Advertisement

Regulationsmechanismen des Renin-Angiotensin-Systems im kardiovaskulären System

  • Markus Clemenz
  • Ulrike Muscha Steckelings
  • Thomas Unger
Part of the Molekulare Medizin book series (MOLMED)

3.3.8 Schlussfolgerung

Das Renin-Angiotensin-System (RAS) spielt durch schnelle Effekte auf das Gefäßsystem und auf die Niere eine herausragende Rolle bei der hämodynamischen Homöostase. Darüber hinaus hat das RAS in verschiedenen Geweben auch chronische Effekte, die integraler Bestandteil vieler (patho-)physiologischer Mechanismen sind, welche bei der Regulation von Entzündungsvorgängen und zellulärem Wachstum, bei Fibrose, Hypertrophie oder Remodeling-Vorgängen involviert sind.

Eine chronische Aktivierung des RAS und in der Folge die oben genannten chronischen Effekte werden als ein Hauptgrund für die Entstehung fortschreitender Funktionsstörungen von Endorganen begriffen. Dies führte zur Entwicklung von Pharmaka, die in der Lage sind, die Wirkungen von Ang II zu hemmen und der entsprechenden Symptomatik entgegenzuwirken. Zu diesen Pharmaka gehören die seit langem in der kardiovaskulären Therapie etablierten ACE-Hemmer und seit einigen Jahren auch die hochselektiven AT1Rezeptor-Antagonisten.

Obwohl schon seit Jahrzehnten bekannt und therapeutisch genutzt, bietet das Renin-Angiotensin-System auch heute noch neue wissenschaftliche Erkenntnisse mit dem Potenzial für neue therapeutische Anwendungen. Die mögliche Nutzung des gewebeprotektiven Effekts des AT2-Rezeptors ist ein Beispiel, die Entdeckung des Reninrezeptors und seine pharmakologische Blockade ein weiteres. Und auch damit ist das letzte Kapitel in der Geschichte des Renin-Angiotensin-Systems sicher noch nicht geschrieben.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

3.3.9 Literatur

  1. Abdalla S, Lother H, el Massiery A, Quitterer U (2001) Increased AT1 receptor heterodimers in preeclampsia mediate enhanced angiotensin II responsiveness. Nat Med 7(9): 1003–1009PubMedGoogle Scholar
  2. Adachi Y, Saito Y, Kishimoto I et al. (2003) Angiotensin II type 2 receptor deficiency exacerbates heart failure and reduces survival after acute myocardial infarction in mice. Circulation 107(19): 2406–2408PubMedGoogle Scholar
  3. Ahmed A, Li XF, Shams M et al. (1995) Localization of the angiotensin II and its receptor subtype expression in human endometrium and identification of a novel high-affinity angiotensin II binding site. J Clin Invest 96(2): 848–857PubMedGoogle Scholar
  4. Akishita M, Ito M, Lehtonen JY, Daviet L, Dzau VJ, Horiuchi M (1999) Expression of the AT2 receptor developmentally programs extracellular signal-regulated kinase activity and influences fetal vascular growth. J Clin Invest 103(1): 63–71PubMedGoogle Scholar
  5. Allen AM, Zhuo J, Mendelsohn FA (2003) Localization and function of angiotensin AT1 receptors. Am J Hypertens 13(1 Pt 2): 31S–38SGoogle Scholar
  6. ALLHAT Officers and Coordinators for the ALLHAT Collaborative Research Group (2002) The Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial (ALLHAT). Major outcomes in high-risk hypertensive patients randomized to angiotensin-converting enzyme inhibitor or calcium channel blocker vs diuretic. JAMA 288(23): 2981–2997. Erratum in: JAMA (2003) 289(2): 178; JAMA (2004) 291(18): 2196Google Scholar
  7. Balt JC, Mathy MJ, Nap A, Pfaffendorf M, van Zwieten PA (2001) Effect of the AT1-receptor antagonists losartan, irbesartan, and telmisartan on angiotensin II-induced facilitation of sympathetic neurotransmission in the rat mesenteric artery. J Cardiovasc Pharmacol 38(1): 141–148PubMedGoogle Scholar
  8. Bartunek J, Weinberg EO, Tajima M, Rohrbach S, Lorell BH (1999) Angiotensin II type 2 receptor blockade amplifies the early signals of cardiac growth response to angioten-sin II in hypertrophied hearts. Circulation 99(1): 22–25PubMedGoogle Scholar
  9. Bataller R, Gines P, Nicolas JM et al. (2000) Angiotensin II induces contraction and proliferation of human hepatic stellate cells. Gastroenterology 118(6): 1149–1156PubMedGoogle Scholar
  10. Bataller R, Sancho-Bru P, Gines P et al. (2003) Activated human hepatic stellate cells express the renin-angiotensin system and synthesize angiotensin II. Gastroenterology 125(1): 117–125PubMedGoogle Scholar
  11. Bedecs K, Elbaz N, Sutren M et al. (1997) Angiotensin II type 2 receptors mediate inhibition of mitogenactivated protein kinase cascade and functional activation of SHP-1 tyrosine phosphatase. Biochem J 325: 449–454PubMedGoogle Scholar
  12. Benson SC, Pershadsingh HA, Ho CI et al. (2004) Identification of telmisartan as a unique angiotensin II receptor antagonist with selective PPARgamma-modulating activity. Hypertension 43(5): 993–1002PubMedGoogle Scholar
  13. Berry C, Brosnan MJ, Fennell J, Hamilton CA, Dominiczak AF (2001) Oxidative stress and vascular damage in hypertension. Curr Opin Nephrol Hypertens 10: 247–255PubMedGoogle Scholar
  14. Bhat GJ, Thekkumkara TJ, Thomas WG, Conrad KM, Baker KM (1994) Angiotensin II stimulates sis-inducing factor-like DNA binding activity. Evidence that the AT1A receptor activates transcription factor-Stat91 and/or a related protein. J Biol Chem 269(50): 31443–31449PubMedGoogle Scholar
  15. Blume A, Herdegen T, Unger T (1999) Angiotensin peptides and inducible transcription factors. J Mol Med 77(3): 339–357PubMedGoogle Scholar
  16. Böhm M, Lippoldt A, Wienen W, Ganten D, Bader M (1996) Reduction of cardiac hypertrophy in TGR(mREN2)27 by angiotensin II receptor blockade. Mol Cell Biochem 163/164: 217–221Google Scholar
  17. Bonventre JV (1992) Phospholipase A2 and signal transduction. J Am Soc Nephrol 3(2): 128–150PubMedGoogle Scholar
  18. Bottari SP, King IN, Reichlin S, Dahlstroem I, Lydon N, de Gasparo M (1992) The angiotensin AT2 receptor stimulates protein tyrosine phosphatase activity and mediates inhibition of particulate guanylate cyclase. Biochem Biophys Res Commun 183: 206–211PubMedGoogle Scholar
  19. Braun-Menéndez E, Page IH (1958) Suggested revision of nomenclature: Angiotensin. Science 127: 242Google Scholar
  20. Braun-Menéndez E, Fasciolo JC, Leloir LF, Muñoz JM (1940) The substance causing renal hypertension. J Physiol 98: 283–298Google Scholar
  21. Brenner BM, Cooper ME, de Zeeuw D et al. (2001) Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy. N Engl J Med 345(12): 861–869PubMedGoogle Scholar
  22. Brown NJ, Vaughan DE (2000) Prothrombotic effects of angiotensin. Adv Intern Med 45:419–429PubMedGoogle Scholar
  23. Brull D, Dhamrait S, Myerson S et al. (2001) Bradykinin B2BKR receptor polymorphism and left-ventricular growth response. Lancet 358(9288): 1155–1156PubMedGoogle Scholar
  24. Bucher M, Ittner KP, Hobbhahn J, Taeger K, Kurtz A (2001) Downregulation of angiotensin II type 1 receptors during sepsis. Hypertension 38(2): 177–182PubMedGoogle Scholar
  25. Busche S, Gallinat S, Bohle RM et al. (2000) Expression of angiotensin AT(1) and AT(2) receptors in adult rat cardiomyocytes after myocardial infarction. A single-cell reverse transcriptase-polymerase chain reaction study. Am J Pathol 157: 605–611PubMedGoogle Scholar
  26. Cambien F, Poirier O, Lecerf L et al. (1992) Deletion polymorphism in the gene for angiotensin-converting enzyme is a potent risk factor for myocardial infarction. Nature 359(6396): 641–644PubMedGoogle Scholar
  27. Campbell DJ, Kladis A, Valentijn AJ (1995) Effects of losartan on angiotensin and bradykinin peptides and angiotensin-converting enzyme. J Cardiovasc Pharmacol 26: 233–240PubMedGoogle Scholar
  28. Carey RM, Wang ZQ, Siragy HM (2000) Role of the angiotensin type 2 receptor in the regulation of blood pressure and renal function. Hypertension 35(1 Pt 2): 155–163PubMedGoogle Scholar
  29. Chamoux E, Breault L, Lehoux JG, Gallo-Payet N (1999) Involvement of the angiotensin II type 2 receptor in apoptosis during human fetal adrenal gland development. J Clin Endocrinol Metab 84(12): 4722–4730PubMedGoogle Scholar
  30. Chen HC, Bouchie JL, Perez AS et al. (2000) Role of the angiotensin AT(1) receptor in rat aortic and cardiac PAI-1 gene expression. Arterioscler Thromb Vasc Biol 20(10): 2297–2302PubMedGoogle Scholar
  31. Chung O, Stoll M, Unger T (1996) Physiologic and pharmacologic implications of AT1 versus AT2 receptors. Blood Press 5(Suppl 2): 47–52Google Scholar
  32. Chung O, Unger T (1998) Angiotensin II receptors in the kidney. Kidney Blood Press Res 21(2–4): 245–248PubMedGoogle Scholar
  33. Cohn JN, Tognoni G, Valsartan Heart Failure Trial Investigators (2001) A randomized trial of the angiotensin-receptor blocker valsartan in chronic heart failure. N Engl J Med 345(23): 1667–1675PubMedGoogle Scholar
  34. Collins R, Peto R, MacMahon S et al. (1990) Blood pressure, stroke, and coronary heart disease. Part 2, Short-term reductions in blood pressure: Overview of randomised drug trials in their epidemiological context. Lancet 335(8693): 827–838PubMedGoogle Scholar
  35. CONSENSUS Trial Study Group (1987) Effects of enalapril on mortality in severe congestive heart failure. Results of the Cooperative North Scandinavian Enalapril Survival Study (CONSENSUS). N Engl J Med 316(23): 1429–1435Google Scholar
  36. Cote F, Laflamme L, Payet MD, Gallo-Payet N (1998) Nitric oxide, a new second messenger involved in the action of angiotensin II on neuronal differentiation of NG108-15 cells. Endocr Res 24(3/4): 403–407PubMedGoogle Scholar
  37. Csikos T, Balmforth AJ, Grojec M, Gohlke P, Oilman J, Unger T (1998) Angiotensin AT2 receptor degradation is prevented by ligand occupation. Biochem Biophys Res Commun 243(1): 142–147PubMedGoogle Scholar
  38. Cusi D, Macciardi F, Barlassina C (2003) Angiotensinogen gene polymorphism, again? J Hypertens 21(10): 1815–1818PubMedGoogle Scholar
  39. Dahlof B, Devereux RB, Kjeldsen SE et al. (2002) Cardiovascular morbidity and mortality in the Losartan Intervention For Endpoint reduction in hypertension study (LIFE): A randomised trial against atenolol. Lancet 359(9311): 995–1003PubMedGoogle Scholar
  40. Danser AH, Schunkert H (2000) Renin-angiotensin system gene polymorphisms: Potential mechanisms for their association with cardiovascular diseases. Eur J Pharmacol 410(2/3): 303–316PubMedGoogle Scholar
  41. Devereux RB, Pickering TG, Harshfield GA et al. (1983) Left ventricular hypertrophy in patients with hypertension: Importance of blood pressure response to regularly recurring stress. Circulation 68: 470–476PubMedGoogle Scholar
  42. Dimmeler S, Rippmann V, Weiland U, Haendeler J, Zeiher AM (1997) Angiotensin II induces apoptosis of human endothelial cells. Protective effect of nitric oxide. Circ Res 81(6): 970–976PubMedGoogle Scholar
  43. Donoghue M, Hsieh F, Baronas E et al. (2000) A novel angiotensin-converting enzyme-related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1–9. Circ Res 87(5): E1–9PubMedGoogle Scholar
  44. Dudley DT, Summerfeldt RM (1993) Regulated expression of angiotensin II (AT2) binding sites in R3T3 cells. Regul Pept 44: 199–206PubMedGoogle Scholar
  45. Dudley DT, Hubbell SE, Summerfelt RM (1991) Characterization of angiotensin II (AT2) binding sites in R3T3 cells. Mol Pharmacol 40: 360–367PubMedGoogle Scholar
  46. Dulin NO, Alexander LD, Harwalkar S, Falck JR, Douglas JG (1998) Phospholipase A2-mediated activation of mitogen-activated protein kinase by angiotensin II. Proc Natl Acad Sci USA 95(14): 8098–8102PubMedGoogle Scholar
  47. Dzau VJ, Baxter JA, Cantin M et al. (1987) Report of the Joint Nomenclature and Standardization Committee of the International Society of Hypertension, American Heart Association and the World Health Organization. Hypertension 5: 507–511Google Scholar
  48. Eyries M, Agrapart M, Alonso A, Soubrier F (2002) Phorbol ester induction of angiotensin-converting enzyme transcription is mediated by Egr-1 and AP-1 in human endothelial cells via ERK1/2 pathway. Circ Res 91(10): 899–906PubMedGoogle Scholar
  49. Fischer JW, Stoll M, Hahn AW, Unger T (2001) Differential regulation of thrombospondin-1 and fibronectin by angiotensin II receptor subtypes in cultured endothelial cells. Cardiovasc Res 51(4): 784–791PubMedGoogle Scholar
  50. Fischer TA, Singh K, O’Hara DS, Kaye DM, Kelly RA (1998) Role of AT1 and AT2 receptors in regulation of MAPKs and MKP-1 by ANG II in adult cardiac myocytes. Am J Physiol 275(3 Pt 2): H906–916PubMedGoogle Scholar
  51. Fox KM (2003) European trial on reduction of cardiac events with Perindopril in stable coronary artery disease Investigators. Efficacy of perindopril in reduction of cardiovascular events among patients with stable coronary artery disease: Randomised, double-blind, placebo-controlled, multicentre trial (the EUROPA study). Lancet 362(9386): 782–788PubMedGoogle Scholar
  52. Freeman EJ, Ruehr ML, Dorman RV (1998) ANG II-induced translocation of cytosolic PLA2 to the nucleus in vascular smooth muscle cells. Am J Physiol 274(1 Pt 1): C282–288PubMedGoogle Scholar
  53. Gallinat S, Yu M, Dorst A, Unger T, Herdegen T (1998) Sciatic nerve transection evokes lasting up-regulation of angiotensin AT2 and AT1 receptor mRNA in adult rat dorsal root ganglia and sciatic nerves. Brain Res Mol Brain Res 57(1): 111–122PubMedGoogle Scholar
  54. Gallinat S, Busche S, Schutze S, Kronke M, Unger T (1999) AT2 receptor stimulation induces generation of ceramides in PC12 W cells. FEBS Lett 443: 75–79PubMedGoogle Scholar
  55. Gasparo M de, Catt KJ, Inagami T, Wright JW, Unger T (2000) International Union of Pharmacology. XXIII. The angiotensin II receptors. Pharmacol Rev 52: 415–472PubMedGoogle Scholar
  56. Gendron L, Cote F, Payet MD, Gallo-Payet N (2002) Nitric oxide and cyclic GMP are involved in angiotensin II AT(2) receptor effects on neurite outgrowth in NG108-15 cells. Neuroendocrinology 75(1): 70–81PubMedGoogle Scholar
  57. Gerstein HC (2002) Reduction of cardiovascular events and microvascular complications in diabetes with ACE inhibitor treatment: HOPE and MICRO-HOPE. Diabetes Metab Res Rev 18(Suppl 3): S82–85PubMedGoogle Scholar
  58. GISEN Group (Gruppo Italiano di Studi Epidemiologici in Nefrologia) (1997) Randomised placebo-controlled trial of effect of ramipril on decline in glomerular filtration rate and risk of terminal renal failure in proteinuric, non-diabetic nephropathy. Lancet 349: 1857–1863Google Scholar
  59. Goebel M, Steckelings MU, Unger T (2004) Was leisten ACE-Hemmer und AT1-Antagonisten jenseits der Blutdrucksenkung? J Hypertonie 8(2): 7–11Google Scholar
  60. Gohlke P, Linz W, Schoelkens BA, Wiemer G, Unger T (1996) Cardiac and vascular effects of long-term losartan treatment in stroke-prone spontaneously hypertensive rats. Hypertension 28: 397–402PubMedGoogle Scholar
  61. Gohlke P, Pees C, Unger T (1998) AT2 receptor stimulation increases aortic cyclic GMP in SHRSP by a kinin-dependent mechanism. Hypertension 31: 349–355PubMedGoogle Scholar
  62. Goldblatt H, Lynch J, Hanzal RF, Summerville WW (1934) Studies on experimental hypertension, I: The production of persistent elevation of systolic blood pressure by means of renal ischemia. J Exp Med 59: 347–379Google Scholar
  63. Goodfield NE, Newby DE, Ludlam CA, Flapan AD (1999) Effects of acute angiotensin II type 1 receptor antagonism and angiotensin converting enzyme inhibition on plasma fibrinolytic parameters in patients with heart failure. Circulation 99(23): 2983–2985PubMedGoogle Scholar
  64. Granger CB, McMurray JJ, Yusuf S et al. (2003) Effects of candesartan in patients with chronic heart failure and reduced left-ventricular systolic function intolerant to angiotensin-converting-enzyme inhibitors: The CHARM-A1-ternative trial. Lancet 362(9386): 772–776PubMedGoogle Scholar
  65. Guo DF, Chenier I, Tardif V, Orlov SN, Inagami T (2003) Type 1 angiotensin II receptor-associated protein ARAP1 binds and recycles the receptor to the plasma membrane. Biochem Biophys Res Commun 310(4): 1254–1265PubMedGoogle Scholar
  66. Gupta M, Miller BA, Ahsan N et al. (2000) Expression of angiotensin II type I receptor on erythroid progenitors of patients with post transplant erythrocytosis. Transplantation 70(8): 1188–1194PubMedGoogle Scholar
  67. Hannan RE, Gaspari TA, Davis EA, Widdop RE (2004) Differential regulation by AT(1) and AT(2) receptors of angiotensin II-stimulated cyclic GMP production in rat uterine artery and aorta. Br J Pharmacol 141(6): 1024–1031PubMedGoogle Scholar
  68. Heart Outcomes Prevention Evaluation Study Investigators (2000) Effects of ramipril on cardiovascular and microvascular outcomes in people with diabetes mellitus: Results of the HOPE study and MICRO-HOPE substudy. Lancet 355(9200): 253–259Google Scholar
  69. Hein L, Dzau VJ, Barsh GS (1995 a) Linkage mapping of the angiotensin II type 2 (AT2) receptor gene Agtr2 to the mouse X chromosome. Genomics 30: 369–371PubMedGoogle Scholar
  70. Hein L, Barsh GS, Pratt RE, Dzau VJ, Kobilka BK (1995 b) Behavioural and cardiovascular effects of disrupting the angiotensin II type-2 receptor in mice. Nature 377(6551): 744–747PubMedGoogle Scholar
  71. Hein L, Stevens ME, Barsh GS, Pratt RE, Kobilka BK, Dzau VJ (1997) Overexpression of angiotensin AT1 receptor transgene in the mouse myocardium produces a lethal phenotype associated with myocyte hyperplasia and heart block. Proc Natl Acad Sci USA 94(12): 6391–6396PubMedGoogle Scholar
  72. Höhle S, Blume A, Lebrun C, Culman J, Unger T (1995) Angiotensin receptors in the brain. Pharmacol Toxicol 5: 306–315Google Scholar
  73. Horiuchi M, Koike G, Yamada T, Mukoyama M, Nakajima M, Dzau VJ (1995) The growth dependent expression of angiotensin II type 2 receptor is regulated by transcription factor interferon regulatory factor-1 and-2. J Biol Chem 270: 20225–20230PubMedGoogle Scholar
  74. Horiuchi M, Hayashida W, Kambe T, Yamada T, Dzau VJ (1997) Angiotensin type 2 receptor dephosphorylates Bcl-2 by activating mitogen-activated protein kinase phosphatase-1 and induces apoptosis. J Biol Chem 272(30): 19022–19026PubMedGoogle Scholar
  75. Horiuchi M, Hayashida W, Akishita M et al. (2000) Interferon-gamma induces AT(2) receptor expression in fibroblasts by Jak/STAT pathway and interferon regulatory factor-1. Circ Res 86(2): 233–240PubMedGoogle Scholar
  76. Huang XC, Richards EM, Sumners C (1996) Mitogen activated protein kinases in rat brain neuronal cultures are activated by angiotensin II type 1 receptors and inhibited by angiotensin II type 2 receptors. J Biol Chem 271: 15635–15641PubMedGoogle Scholar
  77. Ichiki T, Inagami T (1995) Transcriptional regulation of the mouse angiotensin II type 2 receptor gene (Part 2). Hypertension 25: 720–725PubMedGoogle Scholar
  78. Ichiki T, Kambayashi Y, Inagami T (1995 a) Multiple growth factors modulate mRNA expression of angiotensin II type-2 receptor in R3T3 cells. Circ Res 77(6): 1070–1076PubMedGoogle Scholar
  79. Ichiki T, Labosky PA, Shiota C et al. (1995 b) Effects on blood pressure and exploratory behaviour of mice lacking angiotensin II type-2 receptor. Nature 377: 748–750PubMedGoogle Scholar
  80. Inada Y, Wada T, Ojima M et al. (1997) Protective effects of candesartan cilexetil (TCV-116) against stroke, kidney dysfunction and cardiac hypertrophy in stroke-prone spontaneously hypertensive rats. Clin Exp Hypertens 19: 1079–1099PubMedGoogle Scholar
  81. Ito M, Oliverio MI, Mannon PJ et al. (1995) Regulation of blood pressure by the type 1A angiotensin II receptor gene. Proc Natl Acad Sci USA 92(8): 3521–3525PubMedGoogle Scholar
  82. Iwai N, Inagami T (1992) Regulation of the expression of the rat angiotensin II receptor mRNA. Biochem Biophys Res Commun 182(3): 1094–1099PubMedGoogle Scholar
  83. Jacob HJ, Lindpaintner K, Lincoln SE et al. (1991) Genetic mapping of a gene causing hypertension in the stroke-prone spontaneously hypertensive rat. Cell 67(1): 213–224PubMedGoogle Scholar
  84. Jafar TH, Schmid CH, Landa M et al. (2001) Angiotensin-converting enzyme inhibitors and progression of nondiabetic renal disease. A meta-analysis of patient-level data. Ann Intern Med 135: 73–87PubMedGoogle Scholar
  85. Jeunemaitre X, Soubrier F, Kotelevtsev YV et al. (1992) Molecular basis of human hypertension: role of angiotensinogen. Cell 71(1): 169–180PubMedGoogle Scholar
  86. Johnston CI, Risvanis J (1997) Preclinical pharmacology of angiotensin II receptor antagonists: update and outstanding issues. Am J Hypertens 10: S306–310Google Scholar
  87. Julius S, Kjeldsen SE, Weber M et al. (2004) Outcomes in hypertensive patients at high cardiovascular risk treated with regimens based on valsartan or amlodipine: The VA-LUE randomised trial. Lancet 363(9426): 2022–2031PubMedGoogle Scholar
  88. Kambayashi Y, Bardhan S, Takahashi K et al. (1993 a) Molecular cloning of a novel angiotensin II receptor isoform involved in phosphotyrosine phosphatase inhibition. J Biol Chem 268: 24543–24546PubMedGoogle Scholar
  89. Kambayashi Y, Bardhan S, Inagami T (1993b) Peptide growth factors markedly decrease the ligand binding of angiotensin II type 2 receptor in rat cultured vascular smooth muscle cells. Biochem Biophys Res Commun 194: 478–482PubMedGoogle Scholar
  90. Kambayashi Y, Nagata K, Ichiki T, Inagami T (1996) Insulin and insulinlike growth factor-induced expression of angiotensin type 2 receptor in vascular smooth muscle cells. Eur J Biochem 239: 558–565PubMedGoogle Scholar
  91. Kang J, Posner P, Sumners C (1994) Angiotensin II type 2 receptor stimulation of neuronal K+ currents involves an inhibitory GTP binding protein. Am J Physiol 267(5 Pt 1): C1389–1397PubMedGoogle Scholar
  92. Kannel WB (1993) Hypertension as a risk factor for cardiac events: Epidemiologic results of long-term studies. J Cardiovasc Pharmacol 21(suppl 2): S27–37PubMedGoogle Scholar
  93. Kaschina E, Unger T (2003) Angiotensin AT1/AT2 receptors: Regulation, signalling and function. Blood Press 12(2): 70–88PubMedGoogle Scholar
  94. Kawai H, Stevens SY, Liang CS (2000) Renin-angiotensin system inhibition on noradrenergic nerve terminal function in pacing-induced heart failure. Am J Physiol Heart Circ Physiol 279(6): H3012–3019PubMedGoogle Scholar
  95. Kim S, Iwao H (2000) Molecular and cellular mechanisms of angiotensin II-mediated cardiovascular and renal diseases. Pharmacol Rev 52(1): 11–34PubMedGoogle Scholar
  96. Kjeldsen SE, Julius S, Brunner H et al. (2001) Characteristics of 15 314 hypertensive patients at high coronary risk. The VALUE trial. The Valsartan Antihypertensive Long-term Use Evaluation. Blood Press 10(2): 83–91PubMedGoogle Scholar
  97. Kohlstedt K, Brandes RP, Muller-Esterl W, Busse R, Fleming I (2004) Angiotensin-converting enzyme is involved in outside-in signaling in endothelial cells. Circ Res 94(1): 60–67PubMedGoogle Scholar
  98. Kohout TA, Rogers TB (1995) Angiotensin II activates the Na+/HCO3-symport through a phosphoinositide-independent mechanism in cardiac cells. J Biol Chem 269: 20432–20438Google Scholar
  99. Konstam MA, Patten RD, Thomas I et al. (2000) Effects of losartan and captopril on left ventricular volumes in elderly patients with heart failure: Results of the ELITE ventricular function substudy. Am Heart J 139(6): 1081–1087PubMedGoogle Scholar
  100. Laks MM, Morady F, Swan HJ (1973) Myocardial hypertrophy produced by chronic infusion of subhypertensive doses of norepinephrine in the dog. Chest 64: 75–78PubMedGoogle Scholar
  101. Laragh JH (1987) Two forms of vasoconstriction in systemic hypertension. Am J Cardiol 60(12): 82G–93GPubMedGoogle Scholar
  102. Lavoie JL, Sigmund CD (2003) Minireview: Overview of the renin-angiotensin system — an endocrine and paracrine system. Endocrinology 144(6): 2179–2183PubMedGoogle Scholar
  103. Lehtonen JY, Horiuchi M, Daviet L, Akishita M, Dzau VJ (1999) Activation of the de novo biosynthesis of sphyngolipids mediates angiotensin II type 2 receptor-induced apoptosis. J Biol Chem 274: 16901–16906PubMedGoogle Scholar
  104. Lewis EJ, Hunsicker LG, Bain RP, Rohde RD (1993) The effect of angiotensin-converting-enzyme inhibition on diabetic nephropathy. The Collaborative Study Group. N Engl J Med 329(20): 1456–1462. Erratum in: N Engl J Med (1993) 330(2): 152PubMedGoogle Scholar
  105. Lewis EJ, Hunsicker LG, Clarke WR et al. (2001) Renoprotective effect of the angiotensin-receptor antagonist irbesartan in patients with nephropathy due to type 2 diabetes. N Engl J Med 345(12): 851–860PubMedGoogle Scholar
  106. Li W, Ye Y, Fu B et al. (1998) Genetic deletion of AT2 receptor antagonizes angiotensin II-induced apoptosis in fibroblasts of the mouse embryo. Biochem Biophys Res Commun 250(1): 72–76PubMedGoogle Scholar
  107. Li X, Shams M, Zhu J et al. (1998) Cellular localization of AT1 receptor mRNA and protein in normal placenta and its reduced expression in intrauterine growth restriction. Angiotensin II stimulates the release of vasorelaxants. J Clin Invest 101(2): 442–454PubMedGoogle Scholar
  108. Lindholm LH, Ibsen H, Dahlof B et al. (2002) Cardiovascular morbidity and mortality in patients with diabetes in the Losartan Intervention For Endpoint reduction in hypertension study (LIFE): A randomised trial against atenolol. Lancet 359(9311): 1004–1010PubMedGoogle Scholar
  109. Llorens-Cortes C, Greenberg B, Huang H, Corvol P (1994) Tissular expression and regulation of type 1 angiotensin II receptor subtypes by quantitative reverse transcriptase-polymerase chain reaction analysis. Hypertension 24(5): 538–548PubMedGoogle Scholar
  110. Lonn E, Yusuf S, Dzavik V et al. (2001) Effects of ramipril and vitamin E on atherosclerosis: the study to evaluate carotid ultrasound changes in patients treated with ramipril and vitamin E (SECURE). Circulation 103(7): 919–925PubMedGoogle Scholar
  111. Lucius R, Gallinat S, Rosenstiel P, Herdegen T, Sievers J, Unger T (1998) The angiotensin II type 2 (AT2) receptor promotes axonal regeneration in the optic nerve of adult rats. J Exp Med 188(4): 661–670PubMedGoogle Scholar
  112. Makino I, Shibata K, Ohgami Y, Furuwara M, Furakawa T (1996) Transient upregulation of the AT2 receptor mRNA level after global ischemia in the rat brain. Neuropeptides 30: 596–601PubMedGoogle Scholar
  113. Malmqvist K, Kahan T, Edner M et al. (2001) Regression of left ventricular hypertrophy in human hypertension with irbesartan. J Hypertens 19(6): 1167–1176PubMedGoogle Scholar
  114. Mascareno E, Siddiqui MA (2000) The role of Jak/STAT signaling in heart tissue renin-angiotensin system. Mol Cell Biochem 212(1/2): 171–175PubMedGoogle Scholar
  115. Maschio G, Alberti D, Janin G et al. (1996) Effect of the angiotensin-converting-enzyme inhibitor benazepril on the progression of chronic renal insufficiency. The Angiotensin-Converting-Enzyme Inhibition in Progressive Renal Insufficiency Study Group. N Engl J Med 334: 939–945PubMedGoogle Scholar
  116. Mathew J, Sleight P, Lonn E et al. (2001) Reduction of cardiovascular risk by regression of electrocardiographic markers of left ventricular hypertrophy by the angiotensin-converting enzyme inhibitor ramipril. Circulation 104(14): 1615–1621PubMedGoogle Scholar
  117. Matsubara H, Sugaya T, Murasawa S et al. (1998) Tissue-specific expression of human angiotensin II AT1 and AT2 receptors and cellular localization of subtype mRNAs in adult human renal cortex using in situ hybridization. Nephron 80(1): 25–34PubMedGoogle Scholar
  118. Matsumoto T, Ozono R, Oshima T, Matsuura H, Sueda T, Kajiyama G, Kambe M (2000) Type 2 angiotensin II receptor is downregulated in cardiomyocytes of patients with heart failure. Cardiovasc Res 46(1): 73–81PubMedGoogle Scholar
  119. McKelvie RS, Yusuf S, Pericak D et al. (1999) Comparison of candesartan, enalapril, and their combination in congestive heart failure: Randomized evaluation of strategies for left ventricular dysfunction (RESOLVD) pilot study. The RESOLVD Pilot Study Investigators. Circulation 100(10): 1056–1064PubMedGoogle Scholar
  120. McMurray JJ, Ostergren J, Swedberg K et al. (2003) Effects of candesartan in patients with chronic heart failure and reduced left-ventricular systolic function taking angiotensin-converting-enzyme inhibitors: The CHARM-Added trial. Lancet 362(9386): 767–771PubMedGoogle Scholar
  121. Meffert S, Stoll M, Steckelings UM, Bottari SP, Unger T (1996) The angiotensin II AT2 receptor inhibits proliferation and promotes differentiation in PC12 W cells. Mol Cell Endocrinol 122(1): 59–67PubMedGoogle Scholar
  122. Miura S, Karnik SS (2000) Ligand-independent signals from angiotensin II type 2 receptor induce apoptosis. Embo J 19(15): 4026–4035PubMedGoogle Scholar
  123. Miyazaki Y, Ichikawa I (2001) Role of the angiotensin receptor in the development of the mammalian kidney and urinary tract. Comp Biochem Physiol A Mol Integr Physiol 128(1): 89–97PubMedGoogle Scholar
  124. Montani JP, Van Vliet BN (2004) General Physiology and Pathophysiology of the Renin-Angiotensin System. In: Unger T, Schölkens BA (eds) Angiotensin, Vol 1 (Handbook of experimental pharmacology, Vol 163/I). Springer, Berlin Heidelberg New York, pp 4–7Google Scholar
  125. Mukoyama M, Kakajima M, Horiuchi M, Sasamura H, Pratt RE, Dzau VJ (1993) Expression cloning of type 2 angiotensin II receptor reveals a unique class of seven trans-membrane receptors. J Biol Chem 268: 24539–24542PubMedGoogle Scholar
  126. Nakajima M, Hutchinson HG, Fujinaga M et al. (1995) The angiotensin II type 2 (AT2) receptor antagonizes the growth effects of the AT1 receptor: Gain-of-function study using gene transfer. Proc Natl Acad Sci USA 92: 10663–10667PubMedGoogle Scholar
  127. Nakamura S, Nakamura I, Ma L, Vaughan DE, Fogo AB (2000) Plasminogen activator inhibitor-1 expression is regulated by the angiotensin type 1 receptor in vivo. Kidney Int 58(1): 251–259PubMedGoogle Scholar
  128. Nguyen G, Delarue F, Burckle C, Bouzhir L, Giller T, Sraer JD (2002) Pivotal role of the renin/prorenin receptor in angiotensin II production and cellular responses to renin. J Clin Invest 109(11): 1417–1427PubMedGoogle Scholar
  129. Nguyen G, Burckle C, Sraer JD (2003) The renin receptor: The facts, the promise and the hope. Curr Opin Nephrol Hypertens 12(1): 51–55PubMedGoogle Scholar
  130. Nio Y, Matsubara H, Murasawa S, Kanasaki M, Inada M (1995) Regulation of gene transcription of angiotensin II receptor subtypes in myocardial infarction. J Clin Invest 95: 46–54PubMedGoogle Scholar
  131. Nishimura H (2004) Phylogeny and Ontogeny of the Renin-Angiotensin System. In: Unger T, Schölkens BA (eds) Angiotensin, Vol. 1 (Handbook of experimental pharmacology, Vol 163/I). Springer, Berlin Heidelberg New York, pp 31–34Google Scholar
  132. Nouet S, Nahmias C (2000) Signal transduction from the angiotensin AT2 receptor. Trends Endocrinol Metab 11: 1–6PubMedGoogle Scholar
  133. Nouet S, Amzallag N, Li JM et al. (2004) Trans-inactivation of receptor tyrosine kinases by novel angiotensin II AT2 receptor-interacting protein, ATIP. J Biol Chem 279(28): 28989–28997PubMedGoogle Scholar
  134. Oliverio MI, Coffman TM (1997) Angiotensin-II-receptors: New targets for antihypertensive therapy. Clin Cardiol 20(1): 3–6PubMedGoogle Scholar
  135. Oliverio MI, Best CF, Kim HS, Arendshorst WJ, Smithies O, Coffman TM (1997) Angiotensin II responses in AT1A receptor-deficient mice: A role for AT1B receptors in blood pressure regulation. Am J Physiol 272(4 Pt 2): F515–520PubMedGoogle Scholar
  136. Page IH, Helmer OM (1940) A crystalline pressor substance (angiotonin) resulting from the reaction between renin and renin activator. J Exp Med 71: 29–42Google Scholar
  137. Parving HH, Lehnert H, Brochner-Mortensen J, Gomis R, Andersen S, Arner P, Irbesartan in Patients with Type 2 Diabetes and Microalbuminuria Study Group (2001) The effect of irbesartan on the development of diabetic nephropathy in patients with type 2 diabetes. N Engl J Med 345(12): 870–878PubMedGoogle Scholar
  138. Pepine CJ, Cooper-DeHoff RM (2004) Cardiovascular therapies and risk for development of diabetes. J Am Coll Cardiol 44(3): 509–512PubMedGoogle Scholar
  139. Pfeffer MA, McMurray JJ, Velazquez EJ et al. (2003 a) Valsartan, captopril, or both in myocardial infarction complicated by heart failure, left ventricular dysfunction, or both. N Engl J Med 349(20): 1893–1906PubMedGoogle Scholar
  140. Pfeffer MA, Swedberg K, Granger CB et al. (2003 b) Effects of candesartan on mortality and morbidity in patients with chronic heart failure: The CHARM-Overall programme. Lancet 362(9386): 759–766PubMedGoogle Scholar
  141. Pueyo ME, N’Diaye N, Michel JB (1996) Angiotensin II-elicited signal transduction via AT1 receptors in endothelial cells. Br J Pharmacol 118(1): 79–84PubMedGoogle Scholar
  142. Rajagopalan S, Kurz S, Munzel T, Tarpey M, Freeman BA, Griendling KK, Harrison DG (1996) Angiotensin II-mediated hypertension in the rat increases vascular superoxide production via membrane NADH/NADPH oxidase activation. Contribution to alterations of vasomotor tone. J Clin Invest 97: 1916–1923PubMedGoogle Scholar
  143. Regitz-Zagrosek V, Unger T (2003) Angiotensin-Rezeptorantagonisten — Therapeutischer Einsatz bei Hypertonie und Herzinsuffizienz. UNI-MED, BremenGoogle Scholar
  144. Ruilope LM (2003) Recent developments in the treatment of type 2 diabetes mellitus. Cardiovasc Drugs Ther 17(2): 151–158PubMedGoogle Scholar
  145. Sadoshima J (2000) Cytokine actions of angiotensin II (editorial, comment). Circ Res 86(12): 1187–1189PubMedGoogle Scholar
  146. Sadoshima J, Xu Y, Slayter HS, Izumo S (1993) Autocrine release of angiotensin II mediates stretch-induced hyper-trophy of cardiac myocytes in vitro. Cell 75: 977–984PubMedGoogle Scholar
  147. Saito S, Hirata Y, Emori T, Imai T, Marumo F (1996) Angiotensin II activates endothelial constitutive nitric oxide synthase via AT1 receptors. Hypertens Res 19(3): 201–206PubMedGoogle Scholar
  148. Sanada S, Kitakaze M, Node K et al. (2001) Differential subcellular actions of ace inhibitors and at(1) receptor antagonists on cardiac remodeling induced by chronic inhibition of no synthesis in rats. Hypertension 38(3): 404–411PubMedGoogle Scholar
  149. Sasamura H, Shimizu-Hirota R, Nakaya H, Saruta T (2001) Effects of AT1 receptor antagonist on proteoglycan gene expression in hypertensive rats. Hypertens Res 24(2): 165–172PubMedGoogle Scholar
  150. Schmieder RE, Erdmann J, Delles C, Jacobi J, Fleck E, Hilgers K, Regitz-Zagrosek V (2001) Effect of the angiotensin II type 2-receptor gene (+1675 G/A) on left ventricular structure in humans. J Am Coll Cardiol 37(1): 175–182PubMedGoogle Scholar
  151. Schubert B, Fassnacht M, Beuschlein F, Zenkert S, Allolio B, Reincke M (2001) Angiotensin II type 1 receptor and ACTH receptor expression in human adrenocortical neoplasms. Clin Endocrinol (Oxf) 54(5): 627–632Google Scholar
  152. Schupp M, Janke J, Clasen R, Unger T, Kintscher U (2004) Angiotensin type 1 receptor blockers induce peroxisome proliferator-activated receptor-gamma activity. Circulation 109(17): 2054–2057PubMedGoogle Scholar
  153. Senbonmatsu T, Ichihara S, Price E Jr, Gaffney FA, Inagami T (2000) Evidence for angiotensin II type 2 receptor-mediated cardiac myocyte enlargement during in vivo pressure overload. J Clin Invest 106(2): R1–5PubMedGoogle Scholar
  154. Seyedi N, Xu X, Nasjletti A, Hintze TH (1995) Coronary kinin generation mediates nitric oxide release after angiotensin receptor stimulation. Hypertension 26(1): 164–170PubMedGoogle Scholar
  155. Shenoy UV, Richards EM, Huang XC, Sumners C (1999) Angiotensin II type 2 receptor-mediated apoptosis of cultured neurons from newborn rat brain. Endocrinology 140(1): 500–509PubMedGoogle Scholar
  156. Siragy HM, Carey RM (1999) Protective role of the angiotensin AT2 receptor in a renal wrap hypertension model. Hypertension 33(5): 1237–1242PubMedGoogle Scholar
  157. Siragy HM, Inagami T, Ichiki T, Carey RM (1999) Sustained hypersensitivity to angiotensin II and its mechanism in mice lacking the subtype-2 (AT2) angiotensin receptor. Proc Natl Acad Sci USA 96(11): 6506–6510PubMedGoogle Scholar
  158. Staessen JA, Wang JG, Thijs L (2001) Cardiovascular protection and blood pressure reduction: A meta-analysis. Lancet 358(9290): 1305–1315PubMedGoogle Scholar
  159. Steckelings UM, Wollschlager T, Peters J, Henz BM, Hermes B, Artuc M (2004) Human skin: source of and target organ for angiotensin II. Exp Dermatol 13(3): 148–154PubMedGoogle Scholar
  160. Steckelings UM, Henz BM, Wiehstutz S, Unger T, Artuc M (2005) Differential expression of angiotensin receptors in human cutaneous wound healing. Br J Dermatol 153(5): 887–893PubMedGoogle Scholar
  161. Stoll M, Unger T (2001) Angiotensin and its AT2 receptor: New insights into an old system. Regul Pept 99(2/3): 175–182PubMedGoogle Scholar
  162. Stoll M, Steckelings UM, Paul M, Bottari SP, Metzger R, Unger T (1995) The angiotensin AT2-receptor mediates inhibition of cell proliferation in coronary endothelial cells. J Clin Invest 95: 651–657PubMedGoogle Scholar
  163. Stoll M, Hahn AW, Jonas U, Zhao Y, Schieffer B, Fischer JW, Unger T (2002) Identification of a zinc finger homoeodomain enhancer protein after AT(2) receptor stimulation by differential mRNA display. Arterioscler Thromb Vasc Biol 22: 231–237PubMedGoogle Scholar
  164. Strawn WB, Chappell MC, Dean RH, Kivlighn S, Ferrario CM (2000) Inhibition of early atherogenesis by losartan in monkeys with diet-induced hypercholesterolemia. Circulation 101(13): 1586–1593PubMedGoogle Scholar
  165. Strehlow K, Wassmann S, Bohm M, Nickenig G (2000) Angiotensin AT1 receptor over-expression in hypercholesterolaemia. Ann Med 32(6): 386–389PubMedGoogle Scholar
  166. Stroth U, Meffert S, Gallinat S, Unger T (1998) Angiotensin II and NGF differentially influence microtubule proteins in PC12W cells: Role of the AT2 receptor. Brain Res Mol Brain Res 53(1/2): 187–195PubMedGoogle Scholar
  167. Stroth U, Blume A, Mielke K, Unger T (2000) Angiotensin AT(2) receptor stimulates ERK1 and ERK2 in quiescent but inhibits ERK in NGF-stimulated PC12W cells. Brain Res Mol Brain Res 78(1/2): 175–180PubMedGoogle Scholar
  168. Tanaka M, Ohnishi J, Ozawa Y et al. (1995) Characterization of angiotensin II receptor type 2 during differentiation and apoptosis of rat ovarian cultured granulosa cells. Biochem Biophys Res Commun 207(2): 593–598PubMedGoogle Scholar
  169. Tea BS, Der Sarkissian S, Touyz RM, Hamet P, deBlois D (2000) Proapoptotic and growth-inhibitory role of angiotensin II type 2 receptor in vascular smooth muscle cells of spontaneously hypertensive rats in vivo. Hypertension 35(5): 1069–1073PubMedGoogle Scholar
  170. Teo K, Yusuf S, Anderson C et al. (2004) Rationale, design, and baseline characteristics of 2 large, simple, randomized trials evaluating telmisartan, ramipril, and their combination in high-risk patients: The Ongoing Telmisartan Alone and in Combination with Ramipril Global Endpoint Trial/Telmisartan Randomized Assessment Study in ACE Intolerant Subjects with Cardiovascular Disease (ONTARGET/TRANSCEND) trials. Am Heart J 148(1): 52–61PubMedGoogle Scholar
  171. Thannickal VJ, Fanburg BL (2000) Reactive oxygen species in cell signaling. Am J Physiol Lung Cell Mol Physiol 279(6): L1005–1028PubMedGoogle Scholar
  172. Thorup C, Kornfeld M, Winaver JM, Goligorsky MS, Moore LC (1998) Angiotensin-II stimulates nitric oxide release in isolated perfused renal resistance arteries. Pflugers Arch 435(3): 432–434PubMedGoogle Scholar
  173. Tigerstedt R, Bergman PG (1898) Niere und Kreislauf. Skand Arch Physiol 8: 223–271Google Scholar
  174. Timmermans PB, Wong PC, Chiu AT et al. (1993) Angiotensin II receptors and angiotensin II receptor antagonists. Pharmacol Rev 45: 205–251PubMedGoogle Scholar
  175. Tipnis SR, Hooper NM, Hyde R, Karran E, Christie G, Turner AJ (2000) A human homolog of angiotensin-converting enzyme. Cloning and functional expression as a captopril-insensitive carboxypeptidase. J Biol Chem 275(43): 33238–33243PubMedGoogle Scholar
  176. Tokioka-Akagi T, Fujimori A, Shibasaki M, Inagaki O, Yanagisawa I (2001) Comparison of the angiotensin II type 1-receptor antagonist YM358 and the angiotensin-converting enzyme inhibitor enalapril in rats with cardiac volume overload. Jpn J Pharmacol 86(1): 79–85PubMedGoogle Scholar
  177. Tonnesen MG, Klempner MS, Austen KF, Wintroub BU (1982) Identification of a human neutrophil angiotension II-generating protease as cathepsin G. J Clin Invest 69(1): 25–30PubMedGoogle Scholar
  178. Touyz RM, Schiffrin EL (2000) Signal transduction mechanisms mediating the physiological and pathophysiological actions of angiotensin II in vascular smooth muscle cells. Pharmacol Rev 52(4): 639–672PubMedGoogle Scholar
  179. Trimarco B, Ricciardelli B, De Luca N et al. (1985) Participation of endogenous catecholamines in the regulation of left ventricular mass in progeny of hypertensive parents. Circulation 72: 38–46PubMedGoogle Scholar
  180. Tsukada K, Ishimitsu T, Teranishi M et al. (2002) Positive association of CYP11B2 gene polymorphism with genetic predisposition to essential hypertension. J Hum Hypertens 16(11): 789–793PubMedGoogle Scholar
  181. Tsutsumi K, Saavedra JM (1991) Characterization and development of angiotensin II receptor subtypes (AT1 and AT2) in rat brain. Am J Physiol 261: R209–216PubMedGoogle Scholar
  182. Tsutsumi Y, Matsubara H, Ohkubo N et al. (1998) Angiotensin II type 2 receptor is upregulated in human heart with interstitial fibrosis, and cardiac fibroblasts are the major cell type for its expression. Circ Res 83(10): 1035–1046PubMedGoogle Scholar
  183. Turnbull F, Blood Pressure Lowering Treatment Trialists’ Collaboration (2003) Effects of different blood-pressure-lowering regimens on major cardiovascular events: Results of prospectively-designed overviews of randomised trials. Lancet 362(9395): 1527–1535PubMedGoogle Scholar
  184. Unger T (1999) The angiotensin type 2 receptor: Variations on an enigmatic theme. J Hypertens 17 (12 Pt 2): 1775–1786PubMedGoogle Scholar
  185. Unger T (2000) Neurohormonal modulation in cardiovascular disease. Am Heart J 139 (1 Pt 2): S2–8PubMedGoogle Scholar
  186. Unger T (2002) The role of the rennin-angiotensin system in the development of cardiovascular disease. Am J Cardiol 89(2A): 3A–9A; discussion 10APubMedGoogle Scholar
  187. Unger T, Chung O, Csikos T et al. (1996) Angiotensin receptors. J Hypertens 14(Suppl 5): S95–103Google Scholar
  188. Unger T, Culman J, Gohlke P (1998) Angiotensin II receptor blockade and endorgan protection: pharmacological rationale and evidence. J Hypertens 16(Suppl 7): S3–9Google Scholar
  189. Viswanathan M, Oliveria AM de, Correa FMA, Saavedra JM (1994) Expression of novel-non-angiotensin II (125I-)CGP 42112 binding site in healing wounds of the rat brain. Brain Res 658: 265–270PubMedGoogle Scholar
  190. Warner GT, Perry CM (2002) Ramipril: A review of its use in the prevention of cardiovascular outcomes. Drugs 62(9): 1381–1405PubMedGoogle Scholar
  191. Weber MA, Julius S, Kjeldsen SE et al. (2004) Blood pressure dependent and independent effects of antihypertensive treatment on clinical events in the VALUE Trial. Lancet 363(9426): 2049–2051PubMedGoogle Scholar
  192. Wiemer G, Scholkens BA, Wagner A, Heitsch H, Linz W (1993) The possible role of angiotensin II subtype AT2 receptors in endothelial cells and isolated ischemic rat hearts. J Hypertens Suppl 11(Suppl 5): S234–235PubMedGoogle Scholar
  193. Williams AG, Rayson MP, Jubb M et al. (2000) The ACE gene and muscle performance. Nature 403(6770): 614PubMedGoogle Scholar
  194. Wruck CJ, Pufe T, Kusserow et al. (2004) Regulation of transport of the angiotensin AT2 receptor by a novel membrane-associated Golgi protein. Arterioscler Thromb Vasc Biol 25(1): 57–64PubMedGoogle Scholar
  195. Yahiro E, Ideishi M, Wang LX, Urata H, Kumagai K, Arakawa K, Saku K (2003) Reperfusion-induced arrhythmias are suppressed by inhibition of the angiotensin II type 1 receptor. Cardiology 99(2): 61–67PubMedGoogle Scholar
  196. Yamada T, Horiuchi M, Dzau VJ (1996) Angiotensin II type 2 receptor mediates programmed cell death. Proc Natl Acad Sci USA 93(1): 156–160PubMedGoogle Scholar
  197. Yusuf S, Sleight P, Pogue J, Bosch J, Davies R, Dagenais G (2000) Effects of an angiotensin-converting-enzyme inhibitor, ramipril, on cardiovascular events in high-risk patients. The Heart Outcomes Prevention Evaluation Study Investigators. N Engl J Med 342(3): 145–153PubMedGoogle Scholar
  198. Zhang J, Pratt RE (1996) The AT2 receptor selectively associates with Gialpha2 and Gialpha3 in the rat fetus. J Biol Chem 271(25): 15026–15033PubMedGoogle Scholar
  199. Zhao Y, Biermann T, Luther C, Unger T, Culman J, Gohlke P (2003) Contribution of bradykinin and nitric oxide to AT2 receptor-mediated differentiation in PC12 W cells. J Neurochem 85(3): 759–767PubMedGoogle Scholar
  200. Zhu YZ, Zhu YC, Li J, Schaefer H, Schmidt W, Yao T, Unger T (2000) Effects of losartan on hemodynamic parameters and angiotensin receptor mRNA levels of rat heart after myocardial infarction. JRAAS 1: 257–262PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Markus Clemenz
    • 1
  • Ulrike Muscha Steckelings
    • 1
  • Thomas Unger
    • 1
  1. 1.Center for Cardiovascular Research (CCR), Institut für Pharmakologie und Toxikologie, Campus Charité MitteCharité-Universitätsmedizin BerlinBerlin

Personalised recommendations