Kardiovaskuläres Remodeling

  • Johann Bauersachs
  • Georg Ertl
Part of the Molekulare Medizin book series (MOLMED)


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

3.1.6 Literatur

  1. Ashley EA, Sears CE, Bryant SM et al. (2002) Cardiac nitric oxide synthase 1 regulates basal and beta-adrenergic contractility in murine ventricular myocytes. Circulation 105: 3011–3016PubMedCrossRefGoogle Scholar
  2. Baker KM, Aceto JF (1990) Angiotensin II stimulation of protein synthesis and cell growth in chick heart cells. Am J Physiol 259: H610–618PubMedGoogle Scholar
  3. Barouch LA, Harrison RW, Skaf MW et al. (2002) Nitric oxide regulates the heart by spatial confinement of nitric oxide synthase isoforms. Nature 416: 337–339PubMedGoogle Scholar
  4. Barouch LA, Cappola TP, Harrison RW, Crone JK, Rodriguez ER, Burnett AL, Hare, JM (2003) Combined loss of neuronal and endothelial nitric oxide synthase causes premature mortality and age-related hypertrophic cardiac remodeling in mice. J Mol Cell Cardiol 35: 637–644PubMedCrossRefGoogle Scholar
  5. Bauersachs J, Bouloumié A, Fraccarollo D, Hu K, Busse R, Ertl G (1999) Endothelial dysfunction in chronic myocardial infarction despite increased vascular endothelial nitric oxide synthase and soluble guanylyl cyclase expression: role of enhanced vascular superoxide production. Circulation 100: 292–298PubMedGoogle Scholar
  6. Bauersachs J, Fleming I, Fraccarollo D, Busse R, Ertl G (2001) Prevention of endothelial dysfunction in heart failure by vitamin E. Attenuation of vascular superoxide anion formation and increase in soluble guanylyl cyclase expression. Cardiovasc Res 51: 344–350PubMedCrossRefGoogle Scholar
  7. Bauersachs J, Fraccarollo D, Schafer, A, Ertl, G (2002 a) Angiotensin-converting enzyme inhibition and endothelin antagonism for endothelial dysfunction in heart failure: Mono-or combination therapy. J Cardiovasc Pharmacol 40: 594–600PubMedCrossRefGoogle Scholar
  8. Bauersachs J, Heck M, Fraccarollo D, Hildemann S, Ertl G, Wehling M, Christ M (2002 b) Addition of spironolactone to ACE inhibition in heart failure improves endothelial vasomotor dysfunction: Role of vascular superoxide anion formation and endothelial NO synthase expression. J Am Coll Cardiol 39: 351–358PubMedCrossRefGoogle Scholar
  9. Bernstein KE (1998) The role of tissue angiotensin-converting enzyme (ACE): Studies of ACE mutant mice. Am J Cardiol 82: 5S–7SPubMedGoogle Scholar
  10. Bhargava A, Fullerton MJ, Myles K, Purdy TM, Funder JW, Pearce D Cole TJ (2001) The serum-and glucocorticoid-induced kinase is a physiological mediator of aldosterone action. Endocrinology 142: 1587–1594PubMedCrossRefGoogle Scholar
  11. Brilla CG, Zhou G, Matsubara L, Weber KT (1994) Collagen metabolism in cultured adult rat cardiac fibroblasts: Response to angiotensin II and aldosterone. J Mol Cell Cardiol 26: 809–820PubMedCrossRefGoogle Scholar
  12. Calderone A, Thaik CM, Takahashi N, Chang DL, Colucci WS (1998) Nitric oxide, atrial natriuretic peptide, and cyclic GMP inhibit the growth-promoting effects of nore-pinephrine in cardiac myocytes and fibroblasts. J Clin Invest 101: 812–818PubMedGoogle Scholar
  13. Champion HC, Skaf HW, Hare JM (2003) Role of nitric oxide in the pathophysiology of heart failure. Heart Failure Rev 8: 35–46CrossRefGoogle Scholar
  14. Chen J, Kuhlencordt PJ, Astern J, Gyurko R, Huang PL (2001) Hypertension does not account for the accelerated atherosclerosis and development of aneurysms in male apolipoprotein e/endothelial nitric oxide synthase double knockout mice. Circulation 104: 2391–2394PubMedGoogle Scholar
  15. Chen SY, Bhargava A, Mastroberardino L et al. (1999) Epithelial sodium channel regulated by aldosterone-induced protein sgk. Proc Natl Acad Sci USA 96: 2514–2519PubMedCrossRefGoogle Scholar
  16. Christ M, Kellner M, Wehling M, Lombes M, Fraccarollo D, Ertl G, Bauersachs J (2000) Modulation of cardiac aldosterone synthase and type I mineralocorticoid receptor expression in experimental chronic heart failure. Eur Heart J 21: 251Google Scholar
  17. Cittadini A, Monti MG, Isgaard J et al. (2003) Aldosterone receptor blockade improves left ventricular remodeling and increases ventricular fibrillation threshold in experimental heart failure. Cardiovasc Res 58: 555–564PubMedCrossRefGoogle Scholar
  18. Cohn JN, Ferrari R, Sharpe N (2000) Cardiac remodeling — concepts and clinical implications: A consensus paper from an international forum on cardiac remodeling. Behalf of an International Forum on Cardiac Remodeling. J Am Coll Cardiol 35: 569–582PubMedCrossRefGoogle Scholar
  19. Delcayre C, Silvestre JS (1999) Aldosterone and the heart: Towards a physiological function? Cardiovasc Res 43: 7–12PubMedCrossRefGoogle Scholar
  20. Delcayre C, Silvestre JS, Garnier A et al. (2000) Cardiac aldosterone production and ventricular remodeling. Kidney Int 57: 1346–13451PubMedCrossRefGoogle Scholar
  21. Delyani JA, Robinson EL, Rudolph AE (2001) Effect of a selective aldosterone receptor antagonist in myocardial infarction. Am J Physiol Heart Circ Physiol 281: H647–H654PubMedGoogle Scholar
  22. Drexler H, Lu W (1992) Endothelial dysfunction of hindquarter resistance vessels in experimental heart failure. Am J Physiol 262: H1640–H1645PubMedGoogle Scholar
  23. Dzau VJ, Bernstein K, Celermajer D et al. (2002) Pathophysiologic and therapeutic importance of tissue ACE: a consensus report. Cardiovasc Drugs Ther 16: 149–160PubMedCrossRefGoogle Scholar
  24. Ennezat PV, Malendowicz SL, Testa M, Colombo PC, Cohen-Solal A, Evans T, LeJemtel TH (2001) Physical training in patients with chronic heart failure enhances the expression of genes encoding antioxidative enzymes. J Am Coll Cardiol 38: 194–198PubMedCrossRefGoogle Scholar
  25. Ertl G, Schorb W, Gaudron P, Hu K (1996) Effect of the cardiac renin-angiotensin system on hypertrophy. Z Kardiol 85Suppl 6: 233–240PubMedGoogle Scholar
  26. Ertl G, Fraccarollo D, Gaudron P, Hu K, Laser M, Neubauer S, Schorb W (1998) Übergang von Myokardischämie in Herzinsuffizienz. Z Kardiol 87: 667–675PubMedCrossRefGoogle Scholar
  27. Falkenhahn M, Franke F, Bohle RM et al. (1995) Cellular distribution of angiotensin-converting enzyme after myocardial infarction. Hypertension 25: 219–226PubMedGoogle Scholar
  28. Farquharson CA, Struthers AD (2000) Spironolactone increases nitric oxide bioactivity, improves endothelial vasodilator dysfunction, and suppresses vascular angiotensin I/angiotensin II conversion in patients with chronic heart failure. Circulation 101: 594–597PubMedGoogle Scholar
  29. Fiebeler A, Schmidt F, Muller DN et al. (2001) Mineralocorticoid receptor affects AP-1 and nuclear factor-kappab activation in angiotensin II-induced cardiac injury. Hypertension 37: 787–793PubMedGoogle Scholar
  30. Förstermann U, Mulsch A, Bohme E, Busse R (1986) Stimulation of soluble guanylate cyclase by an acetylcholine-induced endothelium-derived factor from rabbit and canine arteries. Circ Res 58: 531–538PubMedGoogle Scholar
  31. Fraccarollo D, Hu K, Galuppo P, Gaudron P, Ertl G (1997) Chronic endothelin receptor blockade attenuates progressive ventricular dilatation and improves cardiac function in rats with myocardial infarction. Possible involvement of myocardial endothelin system in ventricular remodeling. Circulation 96: 3963–3973PubMedGoogle Scholar
  32. Fraccarollo D, Bauersachs J, Kellner M, Galuppo P, Ertl G (2002 a) Cardioprotection by long-term ET(A) receptor blockade and ACE inhibition in rats with congestive heart failure: Mono-versus combination therapy. Cardiovasc Res 54: 85–94PubMedCrossRefGoogle Scholar
  33. Fraccarollo D, Galuppo P, Bauersachs J, Ertl G (2002b) Collagen accumulation after myocardial infarction: Effects of ETA receptor blockade and implications for early remodeling. Cardiovasc Res 54: 559–567PubMedCrossRefGoogle Scholar
  34. Fraccarollo D, Schafer A, Hildemann S, Galuppo P, Ertl G, Bauersachs J (2003) Additive improvement of left ventricular remodeling and neurohormonal activation by aldosterone receptor blockade with eplerenone and ACE inhibition in rats with myocardial infarction. J Am Coll Cardiol 42: 1666–1673PubMedCrossRefGoogle Scholar
  35. Fujisaki H, Ito H, Hirata Y et al. (1995) Natriuretic peptides inhibit angiotensin II-induced proliferation of rat cardiac fibroblasts by blocking endothelin-1 gene expression. J Clin Invest 96: 1059–1065PubMedGoogle Scholar
  36. Fullerton MJ, Funder JW (1994) Aldosterone and cardiac fibrosis: In vitro studies. Cardiovasc Res 28: 1863–1867PubMedGoogle Scholar
  37. Gaudron P, Kugler I, Hu K, Bauer W, Eilles C, Ertl G (2001) Time course of cardiac structural, functional and electrical changes in asymptomatic patients after myocardial infarction: their interrelation and prognostic impact. J Am Coll Cardiol 38: 33–40PubMedCrossRefGoogle Scholar
  38. Gomez-Sanchez CE, Zhou MY, Cozza EN, Morita H, Foecking MF, Gomez-Sanchez EP (1997) Aldosterone biosynthesis in the rat brain. Endocrinology 138: 3369–3373PubMedCrossRefGoogle Scholar
  39. Griendling KK, Sorescu D, Ushio-Fukai M (2000) NAD(P)H oxidase: role in cardiovascular biology and disease. Circ Res 86: 494–501PubMedGoogle Scholar
  40. Hambrecht R, Fiehn E, Weigl C et al. (1998) Regular physical exercise corrects endothelial dysfunction and improves exercise capacity in patients with chronic heart failure. Circulation 98: 2709–2715PubMedGoogle Scholar
  41. Hambrecht R, Gielen S, Linke A et al. (2000) Effects of exercise training on left ventricular function and peripheral resistance in patients with chronic heart failure: A randomized trial. JAMA 283: 3095–3101PubMedCrossRefGoogle Scholar
  42. Hambrecht R, Adams V, Erbs S et al. (2003) Regular physical activity improves endothelial function in patients with coronary artery disease by increasing phosphorylation of endothelial nitric oxide synthase. Circulation 107:3152–3158PubMedCrossRefGoogle Scholar
  43. Harada E, Yoshimura M, Yasue H et al. (2001) Aldosterone induces angiotensin-converting-enzyme gene expression in cultured neonatal rat cardiocytes. Circulation 104: 137–139PubMedGoogle Scholar
  44. Hatakeyama H, Miyamori I, Fujita T, Takeda Y, Takeda R, Yamamoto H (1994) Vascular aldosterone. Biosynthesis and a link to angiotensin II-induced hypertrophy of vascular smooth muscle cells. J Biol Chem 269: 24316–24320PubMedGoogle Scholar
  45. Hayashi M, Tsutamoto T, Wada A et al. (2003) Immediate administration of mineralocorticoid receptor antagonist spironolactone prevents post-infarct left ventricular remodeling associated with suppression of a marker of myocardial collagen synthesis in patients with first anterior acute myocardial infarction. Circulation 107 2559–2565PubMedCrossRefGoogle Scholar
  46. Heymes C, Bendall JK, Ratajczak P, Cave AC, Samuel JL, Hasenfuss G, Shah AM (2003) Increased myocardial NADPH oxidase activity in human heart failure. J Am Coll Cardiol 41: 2164–2171PubMedCrossRefGoogle Scholar
  47. Hink U, Li H, Mollnau H et al. (2001) Mechanisms underlying endothelial dysfunction in diabetes mellitus. Circ Res 88: E14–22PubMedGoogle Scholar
  48. Hirsch AT, Talsness CE, Schunkert H, Paul M, Dzau VJ (1991) Tissue-specific activation of cardiac angiotensin converting enzyme in experimental heart failure. Circ Res 69: 475–482PubMedGoogle Scholar
  49. Hornig B, Arakawa N, Kohler C, Drexler H (1998) Vitamin C improves endothelial function of conduit arteries in patients with chronic heart failure. Circulation 97: 363–368PubMedGoogle Scholar
  50. Hornig B, Landmesser U, Kohler C et al. (2001) Comparative effect of ACE inhibition and angiotensin II type 1 receptor antagonism on bioavailability of nitric oxide in patients with coronary artery disease: role of superoxide dismutase. Circulation 103: 799–805PubMedGoogle Scholar
  51. Hoshijima M, Chien KR (2002) Mixed signals in heart failure: Cancer rules. J Clin Invest 109: 849–855PubMedCrossRefGoogle Scholar
  52. Hu K, Gaudron P, Schmidt TJ, Hoffmann KD, Ertl G (1998) Aggravation of left ventricular remodeling by a novel specific endothelin ETA antagonist EMD94246 in rats with myocardial infarction. J Cardiovasc Pharmacol 32:505–508PubMedCrossRefGoogle Scholar
  53. Huang A, Sun D, Shesely EG, Levee EM, Roller A, Kaley G (2002) Neuronal NOS-dependent dilation to flow in coronary arteries of male eNOS-KO mice. Am J Physiol Heart Circ Physiol 282: H429–436PubMedGoogle Scholar
  54. Huang PL, Huang Z, Mashimo H, Bloch KD, Moskowitz MA, Bevan JA, Fishman MC (1995) Hypertension in mice lacking the gene for endothelial nitric oxide synthase. Nature 377: 239–242PubMedCrossRefGoogle Scholar
  55. Iwanaga Y, Kihara Y, Hasegawa K et al. (1998) Cardiac endothelin-1 plays a critical role in the functional deterioration of left ventricles during the transition from compensatory hypertrophy to congestive heart failure in salt-sensitive hypertensive rats. Circulation 98: 2065–2073PubMedGoogle Scholar
  56. Iwanaga Y, Kihara Y, Inagaki K, Onozawa Y, Yoneda T, Kataoka K, Sasayama S (2001) Differential effects of angiotensin II versus endothelin-1 inhibitions in hypertrophic left ventricular myocardium during transition to heart failure. Circulation 104: 606–612PubMedGoogle Scholar
  57. Jessup MBS (2003) Medical progress: heart failure. N Engl J Med 348: 2007–2018PubMedCrossRefGoogle Scholar
  58. Jones SP, Greer JJ, Haperen R van, Duncker DJ, Crom R de, Lefer DJ (2003) Endothelial nitric oxide synthase overexpression attenuates congestive heart failure in mice. Proc Natl Acad Sci USA 100: 4891–4896PubMedCrossRefGoogle Scholar
  59. Kakinuma Y, Miyauchi T, Yuki K, Murakoshi N, Goto K, Yamaguchi I (2001) Novel molecular mechanism of increased myocardial endothelin-1 expression in the failing heart involving the transcriptional factor hypoxia-inducible factor-1alpha induced for impaired myocardial energy metabolism. Circulation 103: 2387–2394PubMedGoogle Scholar
  60. Kayes-Wandover KM, White PC (2000) Steroidogenic enzyme gene expression in the human heart. J Clin Endocrinol Metab 85: 2519–2525PubMedCrossRefGoogle Scholar
  61. Khan SA, Skaf MW, Harrison RW et al. (2003) Nitric oxide regulation of myocardial contractility and calcium cycling: Independent impact of neuronal and endothelial nitric oxide synthases. Circ Res 92: 1322–1329PubMedCrossRefGoogle Scholar
  62. Kohler E, Bertschin S, Woodtli T, Resink T, Erne P (1996) Does aldosterone-induced cardiac fibrosis involve direct effects on cardiac fibroblasts? J Vasc Res 33: 315–326PubMedCrossRefGoogle Scholar
  63. Kubo SH, Rector TS, Bank AJ, Williams RE, Heifetz SM (1991) Endothelium-dependent vasodilation is attenuated in patients with heart failure. Circulation 84: 1589–1596PubMedGoogle Scholar
  64. Kuhlencordt PJ, Chen J, Han F, Astern J, Huang PL (2001a) Genetic deficiency of inducible nitric oxide synthase reduces atherosclerosis and lowers plasma lipid peroxides in apolipoprotein E-knockout mice. Circulation 103:3099–3104PubMedGoogle Scholar
  65. Kuhlencordt PJ, Gyurko R, Han F et al. (2001b) Accelerated atherosclerosis, aortic aneurysm formation, and ischemic heart disease in apolipoprotein E/endothelial nitric oxide synthase double-knockout mice. Circulation 104: 448–454PubMedGoogle Scholar
  66. Kurihara Y, Kurihara H, Oda H, Maemura K, Nagai R, Ishikawa T, Yazaki Y (1995) Aortic arch malformations and ventricular septal defect in mice deficient in endothelin-1. J Clin Invest 96: 293–300PubMedGoogle Scholar
  67. Lacolley P, Safar ME, Lucet B, Ledudal K, Labat C, Benetos A (2001) Prevention of aortic and cardiac fibrosis by spironolactone in old normotensive rats. J Am Coll Cardiol 37: 662–667PubMedCrossRefGoogle Scholar
  68. Laser A, Ingwall JS, Tian R et al. (1996) Regional biochemical remodeling in non-infarcted tissue of rat heart post-myocardial infarction. J Mol Cell Cardiol 28: 1531–1538PubMedCrossRefGoogle Scholar
  69. Le Menuet D, Isnard R, Bichara M et al. (2001) Alteration of cardiac and renal functions in transgenic mice overexpressing human mineralocorticoid receptor. J Biol Chem 276: 38911–38920PubMedCrossRefGoogle Scholar
  70. Li H, Wallerath T, Munzel T, Forstermann U (2002) Regulation of endothelial-type NO synthase expression in pathophysiology and in response to drugs. Nitric Oxide 7: 149–164PubMedCrossRefGoogle Scholar
  71. Liu JL, Pliquett RU, Brewer E, Cornish KG, Shen YT, Zucker IH (2001) Chronic endothelin-1 blockade reduces sympathetic nerve activity in rabbits with heart failure. Am J Physiol Regul Integr Comp Physiol 280: R1906–1913PubMedGoogle Scholar
  72. Liu YH, Xu J, Yang XP, Yang F, Shesely E, Carretero OA (2002) Effect of ACE inhibitors and angiotensin II type 1 receptor antagonists on endothelial NO synthase knockout mice with heart failure. Hypertension 39: 375–381PubMedCrossRefGoogle Scholar
  73. Lombes M, Oblin ME, Gasc JM, Baulieu EE, Farman N, Bonvalet JP (1992) Immunohistochemical and biochemical evidence for a cardiovascular mineralocorticoid receptor. Circ Res 71: 503–510PubMedGoogle Scholar
  74. Lombes M, Alfaidy N, Eugene E, Lessana A, Farman N, Bonvalet JP (1995) Prerequisite for cardiac aldosterone action. Mineralocorticoid receptor and 11 beta-hydroxysteroid dehydrogenase in the human heart. Circulation 92:175–182PubMedGoogle Scholar
  75. Masaki T, Kimura S, Yanagisawa M, Goto K (1991) Molecular and cellular mechanism of endothelin regulation. Implications for vascular function. Circulation 84: 1457–1468PubMedGoogle Scholar
  76. Massion PB, Feron O, Dessy C, Balligand JL (2003) Nitric oxide and cardiac function. Ten years after, and continuing. Circ Res 93: 388–398PubMedCrossRefGoogle Scholar
  77. Miyauchi T, Sato R, Sakai S et al. (2000) Endothelin-1 and right-sided heart failure in rats: Effects of an endothelin receptor antagonist on the failing right ventricle. J Cardiovasc Pharmacol 36: S327–330PubMedGoogle Scholar
  78. Mizuno Y, Yoshimura M, Yasue H et al. (2001) Aldosterone production is activated in failing ventricle in humans. Circulation 103: 72–77PubMedGoogle Scholar
  79. Mizuno Y, Yasue H, Yoshimura M et al. (2002) Effects of perindopril on aldosterone production in the failing human heart. Am J Cardiol 89: 1197–1200PubMedCrossRefGoogle Scholar
  80. Monte F del, Williams E, Lebeche D et al. (2001) Improvement in survival and cardiac metabolism after gene transfer of sarcoplasmic reticulum Ca(2+)-ATPase in a rat model of heart failure. Circulation 104: 1424–1429PubMedGoogle Scholar
  81. Morishita T, Tsutsui M, Shimokawa H et al. (2002) Vasculo-protective roles of neuronal nitric oxide synthase. Faseb J 16: 1994–1996PubMedGoogle Scholar
  82. Mulder P, Elfertak L, Richard V et al. (1996) Peripheral artery structure and endothelial function in heart failure. Am J Physiol 271: H469–H477PubMedGoogle Scholar
  83. Mulder P, Richard V, Derumeaux G et al. (1997) Role of endogenous endothelin in chronic heart failure. Effect of long-term treatment with an endothelin antagonist on survival, hemodynamics, and cardiac remodeling. Circulation 96: 1976–1982PubMedGoogle Scholar
  84. Mulder P, Boujedaini H, Richard V, Henry JP, Renet S, Munter K Thuillez C (2002) Long-term survival and hemodynamics after endothelin-a receptor antagonism and angiotensin-converting enzyme inhibition in rats with chronic heart failure: Monotherapy versus combination therapy. Circulation 106: 1159–1164PubMedCrossRefGoogle Scholar
  85. Mungrue IN, Husain M, Stewart DJ (2002) The role of NOS in heart failure: Lessons from murine genetic models. Heart Failure Reviews 7Google Scholar
  86. Neubauer S, Frank M, Hu K et al. (1998) Changes of creatine kinase gene expression in rat heart post-myocardial infarction. J Mol Cell Cardiol 30: 803–810PubMedCrossRefGoogle Scholar
  87. Ng KK, Vane JR (1968) Fate of angiotensin I in the circulation. Nature 218: 144–150PubMedCrossRefGoogle Scholar
  88. Nguyen QT, Cernacek P, Calderoni A et al. (1998) Endothelin A receptor blockade causes adverse left ventricular remodeling but improves pulmonary artery pressure after infarction in the rat. Circulation 98: 2323–2330PubMedGoogle Scholar
  89. Nguyen QT, Cernacek P, Sirois MG, Calderone A, Lapointe N, Stewart DJ, Rouleau JL (2001) Long-term effects of nonselective endothelin A and B receptor antagonism in postinfarction rat: Importance of timing. Circulation 104:2075–2081PubMedGoogle Scholar
  90. Paulus WJ, Frantz S, Kelly RA (2001) Nitric oxide and cardiac contractility in human heart failure: Time for reappraisal. Circulation 104: 2260–2262PubMedGoogle Scholar
  91. Pfeffer MA, Braunwald E (1990) Ventricular remodeling after myocardial infarction. Experimental observations and clinical implications. Circulation 81: 1161–1172PubMedGoogle Scholar
  92. Pfeffer JM, Pfeffer MA, Braunwald E (1985) Influence of chronic captopril therapy on the infarcted left ventricle of the rat. Circ Res 57: 84–95PubMedGoogle Scholar
  93. Pfeffer MA, Braunwald E, Moye LA et al. (1992) Effect of captopril on mortality and morbidity in patients with left ventricular dysfunction after myocardial infarction. Results of the survival and ventricular enlargement trial. The SAVE Investigators. N Engl J Med 327: 669–677PubMedCrossRefGoogle Scholar
  94. Piacentini L, Gray M, Honbo NY, Chentoufi J, Bergman M, Karliner JS (2000) Endothelin-1 stimulates cardiac fibroblast proliferation through activation of protein kinase C. J Mol Cell Cardiol 32: 565–576PubMedCrossRefGoogle Scholar
  95. Piepoli MF, Davos C, Francis DP, Coats AJ (2004) Exercise training meta-analysis of trials in patients with chronic heart failure (ExTraMATCH). BMJ 328: 189PubMedCrossRefGoogle Scholar
  96. Pitt B (2003) Aldosterone blockade in patients with acute myocardial infarction. Circulation 107: 2525–2527PubMedCrossRefGoogle Scholar
  97. Pitt B, Remme W, Zannad F et al. (2003) Eplerenone, a selective aldosterone blocker, in patients with left ventricular dysfunction after myocardial infarction. N Engl J Med 348: 1309–1321PubMedCrossRefGoogle Scholar
  98. Ponicke K, Vogelsang M, Heinroth M et al. (1998) Endothelin receptors in the failing and nonfailing human heart. Circulation 97: 744–751PubMedGoogle Scholar
  99. Poon BY, Raharjo E, Patel KD, Tavener S, Kubes P (2003) Complexity of inducible nitric oxide synthase: cellular source determines benefit versus toxicity. Circulation 108: 1107–1112PubMedCrossRefGoogle Scholar
  100. Qi XL, Stewart DJ, Gosselin H et al. (1999) Improvement of endocardial and vascular endothelial function on myocardial performance by captopril treatment in postinfarct rat hearts. Circulation 100: 1338–1345PubMedGoogle Scholar
  101. Qi XL, Sia YT, Stewart DJ et al. (2001) Myocardial contractile responsiveness to endothelin-1 in the post-infarction rat model of heart failure: Effects of chronic quinapril. J Mol Cell Cardiol 33: 2023–2035PubMedCrossRefGoogle Scholar
  102. Qin W, Rudolph AE, Bond BR et al. (2003) Transgenic model of aldosterone-driven cardiac hypertrophy and heart failure. Circ Res 93 69–76PubMedCrossRefGoogle Scholar
  103. Robert V, Heymes C, Silvestre JS, Sabri A, Swynghedauw B, Delcayre C (1999) Angiotensin AT1 receptor subtype as a cardiac target of aldosterone: Role in aldosterone-salt-induced fibrosis. Hypertension 33: 981–986PubMedGoogle Scholar
  104. Rothermund L, Vetter R, Dieterich M et al. (2002) Endothelin-A receptor blockade prevents left ventricular hypertrophy and dysfunction in salt-sensitive experimental hypertension. Circulation 106: 2305–2308PubMedCrossRefGoogle Scholar
  105. Ruzicka M, Leenen FH (1995) Relevance of blockade of cardiac and circulatory angiotensin-converting enzyme for the prevention of volume overload-induced cardiac hypertrophy. Circulation 91: 16–19PubMedGoogle Scholar
  106. Sadoshima J, Xu Y, Slayter HS, Izumo S (1993) Autocrine release of angiotensin II mediates stretch-induced hypertrophy of cardiac myocytes in vitro. Cell 75: 977–984PubMedCrossRefGoogle Scholar
  107. Sakai S, Miyauchi T, Kobayashi M, Yamaguchi I, Goto K, Sugishita Y (1996 a) Inhibition of myocardial endothelin pathway improves long-term survival in heart failure. Nature 384: 353–355PubMedCrossRefGoogle Scholar
  108. Sakai S, Miyauchi T, Sakurai T et al. (1996 b) Endogenous endothelin-1 participates in the maintenance of cardiac function in rats with congestive heart failure. Marked increase in endothelin-1 production in the failing heart. Circulation 93: 1214–1222PubMedGoogle Scholar
  109. Sam F, Sawyer DB, Xie Z et al. (2001) Mice lacking inducible nitric oxide synthase have improved left ventricular contractile function and reduced apoptotic cell death late after myocardial infarction. Circ Res 89: 351–356PubMedGoogle Scholar
  110. Schäfer A, Fraccarollo D, Hildemann SK, Tas P, Ertl G, Bauersachs J (2003) Addition of the selective aldosterone receptor antagonist eplerenone to ACE inhibition in heart failure: effect on endothelial dysfunction. Cardiovasc Res 58: 655–662PubMedCrossRefGoogle Scholar
  111. Schäfer A, Fraccarollo D, Tas P, Schmidt I, Ertl G, Bauersachs J (2004) Endothelial dysfunction in congestive heart failure: ACE inhibition vs. angiotensin II antagonism. Eur J Heart Fail 6: 151–159PubMedCrossRefGoogle Scholar
  112. Scherrer-Crosbie M, Ullrich R, Bloch KD et al. (2001) Endothelial nitric oxide synthase limits left ventricular remodeling after myocardial infarction in mice. Circulation 104: 1286–1291PubMedGoogle Scholar
  113. Schirger JA, Chen HH, Jougasaki M et al. (2004) Endothelin A receptor antagonism in experimental congestive heart failure results in augmentation of the renin-angiotensin system and sustained sodium retention. Circulation 109:249–254PubMedCrossRefGoogle Scholar
  114. Schmidt BM, Oehmer S, Delles C et al. (2003) Rapid nongenomic effects of aldosterone on human forearm vasculature. Hypertension 42: 156–160PubMedCrossRefGoogle Scholar
  115. Schorb W, Booz GW, Dostal DE, Conrad KM, Chang KC, Baker KM (1993) Angiotensin II is mitogenic in neonatal rat cardiac fibroblasts. Circ Res 72: 1245–1254PubMedGoogle Scholar
  116. Schunkert H, Dzau VJ, Tang SS, Hirsch AT, Apstein CS, Lorell BH (1990) Increased rat cardiac angiotensin converting enzyme activity and mRNA expression in pressure overload left ventricular hypertrophy. Effects on coronary resistance, contractility, and relaxation. J Clin Invest 86:1913–1920PubMedCrossRefGoogle Scholar
  117. Sears CE, Bryant SM, Ashley EA et al. (2003) Cardiac neuronal nitric oxide synthase isoform regulates myocardial contraction and calcium handling. Circ Res 92: 52e–59CrossRefGoogle Scholar
  118. Sessa WC, Pritchard K, Seyedi N, Wang J, Hintze TH (1994) Chronic exercise in dogs increases coronary vascular nitric oxide production and endothelial cell nitric oxide synthase gene expression. Circ Res 74: 349–353PubMedGoogle Scholar
  119. Shimoyama H, Sabbah HN, Borzak S, Tanimura M, Shevlyagin S, Scicli G, Goldstein S (1996) Short-term hemodynamic effects of endothelin receptor blockade in dogs with chronic heart failure. Circulation 94: 779–784PubMedGoogle Scholar
  120. Sia YT, Lapointe N, Parker TG et al. (2002) Beneficial effects of long-term use of the antioxidant probucol in heart failure in the rat. Circulation 105: 2549–2555PubMedCrossRefGoogle Scholar
  121. Silvestre JS, Robert V, Aupetit-Faisant B et al. (1998) Myocardial production of aldosterone and corticosterone in the rat. Physiological regulation. J Biol Chem 273: 4883–4891PubMedCrossRefGoogle Scholar
  122. Silvestre JS, Heymes C, Oubenaissa A et al. (1999) Activation of cardiac aldosterone production in rat myocardial infarction: Effect of angiotensin II receptor blockade and role in cardiac fibrosis. Circulation 99: 2694–2701PubMedGoogle Scholar
  123. Slight SH, Ganjam VK, Gomez-Sanchez CE, Zhou MY, Weber KT (1996) High affinity NAD(+)-dependent 11 beta-hydroxysteroid dehydrogenase in the human heart. J Mol Cell Cardiol 28: 781–787PubMedCrossRefGoogle Scholar
  124. Smith CJ, Sun D, Hoegler C et al. (1996) Reduced gene expression of vascular endothelial NO synthase and cyclooxygenase-1 in heart failure. Circ Res 78: 58–64PubMedGoogle Scholar
  125. St John Sutton M, Pfeffer MA, Plappert T et al. (1994) Quantitative two-dimensional echocardiographic measurements are major predictors of adverse cardiovascular events after acute myocardial infarction. The protective effects of captopril. Circulation 89: 68–75PubMedGoogle Scholar
  126. Staufenberger S, Jacobs M, Brandstatter K, Hafner M, Regitz-Zagrosek V, Ertl G, Schorb W (2001) Angiotensin II type 1 receptor regulation and differential trophic effects on rat cardiac myofibroblasts after acute myocardial infarction. J Cell Physiol 187: 326–335PubMedCrossRefGoogle Scholar
  127. Stockand JD, Meszaros JG (2003) Aldosterone stimulates proliferation of cardiac fibroblasts by activating Ki-RasA and MAPK1/2 signaling. Am J Physiol Heart Circ Physiol 284: H176–84PubMedGoogle Scholar
  128. Struthers AD (2002) Impact of aldosterone on vascular pathophysiology. Congest Heart Fail 8: 18–22PubMedGoogle Scholar
  129. Sutton MG, Sharpe N (2000) Left ventricular remodeling after myocardial infarction: Pathophysiology and therapy. Circulation 101: 2981–2988PubMedGoogle Scholar
  130. Suzuki G, Morita H, Mishima T et al. (2002) Effects of long-term monotherapy with eplerenone, a novel aldosterone blocker, on progression of left ventricular dysfunction and remodeling in dogs with heart failure. Circulation 106: 2967–2972PubMedCrossRefGoogle Scholar
  131. Suzuki T, Tsuruda A, Katoh S, Kubodera A, Mitsui Y (1997) Purification of endothelin from a conditioned medium of cardiac fibroblastic cells using beating rate assay of myocytes cultured in a serum-free medium. J Mol Cell Cardiol 29: 2087–2093PubMedCrossRefGoogle Scholar
  132. Takeda Y, Miyamori I, Yoneda T et al. (1996) Regulation of aldosterone synthase in human vascular endothelial cells by angiotensin II and adrenocorticotropin. J Clin Endocrinol Metab 81: 2797–2800PubMedCrossRefGoogle Scholar
  133. Takeda Y, Miyamori I, Inaba S et al. (1997) Vascular aldosterone in genetically hypertensive rats. Hypertension 29:45–48PubMedGoogle Scholar
  134. Takeda Y, Yoneda T, Demura M, Miyamori I, Mabuchi H (2000) Cardiac aldosterone production in genetically hypertensive rats. Hypertension 36: 495–500PubMedGoogle Scholar
  135. Takeda Y, Yoneda T, Demura M, Usukura M, Mabuchi H (2002) Calcineurin inhibition attenuates mineralocorticoid-induced cardiac hypertrophy. Circulation 105: 677–679PubMedCrossRefGoogle Scholar
  136. Tsutamoto T, Wada A, Maeda K et al. (2001) Effect of spironolactone on plasma brain natriuretic peptide and left ventricular remodeling in patients with congestive heart failure. J Am Coll Cardiol 37: 1228–1233PubMedCrossRefGoogle Scholar
  137. Waller C, Hiller KH, Kahler E et al. (2001) Serial magnetic resonance imaging of microvascular remodeling in the infarcted rat heart. Circulation 103: 1564–1569PubMedGoogle Scholar
  138. Wang J, Yu L, Solenberg PJ, Gelbert L, Geringer CD, Steinberg MI (2002) Aldosterone stimulates angiotensin-converting enzyme expression and activity in rat neonatal cardiac myocytes. J Card Fail 8: 167–174PubMedCrossRefGoogle Scholar
  139. Weber KT (1997) Extracellular matrix remodeling in heart failure. A role for de novo angiotensin II generation. Circulation 96: 4065–4082PubMedGoogle Scholar
  140. Wei CM, Lerman A, Rodehoeffer RJ et al. (1994) Endothelin in human congestive heart failure. Circulation 89: 1580–1586PubMedGoogle Scholar
  141. Weinberg EO, Schoen FJ, George D et al. (1994) Angiotensin-converting enzyme inhibition prolongs survival and modifies the transition to heart failure in rats with pressure overload hypertrophy due to ascending aortic stenosis. Circulation 90: 1410–1422PubMedGoogle Scholar
  142. Wheeler MT, Allikian MJ, Heydemann A, Hadhazy M, Zarnegar S, McNally EM (2004) Smooth muscle cell-extrinsic vascular spasm arises from cardiomyocyte degeneration in sarcoglycan-deficient cardiomyopathy. J Clin Invest 113: 668–675PubMedCrossRefGoogle Scholar
  143. Wollert KC, Drexler H (2002) Regulation of cardiac remodeling by nitric oxide: focus on cardiac myocyte hypertrophy and apoptosis. Heart Failure Reviews 7Google Scholar
  144. Yamauchi-Kohno R, Miyauchi T, Hoshino T et al. (1999) Role of endothelin in deterioration of heart failure due to cardiomyopathy in hamsters: Increase in endothelin-1 production in the heart and beneficial effect of endothelin-A receptor antagonist on survival and cardiac function. Circulation 99: 2171–2176PubMedGoogle Scholar
  145. Yanagisawa M, Kurihara H, Kimura S et al. (1988) A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature 332: 411–415PubMedCrossRefGoogle Scholar
  146. Yang LL, Gros R, Kabir MG, Sadi A, Gotlieb AI, Husain M, Stewart DJ (2004) Conditional cardiac overexpression of endothelin-2 induces inflammation and dilated cardiomyopathy in mice. Circulation 109: 255–261PubMedCrossRefGoogle Scholar
  147. Yoshimura M, Nakamura S, Ito T et al. (2002) Expression of aldosterone synthase gene in failing human heart: Quantitative analysis using modified real-time polymerase chain reaction. J Clin Endocrinol Metab 87: 3936–3940PubMedCrossRefGoogle Scholar
  148. Young MJ, Clyne CD, Cole TJ, Funder JW (2001) Cardiac steroidogenesis in the normal and failing heart. J Clin Endocrinol Metab 86: 5121–5126PubMedCrossRefGoogle Scholar
  149. Zannad F, Alla F, Dousset B, Perez A, Pitt B (2000) Limitation of excessive extracellular matrix turnover may contribute to survival benefit of spironolactone therapy in patients with congestive heart failure: Insights from the randomized aldactone evaluation study (RALES). Rales Investigators. Circulation 102: 2700–2706Google Scholar
  150. Zelis R, Mason D, Braunwald E (1968) A comparison of the effects of vasodilator stimuli on peripheral resistance vessels in normal subjects and in patients with congestive heart failure. J Clin Invest 47: 960–970PubMedGoogle Scholar
  151. Zhou G, Kandala JC, Tyagi SC, Katwa LC, Weber KT (1996) Effects of angiotensin II and aldosterone on collagen gene expression and protein turnover in cardiac fibro-blasts. Mol Cell Biochem 154: 171–178PubMedCrossRefGoogle Scholar
  152. Zolk O, Quattek J, Sitzler G et al. (1999) Expression of endothelin-1, endothelin-converting enzyme, and endothelin receptors in chronic heart failure. Circulation 99:2118–2123PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Johann Bauersachs
    • 1
  • Georg Ertl
    • 1
  1. 1.Universitätsklinikum Würzburg, Medizinische Klinik und Poliklinik IBayerische Julius-Maximilians-UniversitätWürzburg

Personalised recommendations