoogle Scholar
  12. Belloni E, Muenke M, Roessler E et al. (1996) Identification of Sonic hedgehog as a candidate gene responsible for holoprosencephaly. Nat Genet 14: 353–356PubMedCrossRefGoogle Scholar
  13. Bentley CA, Zidehsarai MP, Grindley JC, Parlow AF, Barth-Hall S, Roberts VJ (1999) Pax6 is implicated in murine pituitary endocrine function. Endocrine 10: 171–177PubMedCrossRefGoogle Scholar
  14. Blankenstein O, Muhlenberg R, Kim C, Wuller S, Pfaffle R, Heimann G. (2001) A new C-terminal located mutation (V272ter) in the PIT-1 gene manifesting with severe congenital hypothyroidism. Possible functionality of the PIT-1 C-terminus. Horm Res 56: 81–86PubMedCrossRefGoogle Scholar
  15. Bridwell JA, Price JR, Parker GE, McCutchan SA, Sloop KW, Rhodes SJ (2001) Role of the LIM domains in DNA recognition by the Lhx3 neuroendocrine transcription factor. Gene 277: 239–250PubMedCrossRefGoogle Scholar
  16. Brown MR, Parks JS, Adess ME et al. (1998) Central hypothyroidism reveals compound heterozygous mutations in the Pit-1 gene. Horm Res 49: 98–102PubMedCrossRefGoogle Scholar
  17. Buckwalter MS, Katz RW, Camper SA (1991) Localization of the panhypopituitary dwarf mutation (df) on mouse chromosome 11 in an intersubspecific backcross. Genomics 10: 515–526PubMedCrossRefGoogle Scholar
  18. Chen RP, Ingraham HA, Treacy MN, Albert VR, Wilson L, Rosenfeld MG (1990) Autoregulation of pit-1 gene expression mediated by two cisactive promoter elements. Nature 346: 583–586PubMedCrossRefGoogle Scholar
  19. Cogan JD, Wu W, Phillips JA III et al. (1998) The PROP1 2-base pair deletion is a common cause of combined pituitary hormone deficiency. J Clin Endocrinol Metab 83: 3346–3349PubMedCrossRefGoogle Scholar
  20. Cohen LE, Wondisford FE, Salvatoni A, Maghnie M, Brucker-Davis F, Weintraub BD, Radovick S (1995) A “hot spot” in the Pit-1 gene responsible for combined pituitary hormone deficiency: clinical and molecular correlates. J Clin Endocrinol Metab 80: 679–684PubMedCrossRefGoogle Scholar
  21. Collignon J, Sockanathan S, Hacker A et al. (1996) A comparison of the properties of Sox-3 with Sry and two related genes, Sox-1 and Sox-2. Development 122: 509–520PubMedGoogle Scholar
  22. Daikoku S, Hisano S, Maki Y (1982) Immunohistochemical demonstration of LHRH-neurons in young rat hypothalamus: Light and electron microscopy. Arch Histol Jpn 45: 69–82PubMedGoogle Scholar
  23. Dasen JS, Rosenfeld MG (1999) Combinatorial codes in signaling and synergy: lessons from pituitary development. Curr Opin Genet Dev 9: 566–574PubMedCrossRefGoogle Scholar
  24. Dattani MT (2003) DNA testing in patients with GH deficiency at the time of transition. Growth Horm IGF Res 13Suppl A: S122–S129PubMedCrossRefGoogle Scholar
  25. Dattani MT, Martinez-Barbera JP, Thomas PQ et al. (1998) Mutations in the homeobox gene HESX1/Hesx1 associated with septo-optic dysplasia in human and mouse. Nat Genet 19: 125–133PubMedCrossRefGoogle Scholar
  26. Deladoey J, Fluck C, Buyukgebiz A et al. (1999) “Hot spot” in the PROP1 gene responsible for combined pituitary hormone deficiency. J Clin Endocrinol Metab 84: 1645–1650PubMedCrossRefGoogle Scholar
  27. Dutour A (1997) A new step understood in the cascade of tissue-specific regulators orchestrating pituitary lineage determination: The Prophet of Pit-1 (Prop-1). Eur J Endocrinol 137: 616–617PubMedCrossRefGoogle Scholar
  28. Ericson J, Norlin S, Jessell TM, Edlund T (1998) Integrated FGF and BMP signaling controls the progression of progenitor cell differentiation and the emergence of pattern in the embryonic anterior pituitary. Development 125: 1005–1015PubMedGoogle Scholar
  29. Fauquier T, Guerineau NC, McKinney RA, Bauer K, Mollard P (2001) Folliculostellate cell network: A route for long-distance communication in the anterior pituitary. Proc Natl Acad Sci USA 98: 8891–8896PubMedCrossRefGoogle Scholar
  30. Fauquier T, Lacampagne A, Travo P, Bauer K, Mollard P (2002) Hidden face of the anterior pituitary. Trends Endocrinol Metab 13(7): 304–309PubMedCrossRefGoogle Scholar
  31. Fluck C, Deladoey J, Rutishauser K, Eble A, Marti U, Wu W, Mullis PE (1998) Phenotypic variability in familial combined pituitary hormone deficiency caused by a PROP1 gene mutation resulting in the substitution of Arg → Cys at codon 120 (R120C). J Clin Endocrinol Metab 83: 3727–3734PubMedCrossRefGoogle Scholar
  32. Fofanova O, Takamura N, Kinoshita E et al. (1997) A novel Pit-1 gene mutation in a russian girl with combined pituitary hormone deficiency (abstract). Horm Res 48: 1–201Google Scholar
  33. Fofanova O, Takamura N, Kinoshita E et al. (2000) MR imaging of the pituitary gland in children and young adults with congenital combined pituitary hormone deficiency associated with PROP1 mutations. Am J Roentgenol 174: 555–559Google Scholar
  34. Fox SR, Jong MT, Casanova J, Ye ZS, Stanley F, Samuels HH (1990) The homeodomain protein, Pit-1/GHF-1, is capable of binding to and activating cell-specific elements of both the growth hormone and prolactin gene promoters. Mol Endocrinol 4: 1069–1080PubMedCrossRefGoogle Scholar
  35. Fujii T, Pichel JG, Taira M, Toyama R, Dawid IB, Westphal H (1994) Expression patterns of the murine LIM class homeobox gene liml in the developing brain and excretory system. Dev Dyn 199: 73–83PubMedGoogle Scholar
  36. Gage PJ, Camper SA (1997) Pituitary homeobox 2, a novel member of the bicoid-related family of homeobox genes, is a potential regulator of anterior structure formation. Hum Mol Genet 6: 457–464PubMedCrossRefGoogle Scholar
  37. Gage PJ, Roller ML, Saunders TL, Scarlett LM, Camper SA (1996) Anterior pituitary cells defective in the cell-autonomous factor, df, undergo cell lineage specification but not expansion. Development 122: 151–160PubMedGoogle Scholar
  38. Gallardo ME, Rodriguez dC, Schneider AS, Dwyer MA, Ayuso C, Bovolenta P (2004) Analysis of the developmental SIX6 homeobox gene in patients with anophthalmia/microphthalmia. Am J Med Genet 129A: 92–94CrossRefGoogle Scholar
  39. Gehring WJ (1987) Homeo boxes in the study of development. Science 236: 1245–1252PubMedGoogle Scholar
  40. Graves JA (1998) Interactions between SRY and SOX genes in mammalian sex determination. Bioessays 20: 264–269PubMedCrossRefGoogle Scholar
  41. Hermesz E, Mackem S, Mahon KA (1996) Rpx: a novel anterior-restricted homeobox gene progressively activated in the prechordal plate, anterior neural plate and Rathke’s pouch of the mouse embryo. Development 122: 41–52PubMedGoogle Scholar
  42. Hermesz E, Williams-Simons L, Mahon KA (2003) A novel inducible element, activated by contact with Rathke’s pouch, is present in the regulatory region of the Rpx/Hesxl homeobox gene. Dev Biol 260: 68–78PubMedCrossRefGoogle Scholar
  43. Herr W, Sturm RA, Clerc RG et al. (1988) The POU domain: A large conserved region in the mammalian pit-1, oct-1, oct-2, and Caenorhabditis elegans unc-86 gene products. Genes Dev 2: 1513–1516PubMedGoogle Scholar
  44. Hobert O, Westphal H (2000) Functions of LIM-homeobox genes. Trends Genet 16: 75–83PubMedCrossRefGoogle Scholar
  45. Hogan BL (1996) Bone morphogenetic proteins in development. Curr Opin Genet Dev 6: 432–438PubMedCrossRefGoogle Scholar
  46. Hol FA, Schepens MT, van Beersum SE et al. (2000) Identification and characterization of an Xq26-q27 duplication in a family with spina bifida and panhypopituitarism suggests the involvement of two distinct genes. Genomics 69: 174–181PubMedCrossRefGoogle Scholar
  47. Ingraham HA, Chen RP, Mangalam HJ et al. (1988) A tissue-specific transcription factor containing a homeodomain specifies a pituitary phenotype. Cell 55: 519–529PubMedCrossRefGoogle Scholar
  48. Ingraham HA, Flynn SE, Voss JW, Albert VR, Kapiloff MS, Wilson L, Rosenfeld MG (1990) The POU-specific domain of Pit-1 is essential for sequence-specific, high affinity DNA binding and DNA-dependent Pit-1-Pit-1 interactions. Cell 61: 1021–1033PubMedCrossRefGoogle Scholar
  49. Ingraham HA, Lala DS, Ikeda Y et al. (1994) The nuclear receptor steroidogenic factor 1 acts at multiple levels of the reproductive axis. Genes Dev 8: 2302–2312PubMedGoogle Scholar
  50. Irie Y, Tatsumi K, Ogawa M, Kamijo T, Preeyasombat C, Suprasongsin C, Amino N (1995) A novel E250X mutation of the PIT1 gene in a patient with combined pituitary hormone deficiency. Endocr J 42: 351–354PubMedGoogle Scholar
  51. Jacobson EM, Li P, Leon-del-Rio A, Rosenfeld MG, Aggarwal AK (1997) Structure of Pit-1 POU domain bound to DNA as a dimer: unexpected arrangement and flexibility. Genes Dev 11: 198–212PubMedGoogle Scholar
  52. Japon MA, Rubinstein M, Low MJ (1994) In situ hybridization analysis of anterior pituitary hormone gene expression during fetal mouse development. J Histochem Cytochem 42: 1117–1125PubMedGoogle Scholar
  53. Jean D, Bernier G, Gruss P (1999) Six6 (Optx2) is a novel murine Six3-related homeobox gene that demarcates the presumptive pituitary/hypothalamic axis and the ventral optic stalk. Mech Dev 84: 31–40PubMedCrossRefGoogle Scholar
  54. Kim SS, Kim Y, Shin YL, Kim GH, Kim TU, Yoo HW (2003) Clinical characteristics and molecular analysis of PIT1, PROP1, LHX3, and HESX1 in combined pituitary hormone deficiency patients with abnormal pituitary MR imaging. Horm Res 60: 277–283PubMedCrossRefGoogle Scholar
  55. Kioussi C, O’Connell S, St Onge L, Treier M, Gleiberman AS, Gruss P, Rosenfeld MG (1999) Pax6 is essential for establishing ventral-dorsal cell boundaries in pituitary gland development. Proc Natl Acad Sci USA 96: 14378–14382PubMedCrossRefGoogle Scholar
  56. Lamesch C, Neumann S, Pfaffle R, Kiess W, Paschke R (2002) Adrenocorticotrope deficiency with clinical evidence for late onset in combined pituitary hormone deficiency caused by a homozygous 301–302delAG mutation of the PROP1 gene. Pituitary 5: 163–168PubMedCrossRefGoogle Scholar
  57. Lamolet B, Pulichino AM, Lamonerie T, Gauthier Y, Brue T, Enjalbert A, Drouin J (2001) A pituitary cell-restricted T box factor, Tpit, activates POMC transcription in cooperation with Pitx homeoproteins. Cell 104: 849–859PubMedCrossRefGoogle Scholar
  58. Lamolet B, Poulin G, Chu K, Guillemot F, Tsai MJ, Drouin J (2004) Tpit-independent function of NeuroDl(BETA2) in pituitary corticotroph differentiation. Mol Endocrinol 18: 995–1003PubMedCrossRefGoogle Scholar
  59. Lamonerie T, Tremblay JJ, Lanctot C, Therrien M, Gauthier Y, Drouin J (1996) Ptxl, a bicoid-related homeo box transcription factor involved in transcription of the pro-opiomelanocortin gene. Genes Dev 10: 1284–1295PubMedGoogle Scholar
  60. Lanctot C, Gauthier Y, Drouin J (1999) Pituitary homeobox 1 (Ptxl) is differentially expressed during pituitary development. Endocrinology 140: 1416–1422PubMedCrossRefGoogle Scholar
  61. Laumonnier F, Ronce N, Hamel BC et al. (2002) Transcription factor SOX3 is involved in X-linked mental retardation with growth hormone deficiency. Am J Hum Genet 71: 1450–1455PubMedCrossRefGoogle Scholar
  62. Leppert GS, Yang JM, Sundin OH (1999) Sequence and location of SIX3, a homeobox gene expressed in the human eye. Ophthalmic Genet 20: 7–21PubMedCrossRefGoogle Scholar
  63. Li S, Crenshaw EB, III, Rawson EJ, Simmons DM, Swanson LW, Rosenfeld MG (1990) Dwarf locus mutants lacking three pituitary cell types result from mutations in the POU-domain gene pit-1. Nature 347: 528–533PubMedCrossRefGoogle Scholar
  64. Li X, Perissi V, Liu F, Rose DW, Rosenfeld MG (2002) Tissue-specific regulation of retinal and pituitary precursor cell proliferation. Science 297: 1180–1183PubMedGoogle Scholar
  65. Lin SC, Li S, Drolet DW, Rosenfeld MG (1994) Pituitary ontogeny of the Snell dwarf mouse reveals Pit-1-independent and Pit-1-dependent origins of the thyrotrope. Development 120: 515–522PubMedGoogle Scholar
  66. Machinis K, Pantel J, Netchine I et al. (2001) Syndromic short stature in patients with a germline mutation in the LIM homeobox LHX4. Am J Hum Genet 69: 961–968PubMedCrossRefGoogle Scholar
  67. Magalhaes AC, Uehara KC, Iezzi D et al. (1995) MRI of congenital pituitary insufficiency. Rev Hosp Clin Fac Med Sao Paulo 50: 182–184PubMedGoogle Scholar
  68. Mangalam HJ, Albert VR, Ingraham HA et al. (1989) A pituitary POU domain protein, Pit-1, activates both growth hormone and prolactin promoters transcriptionally. Genes Dev 3: 946–958PubMedGoogle Scholar
  69. Mendonca BB, Osorio MG, Latronico AC, Estefan V, Lo LS, Arnhold IJ (1999) Longitudinal hormonal and pituitary imaging changes in two females with combined pituitary hormone deficiency due to deletion of A301,G302 in the PROP1 gene. J Clin Endocrinol Metab 84: 942–945PubMedCrossRefGoogle Scholar
  70. Mody S, Brown MR, Parks JS (2002) The spectrum of hypopituitarism caused by PROP1 mutations. Best Pract Res Clin Endocrinol Metab 16: 421–431PubMedCrossRefGoogle Scholar
  71. Nakamura Y, Usui T, Mizuta H et al. (1999) Characterization of Prophet of Pit-1 gene expression in normal pituitary and pituitary adenomas in humans. J Clin Endocrinol Metab 84: 1414–1419PubMedCrossRefGoogle Scholar
  72. Nanni L, Ming JE, Bocian M et al. (1999) The mutational spectrum of the sonic hedgehog gene in holoprosencephaly: SHH mutations cause a significant proportion of autosomal dominant holoprosencephaly. Hum Mol Genet 8: 2479–2488PubMedCrossRefGoogle Scholar
  73. Netchine I, Talon P, Dastot F, Vitaux F, Goossens M, Amselem S (1998) Extensive phenotypic analysis of a family with growth hormone (GH) deficiency caused by a mutation in the GH-releasing hormone receptor gene. J Clin Endocrinol Metab 83: 432–436PubMedCrossRefGoogle Scholar
  74. Netchine I, Sobrier ML, Krude H et al. (2000) Mutations in LHX3 result in a new syndrome revealed by combined pituitary hormone deficiency. Nat Genet 25: 182–186PubMedCrossRefGoogle Scholar
  75. Ohta K, Nobukuni Y, Mitsubuchi H et al. (1992 a) Mutations in the Pit-1 gene in children with combined pituitary hormone deficiency. Biochem Biophys Res Commun 189: 851–855PubMedCrossRefGoogle Scholar
  76. Ohta K, Nobukuni Y, Mitsubuchi H et al. (1992 b) Characterization of the gene encoding human pituitary-specific transcription factor, Pit-1. Gene 122: 387–388PubMedCrossRefGoogle Scholar
  77. Oliver G, Mailhos A, Wehr R, Copeland NG, Jenkins NA, Gruss P (1995) Six3, a murine homologue of the sine oculis gene, demarcates the most anterior border of the developing neural plate and is expressed during eye development. Development 121: 4045–4055PubMedGoogle Scholar
  78. Olson LE, Dasen JS, Ju BG, Tollkuhn J, Rosenfeld MG (2003) Paired-like repression/activation in pituitary development. Recent Prog Horm Res 58: 249–261PubMedCrossRefGoogle Scholar
  79. Ooi GT, Tawadros N, Escalona RM (2004) Pituitary cell lines and their endocrine applications. Mol Cell Endocrinol 228: 1–21PubMedCrossRefGoogle Scholar
  80. Paracchini R, Giordano M, Corrias A et al. (2003) Two new PROP1 gene mutations responsible for compound pituitary hormone deficiency. Clin Genet 64: 142–147PubMedCrossRefGoogle Scholar
  81. Park JK, Ozata M, Chorich LP et al. (2004) Analysis of the PROP1 gene in a large cohort of patients with idiopathic hypogonadotropic hypogonadism. Clin Endocrinol (Oxf) 60: 147–149CrossRefGoogle Scholar
  82. Pellegrini-Bouiller I, Belicar P, Barlier A et al. (1996 a) A new mutation of the gene encoding the transcription factor Pit-1 is responsible for combined pituitary hormone deficiency. J Clin Endocrinol Metab 81: 2790–2796PubMedCrossRefGoogle Scholar
  83. Pellegrini-Bouiller I, Belicar P, Barlier A et al. (1996b) A new mutation of the gene encoding the transcription factor Pit-1 is responsible for combined pituitary hormone deficiency. J Clin Endocrinol Metab 81: 2790–2796PubMedCrossRefGoogle Scholar
  84. Pernasetti F, Milner RD, al Ashwal AA, de Zegher F, Chavez VM, Muller M, Martial JA (1998) Pro239Ser: a novel recessive mutation of the Pit-1 gene in seven Middle Eastern children with growth hormone, prolactin, and thyrotropin deficiency. J Clin Endocrinol Metab 83: 2079–2083PubMedCrossRefGoogle Scholar
  85. Petersen S, Rasch AC, Heyens M, Schulte HM (1998) Structure and regulation of the human growth hormone-releasing hormone receptor gene. Mol Endocrinol 12: 233–247CrossRefGoogle Scholar
  86. Petitou M, Duchaussoy P, Lederman I, Choay J, Sinay P, Jacquinet JC, Torri G (1986) Synthesis of heparin fragments. A chemical synthesis of the pentasaccharide O-(2-deoxy-2-sulfamido-6-O-sulfo-alpha-D-glucopyranosyl)-(l-4)-O-(beta-D-glucopyranosyluronic acid)-(l-4)-O-(2-deoxy-2-sulfamido-3,6-di-O-sulfo-alpha-D-glu copyranosyl)-(l-4)-O-(2-O-sulfo-alpha-L-idopyranosyluronic acid)-(l-4)-2-deoxy-2-sulfamido-6-O-sulfo-D-glucopyranose decasodium salt, a heparin fragment having high affinity for antithrombin III. Carbohydr Res 147: 221–236PubMedCrossRefGoogle Scholar
  87. Pfäffle RW, DiMattia GE, Parks JS et al. (1992) Mutation of the POU-specific domain of Pit-1 and hypopituitarism without pituitary hypoplasia. Science 257: 1118–1121PubMedGoogle Scholar
  88. Pfäffle RW, Parks JS, Brown MR, Heimann G (1993) Pit-1 and pituitary function. J Pediatr Endocrinol 6: 229–233PubMedGoogle Scholar
  89. Pfäffle RW, Kim C, Otten B et al. (1996) Pit-1: Clinical aspects. Horm Res 45: 25–28PubMedCrossRefGoogle Scholar
  90. Pfäffle RW, Martinez R, Kim C, Frisch H, Lebl J, Otten B, Heimann G (1997) GH and TSH deficiency. Exp Clin Endocrinol Diabetes 105 Suppl 4: 1–5Google Scholar
  91. Pulichino AM, Vallette-Kasic S, Couture C et al. (2003a) Human and mouse TPIT gene mutations cause early onset pituitary ACTH deficiency. Genes Dev 17: 711–716PubMedCrossRefGoogle Scholar
  92. Pulichino AM, Vallette-Kasic S, Tsai JP, Couture C, Gauthier Y, Drouin J (2003b) Tpit determines alternate fates during pituitary cell differentiation. Genes Dev 17: 738–747PubMedCrossRefGoogle Scholar
  93. Radovick S, Nations M, Du Y, Berg LA, Weintraub BD, Wondisford FE (1992) A mutation in the POU-homeodomain of Pit-1 responsible for combined pituitary hormone deficiency. Science 257: 1115–1118PubMedGoogle Scholar
  94. Rhodes SJ, Krones A, Nelson C, Rosenfeld MG (1996) Function of the conserved Pit-1 gene distal enhancer in progenitor and differentiated pituitary cells. Mol Cell Endocrinol 124: 163–172PubMedCrossRefGoogle Scholar
  95. Riepe FG, Partsch CJ, Blankenstein O, Monig H, Pfaffle RW, Sippell WG (2001) Longitudinal imaging reveals pituitary enlargement preceding hypoplasia in two brothers with combined pituitary hormone deficiency attributable to PROP1 mutation. J Clin Endocrinol Metab 86: 4353–4357PubMedCrossRefGoogle Scholar
  96. Rizzoti K, Brunelli S, Carmignac D, Thomas PQ, Robinson IC, Lovell-Badge R (2004) SOX3 is required during the formation of the hypothalamo-pituitary axis. Nat Genet 36: 247–255PubMedCrossRefGoogle Scholar
  97. Roessler E, Belloni E, Gaudenz K et al. (1996) Mutations in the human Sonic Hedgehog gene cause holoprosencephaly. Nat Genet 14: 357–360PubMedCrossRefGoogle Scholar
  98. Rosenbloom AL, Almonte AS, Brown MR, Fisher DA, Baumbach L, Parks JS (1999) Clinical and biochemical phenotype of familial anterior hypopituitarism from mutation of the PROP1 gene. J Clin Endocrinol Metab 84: 50–57PubMedCrossRefGoogle Scholar
  99. Rubenstein JL, Shimamura K, Martinez S, Puelles L (1998) Regionalization of the prosencephalic neural plate. Annu Rev Neurosci 21: 445–477PubMedCrossRefGoogle Scholar
  100. Saadi I, Semina EV, Amendt BA, Harris DJ, Murphy KP, Murray JC, Russo AF (2001) Identification of a dominant negative homeodomain mutation in Rieger syndrome. J Biol Chem 276: 23034–23041PubMedCrossRefGoogle Scholar
  101. Salemi S, Besson A, Eble A, Gallati S, Pfaffle RW, Mullis PE (2003) New N-terminal located mutation (Q4ter) within the POU1F1-gene (PIT-1) causes recessive combined pituitary hormone deficiency and variable phenotype. Growth Horm IGF Res 13: 264–268PubMedCrossRefGoogle Scholar
  102. Savage JJ, Yaden BC, Kiratipranon P, Rhodes SJ (2003) Transcriptional control during mammalian anterior pituitary development. Gene 319: 1–19PubMedCrossRefGoogle Scholar
  103. Sharma K, Sheng HZ, Lettieri K et al. (1998) LIM homeodomain factors Lhx3 and Lhx4 assign subtype identities for motor neurons. Cell 95: 817–828PubMedCrossRefGoogle Scholar
  104. Sheng HZ, Zhadanov AB, Mosinger B Jr et al. (1996) Specification of pituitary cell lineages by the LIM homeobox gene Lhx3. Science 272: 1004–1007PubMedGoogle Scholar
  105. Sheng HZ, Moriyama K, Yamashita T, Li H, Potter SS, Mahon KA, Westphal H (1997) Multistep control of pituitary organogenesis. Science 278: 1809–1812PubMedCrossRefGoogle Scholar
  106. Simmons DM, Voss JW, Ingraham HA, Holloway JM, Broide RS, Rosenfeld MG, Swanson LW (1990) Pituitary cell phenotypes involve cell-specific Pit-1 mRNA translation and synergistic interactions with other classes of transcription factors. Genes Dev 4: 695–711PubMedGoogle Scholar
  107. Sinclair AH, Berta P, Palmer MS et al. (1990) A gene from the human sex-determining region encodes a protein with homology to a conserved DNA-binding motif. Nature 346: 240–244PubMedCrossRefGoogle Scholar
  108. Sloop KW, Meier BC, Bridwell JL, Parker GE, Schiller AM, Rhodes SJ (1999) Differential activation of pituitary hormone genes by human Lhx3 isoforms with distinct DNA binding properties. Mol Endocrinol 13: 2212–2225PubMedCrossRefGoogle Scholar
  109. Sloop KW, Showalter AD, Kap-Herr C, Pettenati MJ, Rhodes SJ (2000) Analysis of the human LHX3 neuroendocrine transcription factor gene and mapping to the subtelomeric region of chromosome 9. Gene 245: 237–243PubMedCrossRefGoogle Scholar
  110. Sloop KW, Dwyer CJ, Rhodes SJ (2001a) An isoform-specific inhibitory domain regulates the LHX3 LIM homeodomain factor holoprotein and the production of a functional alternate translation form. J Biol Chem 276: 36311–36319PubMedCrossRefGoogle Scholar
  111. Sloop KW, Parker GE, Hanna KR, Wright HA, Rhodes SJ (2001b) LHX3 transcription factor mutations associated with combined pituitary hormone deficiency impair the activation of pituitary target genes. Gene 265: 61–69PubMedCrossRefGoogle Scholar
  112. Sornson MW, Wu W, Dasen JS et al. (1996) Pituitary lineage determination by the Prophet of Pit-1 homeodomain factor defective in Ames dwarfism. Nature 384: 327–333PubMedCrossRefGoogle Scholar
  113. Spieler D, Baumer N, Stebler J et al. (2004) Involvement of Pax6 and Otx2 in the forebrain-specific regulation of the vertebrate homeobox gene ANF/Hesxl. Dev Biol 269:567–579PubMedCrossRefGoogle Scholar
  114. Steinfelder HJ, Hauser P, Nakayama Y et al. (1991) Thyrotropin-releasing hormone regulation of human TSHB expression: role of a pituitary-specific transcription factor (Pit-1/GHF-1) and potential interaction with a thyroid hormone-inhibitory element. Proc Natl Acad Sci USA 88:3130–3134PubMedCrossRefGoogle Scholar
  115. Suh H, Gage PJ, Drouin J, Camper SA (2002) Pitx2 is required at multiple stages of pituitary organogenesis: pituitary primordium formation and cell specification. Development 129: 329–337PubMedGoogle Scholar
  116. Szeto DP, Ryan AK, O’Connell SM, Rosenfeld MG (1996) POTX: A PIT-1-interacting homeodomain factor expressed during anterior pituitary gland development. Proc Natl Acad Sci USA 93: 7706–7710PubMedCrossRefGoogle Scholar
  117. Szeto DP, Rodriguez-Esteban C, Ryan AK et al. (1999) Role of the Bicoid-related homeodomain factor Pitx1 in specifying hindlimb morphogenesis and pituitary development. Genes Dev 13: 484–494PubMedGoogle Scholar
  118. Takuma N, Sheng HZ, Furuta Y et al. (1998) Formation of Rathke’s pouch requires dual induction from the diencephalon. Development 125: 4835–4840PubMedGoogle Scholar
  119. Tatsumi K, Miyai K, Notomi T, Kaibe K, Amino N, Mizuno Y, Kohno H (1992) Cretinism with combined hormone deficiency caused by a mutation in the PIT1 gene. Nat Genet 1: 56–58PubMedCrossRefGoogle Scholar
  120. Teinturier C, Vallette S, Adamsbaum C, Bendaoud M, Brue T, Bougneres PF (2002) Pseudotumor of the pituitary due to PROP-1 deletion. J Pediatr Endocrinol Metab 15: 95–101PubMedGoogle Scholar
  121. Thomas PQ, Dattani MT, Brickman JM et al. (2001) Heterozygous HESX1 mutations associated with isolated congenital pituitary hypoplasia and septo-optic dysplasia. Hum Mol Genet 10: 39–45PubMedCrossRefGoogle Scholar
  122. Thorner MO, Vance ML, Horvath E, Kovacs K (1992) The anterior pituitary. In: Wilson JD, Foster DW (eds) Textbook of endocrinology, Saunders, Philadelphia, pp 201–310Google Scholar
  123. Treier M, Gleiberman AS, O’Connell SM, Szeto DP, McMahon JA, McMahon AP, Rosenfeld MG (1998) Multistep signaling requirements for pituitary organogenesis in vivo. Genes Dev 12: 1691–1704PubMedGoogle Scholar
  124. Treier M, O’Connell S, Gleiberman A et al. (2001) Hedgehog signaling is required for pituitary gland development. Development 128: 377–386PubMedGoogle Scholar
  125. Vallette-Kasic S, Barlier A, Teinturier C et al. (2001a) PROP1 gene screening in patients with multiple pituitary hormone deficiency reveals two sites of hypermutability and a high incidence of corticotroph deficiency. J Clin Endocrinol Metab 86: 4529–4535PubMedCrossRefGoogle Scholar
  126. Vallette-Kasic S, Pellegrini-Bouiller I, Sampieri F et al. (2001b) Combined pituitary hormone deficiency due to the F135 C human Pit-1 (pituitary-specific factor 1) gene mutation: functional and structural correlates. Mol Endocrinol 15:411–420PubMedCrossRefGoogle Scholar
  127. Voutetakis A, Argyropoulou M, Sertedaki A et al. (2004a) Pituitary magnetic resonance imaging in 15 patients with Prop 1 gene mutations: Pituitary enlargement may originate from the intermediate lobe. J Clin Endocrinol Metab 89: 2200–2206PubMedCrossRefGoogle Scholar
  128. Voutetakis A, Maniati-Christidi M, Kanaka-Gantenbein C et al. (2004b) Prolonged jaundice and hypothyroidism as the presenting symptoms in a neonate with a novel Prop 1 gene mutation (Q83X). Eur J Endocrinol 150: 257–264PubMedCrossRefGoogle Scholar
  129. Wallis DE, Roessler E, Hehr U et al. (1999) Mutations in the homeodomain of the human SIX3 gene cause holoprosencephaly. Nat Genet 22: 196–198PubMedCrossRefGoogle Scholar
  130. Watanabe YG (1982) Effects of brain and mesenchyme upon the cytogenesis of rat adenohypophysis in vitro. I. Differentiation of adrenocorticotropes. Cell Tissue Res 227: 257–266PubMedCrossRefGoogle Scholar
  131. Watkins-Chow DE, Camper SA (1998) How many homeobox genes does it take to make a pituitary gland? Trends Genet 14: 284–290PubMedCrossRefGoogle Scholar
  132. Weiss J, Meeks JJ, Hurley L, Raverot G, Frassetto A, Jameson JL (2003) Sox3 is required for gonadal function, but not sex determination, in males and females. Mol Cell Biol 23: 8084–8091PubMedCrossRefGoogle Scholar
  133. Wilson DS, Guenther B, Desplan C, Kuriyan J (1995) High resolution crystal structure of a paired (Pax) class cooperative homeodomain dimer on DNA. Cell 82: 709–719PubMedCrossRefGoogle Scholar
  134. Wood HB, Episkopou V (1999) Comparative expression of the mouse Sox1, Sox2 and Sox3 genes from pre-gastrulation to early somite stages. Mech Dev 86: 197–201PubMedCrossRefGoogle Scholar
  135. Wu W, Cogan JD, Pfaffle RW et al. (1998) Mutations in PROP1 cause familial combined pituitary hormone deficiency. Nat Genet 18: 147–149PubMedCrossRefGoogle Scholar
  136. Yamashita T, Moriyama K, Sheng HZ, Westphal H (1997) Lhx4, a LIM homeobox gene. Genomics 44: 144–146PubMedCrossRefGoogle Scholar
  137. Zegher F de, Pernasetti F, Vanhole C, Devlieger H, Van den B G, Martial JA (1995) The prenatal role of thyroid hormone evidenced by fetomaternal Pit-1 deficiency. J Clin Endocrinol Metab 80: 3127–3130PubMedCrossRefGoogle Scholar
  138. Zhadanov AB, Bertuzzi S, Taira M, Dawid IB, Westphal H (1995) Expression pattern of the murine LIM class homeobox gene Lhx3 in subsets of neural and neuroendocrine tissues. Dev Dyn 202: 354–364PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Roland Pfäffle
    • 1
  • Johannes Weigel
    • 2
  • Antje Böttner
    • 3
  1. 1.UniversitätskinderklinikLeipzig
  2. 2.Klinik und Poliklinik für Kinder und JugendlicheUniversität LeipzigLeipzig
  3. 3.Klinik und Poliklinik für Kinder und JugendlicheUniversitätsklinikum LeipzigLeipzig

Personalised recommendations