Advertisement

Molekulare Regulation neuroendokriner Tumoren des Gastrointestinaltraktes

  • Patricia Grabowski
  • Andreas P. Sutter
  • Hans Scherübl
Part of the Molekulare Medizin book series (MOLMED)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

2.4.9 Literatur

  1. Ahmad T, Farnie G, Bundred NJ, Anderson NG (2004) The mitogenic action of insulin-like growth factor I in normal human mammary epithelial cells requires the epidermal growth factor receptor tyrosine kinase. J Biol Chem 279: 1713–1719PubMedGoogle Scholar
  2. Arnold R, Simon B, Wied M (2000) Treatment of neuroendocrine GEP tumours with somatostatin analogues: A review. Digestion 62Suppl 1: 84–91PubMedGoogle Scholar
  3. Arteaga CL (2002) Epidermal growth factor receptor dependence in human tumors: more than just expression? Oncologist 7Suppl 4: 31–39PubMedGoogle Scholar
  4. Baselga J (2002) Why the epidermal growth factor receptor? The rationale for cancer therapy. Oncologist 7 Suppl 4: 2–8PubMedGoogle Scholar
  5. Baselga J, Rischin D, Ranson M et al. (2002) Phase I safety, pharmacokinetic, and pharmacodynamic trial of ZD1839, a selective oral epidermal growth factor receptor tyrosine kinase inhibitor, in patients with five selected solid tumor types. J Clin Oncol 20: 4292–4302PubMedGoogle Scholar
  6. Baserga R (1995) The insulin-like growth factor I receptor: A key to tumor growth? Cancer Res 55: 249–252PubMedGoogle Scholar
  7. Blaker M, Weerth A de, Tometten M et al. (2002) Expression of the cholecystokinin 2-receptor in normal human thyroid gland and medullary thyroid carcinoma. Eur J Endocrinol 146: 89–96PubMedGoogle Scholar
  8. Bol DK, Kiguchi K, Gimenez-Conti I, Rupp T, DiGiovanni J (1997) Overexpression of insulin-like growth factor-1 induces hyperplasia, dermal abnormalities, and spontaneous tumor formation in transgenic mice. Oncogene 14: 1725–1734PubMedGoogle Scholar
  9. Bostwick DG, Roth KA, Barchas JD, Bensch KG (1984) Gastrin-releasing peptide immunoreactivity in intestinal carcinoids. Am J Clin Pathol 82: 428–431PubMedGoogle Scholar
  10. Boyd M, Cunningham SH, Brown MM, Mairs RJ, Wheldon TE (1999) Noradrenaline transporter gene transfer for radiation cell kill by 131I meta-iodobenzylguanidine. Gene Ther 6: 1147–1152PubMedGoogle Scholar
  11. Brazeau P, Vale W, Burgus R, Ling N, Butcher M, Rivier J, Guillemin R (1973) Hypothalamic polypeptide that inhibits the secretion of immunoreactive pituitary growth hormone. Science 179: 77–79PubMedGoogle Scholar
  12. Buchegger F, Bonvin F, Kosinski M et al. (2003) Radiolabeled neurotensin analog, 99mTc-NT-XI, evaluated in ductal pancreatic adenocarcinoma patients. J Nucl Med 44: 1649–1654PubMedGoogle Scholar
  13. Burke F, Smith PD, Crompton MR, Upton C, Balkwill FR (1999) Cytotoxic response of ovarian cancer cell lines to IFN-gamma is associated with sustained induction of IRF-1 and p21 mRNA. Br J Cancer 80: 1236–1244PubMedGoogle Scholar
  14. Calender A (2000) Molecular genetics of neuroendocrine tumors. Digestion 62 Suppl 1: 3–18PubMedGoogle Scholar
  15. Campiglio M, Locatelli A, Olgiati C et al. (2004) Inhibition of proliferation and induction of apoptosis in breast cancer cells by the epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor ZD1839 (‘Iressa’) is independent of EGFR expression level. J Cell Physiol 198: 259–268PubMedGoogle Scholar
  16. Canavese G, Azzoni C, Pizzi S et al. (2001) p27: A potential main inhibitor of cell proliferation in digestive endocrine tumors but not a marker of benign behavior. Hum Pathol 32: 1094–1101PubMedGoogle Scholar
  17. Cattaneo MG, Amoroso D, Gussoni G, Sanguini AM, Vicentini LM (1996) A somatostatin analogue inhibits MAP kinase activation and cell proliferation in human neuroblastoma and in human small cell lung carcinoma cell lines. FEBS Lett 397: 164–168PubMedGoogle Scholar
  18. Charland S, Boucher MJ, Houde M, Rivard N (2001) Somatostatin inhibits Akt phosphorylation and cell cycle entry, but not p42/p44 mitogen-activated protein (MAP) kinase activation in normal and tumoral pancreatic acinar cells. Endocrinology 142: 121–128PubMedGoogle Scholar
  19. Cheung NW, Boyages SC (1995) Somatostatin-14 and its analog octreotide exert a cytostatic effect on GH3 rat pituitary tumor cell proliferation via a transient G0/G1 cell cycle block. Endocrinology 136: 4174–4181PubMedGoogle Scholar
  20. Ciardiello F, Caputo R, Bianco R et al. (2000) Antitumor effect and potentiation of cytotoxic drugs activity in human cancer cells by ZD-1839 (Iressa), an epidermal growth factor receptor-selective tyrosine kinase inhibitor. Clin Cancer Res 6: 2053–2063PubMedGoogle Scholar
  21. Cohen EE, Rosen F, Stadler WM, Recant W, Stenson K, Huo D, Vokes EE (2003) Phase II trial of ZD1839 in recurrent or metastatic squamous cell carcinoma of the head and neck. J Clin Oncol 21: 1980–1987PubMedGoogle Scholar
  22. Cuttitta F, Carney DN, Mulshine J, Moody TW, Fedorko J, Fischler A, Minna JD (1985) Bombesin-like peptides can function as autocrine growth factors in human small-cell lung cancer. Nature 316: 823–826PubMedGoogle Scholar
  23. D’Adda T, Pizzi S, Azzoni C et al. (2002) Different patterns of 11q allelic losses in digestive endocrine tumors. Hum Pathol 33: 322–329PubMedGoogle Scholar
  24. Dacic S, Finkelstein SD, Baksh FK, Swalsky PA, Barnes LE, Yousem SA (2002) Small-cell neuroendocrine carcinoma displays unique profiles of tumor-suppressor gene loss in relationship to the primary site of formation. Hum Pathol 33: 927–932PubMedGoogle Scholar
  25. Detjen KM, Welzel M, Farwig K et al. (2000) Molecular mechanism of interferon alfa-mediated growth inhibition in human neuroendocrine tumor cells. Gastroenterology 118: 735–748PubMedGoogle Scholar
  26. Detjen KM, Farwig K, Welzel M, Wiedenmann B, Rosewicz S (2001) Interferon gamma inhibits growth of human pancreatic carcinoma cells via caspase-1 dependent induction of apoptosis. Gut 49: 251–262PubMedGoogle Scholar
  27. Ebert MP, Hoffmann J, Schneider-Stock R et al. (1998) Analysis of K-ras gene mutations in rare pancreatic and ampullary tumours. Eur J Gastroenterol Hepatol 10: 1025–1029PubMedGoogle Scholar
  28. Fernando NH, Hurwitz HI (2003) Inhibition of vascular endothelial growth factor in the treatment of colorectal cancer. Semin Oncol 30: 39–50PubMedGoogle Scholar
  29. Fujimori M, Ikeda S, Shimizu Y, Okajima M, Asahara T (2001) Accumulation of beta-catenin protein and mutations in exon 3 of beta-catenin gene in gastrointestinal carcinoid tumor. Cancer Res 61: 6656–6659PubMedGoogle Scholar
  30. Grabowski P, Griss S, Arnold CN et al. (2005) Nuclear survivin is a powerful novel prognostic marker in neuroendocrine gastroenteropancreatic tumor disease. Neuroendocrinology 81: 1–9PubMedGoogle Scholar
  31. Granberg D, Wilander E, Öberg K, Skogseid B (2000) Prognostic markers in patients with typical bronchial carcinoid tumors. J Clin Endocrinol Metab 85: 3425–3430PubMedGoogle Scholar
  32. Grander D, Sangfelt O, Erickson S (1997) How does interferon exert its cell growth inhibitory effect? Eur J Haematol 59: 129–135PubMedGoogle Scholar
  33. Hannon JP, Langenegger D, Waser B, Hoyer D, Reubi JC (2001) Lack of evidence for cross-competition between vasoactive intestinal peptide and somatostatin at their respective receptors. Eur J Pharmacol 426: 165–173PubMedGoogle Scholar
  34. Harmar AJ, Arimura A, Gozes I et al. (1998) International Union of Pharmacology. XVIII. Nomenclature of receptors for vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide. Pharmacol Rev 50: 265–270PubMedGoogle Scholar
  35. Hennig IM, Laissue JA, Horisberger U, Reubi JC (1995) Substance-P receptors in human primary neoplasms: Tumoral and vascular localization. Int J Cancer 61: 786–792PubMedGoogle Scholar
  36. Herbst RS (2002) ZD1839: Targeting the epidermal growth factor receptor in cancer therapy. Expert Opin Investig Drugs 11: 837–849PubMedGoogle Scholar
  37. Hessenius C, Bader M, Meinhold H, Bohmig M, Faiss S, Reubi JC, Wiedenmann B (2000) Vasoactive intestinal peptide receptor scintigraphy in patients with pancreatic adenocarcinomas or neuroendocrine tumours. Eur J Nucl Med 27: 1684–1693PubMedGoogle Scholar
  38. Hoegerle S, Altehoefer C, Ghanem N et al. (2001) Whole-body 18F dopa PET for detection of gastrointestinal carcinoid tumors. Radiology 220: 373–380PubMedGoogle Scholar
  39. Höpfner M, Sutter AP, Beck NI et al. (2002) Metaiodoben-zylguanidine induces growth inhibition and apoptosis of neuroendocrine gastrointestinal tumor cells. Int J Cancer 101: 210–216PubMedGoogle Scholar
  40. Höpfner M, Sutter AP, Gerst B, Zeitz M, Scherübl H (2003) A novel approach in the treatment of neuroendocrine gastrointestinal tumours. Targeting the epidermal growth factor receptor by gefitinib (ZD1839). Br J Cancer 89: 1766–177PubMedGoogle Scholar
  41. Höpfner M, Sutter AP, Hüther A, Ahnert-Hilger G, Scherübl H (2004) A novel approach in the treatment of neuroendocrine gastrointestinal tumor cells: Additive antiproliferative effects of interferon-gamma and meta-iodobenzyl guanidine. BMC Cancer 4: 23–37PubMedGoogle Scholar
  42. Hoshiya Y, Gupta V, Kawakubo H et al. (2003) Mullerian inhibiting substance promotes interferon gamma-induced gene expression and apoptosis in breast cancer cells. J Biol Chem 278: 51703–51712PubMedGoogle Scholar
  43. Huang SM, Li J, Armstrong EA, Harari PM (2002) Modulation of radiation response and tumor-induced angiogenesis after epidermal growth factor receptor inhibition by ZD1839 (Iressa). Cancer Res 62: 4300–4306PubMedGoogle Scholar
  44. Ishizuka J, Beauchamp RD, Townsend CM Jr, Greeley GH Jr, Thompson JC (1992) Receptor-mediated autocrine growth-stimulatory effect of 5-hydroxytryptamine on cultured human pancreatic carcinoid cells. J Cell Physiol 150: 1–7PubMedGoogle Scholar
  45. Ishizuka J, Beauchamp RD, Sato K, Townsend CM Jr, Thompson JC (1993) Novel action of transforming growth factor beta 1 in functioning human pancreatic carcinoid cells. J. Cell Physiol 156: 112–118PubMedGoogle Scholar
  46. Johnson LR (1988) Regulation of gastrointestinal mucosal growth. Physiol Rev 68: 456–502PubMedGoogle Scholar
  47. Kalvakolanu DV (2003) Alternate interferon signaling pathways. Pharmacol Ther 100: 1–29PubMedGoogle Scholar
  48. Kim KB, Choi YH, Kim IK et al. (2002) Potentiation of Fas and TRAIL-mediated apoptosis by IFN-gamma in A549 lung epithelial cells: Enhancement of caspase-8 expression through IFN-response element. Cytokine 20: 283–288PubMedGoogle Scholar
  49. Kominsky S, Johnson HM, Bryan G, Tanabe T, Hobeika AC, Subramaniam PS, Torres B (1998) IFNgamma inhibition of cell growth in glioblastomas correlates with increased levels of the cyclin dependent kinase inhibitor p21WAF1/CIP1. Oncogene 17: 2973–2979PubMedGoogle Scholar
  50. Konno H, Arai T, Tanaka T et al. (1998) Antitumor effect of a neutralizing antibody to vascular endothelial growth factor on liver metastasis of endocrine neoplasm. Jpn J Cancer Res 89: 933–939PubMedGoogle Scholar
  51. Kulaksiz H, Eissele R, Rossler D, Schulz S, Hollt V, Cetin Y, Arnold R (2002) Identification of somatostatin receptor subtypes 1, 2 A, 3, and 5 in neuroendocrine tumours with subtype specific antibodies. Gut 50: 52–60PubMedGoogle Scholar
  52. Kytola S, Hoog A, Nord B, Cedermark B, Frisk T, Larsson C, Kjellman M (2001) Comparative genomic hybridization identifies loss of 18q22-qter as an early and specific event in tumorigenesis of midgut carcinoids. Am J Pathol 158: 1803–1808PubMedGoogle Scholar
  53. Lahlou H, Saint-Laurent N, Esteve JP, Eychene A, Pradayrol L, Pyronnet S, Susini C (2003) sst2 Somatostatin receptor inhibits cell proliferation through Ras-, Rapl-, and B-Raf-dependent ERK2 activation. J Biol Chem 278: 39356–39371PubMedGoogle Scholar
  54. Lemmer K, Ahnert-Hilger G, Hopfner M et al. (2002) Expression of dopamine receptors and transporter in neuroendocrine gastrointestinal tumor cells. Life Sci 71: 667–678PubMedGoogle Scholar
  55. Leotlela PD, Jauch A, Holtgreve-Grez H, Thakker RV (2003) Genetics of neuroendocrine and carcinoid tumours. Endocr. Relat Cancer 10: 437–450PubMedGoogle Scholar
  56. Löllgen RM, Hessman O, Szabo E, Westin G, Akerstrom G (2001) Chromosome 18 deletions are common events in classical midgut carcinoid tumors. Int J Cancer 92: 812–815PubMedGoogle Scholar
  57. Lopez F, Esteve JP, Buscail L et al. (1997) The tyrosine phosphatase SHP-1 associates with the sst2 somatostatin receptor and is an essential component of sst2-mediated inhibitory growth signaling. J Biol Chem 272: 24448–24454PubMedGoogle Scholar
  58. Lubomierski N, Kersting M, Bert T et al. (2001) Tumor suppressor genes in the 9p21 gene cluster are selective targets of inactivation in neuroendocrine gastroenteropancreatic tumors. Cancer Res 61: 5905–5910PubMedGoogle Scholar
  59. Mendelsohn J (2002) Targeting the epidermal growth factor receptor for cancer therapy. J Clin Oncol 20: 1S–13SPubMedGoogle Scholar
  60. Meyers MB, Shen WP, Spengler BA et al. (1988) Increased expression of epidermal growth factor receptor in multi-drug-resistant human neuroblastoma cells. J Cell Biochem 38: 87–97PubMedGoogle Scholar
  61. Moody TW, Chan D, Fahrenkrug J, Jensen RT (2003) Neuropeptides as autocrine growth factors in cancer cells. Curr Pharm Des 9: 495–509PubMedGoogle Scholar
  62. Moore PS, Missiaglia E, Antonello D et al. (2001) Role of disease-causing genes in sporadic pancreatic endocrine tumors: MEN1 and VHL. Genes Chromosomes Cancer 32: 177–181PubMedGoogle Scholar
  63. Muscarella P, Melvin WS, Fisher WE et al. (1998) Genetic alterations in gastrinomas and nonfunctioning pancreatic neuroendocrine tumors: An analysis of p16/MTSl tumor suppressor gene inactivation. Cancer Res 58: 237–240PubMedGoogle Scholar
  64. Nagata S (1998) Fas-induced apoptosis. Intern Med 37: 179–181PubMedGoogle Scholar
  65. Nilsson O, Wangberg B, Kolby L, Schultz GS, Ahlman H (1995) Expression of transforming growth factor alpha and its receptor in human neuroendocrine tumours. Int J Cancer 60: 645–651PubMedGoogle Scholar
  66. Nilsson O, Wangberg B, Theodorsson E, Skottner A, Ahlman H (1992) Presence of IGF-I in human midgut carcinoid tumours — an autocrine regulator of carcinoid tumour growth? Int J Cancer 51: 195–203PubMedGoogle Scholar
  67. O’Dorisio MS, Fleshman DJ, Qualman SJ, O’Dorisio TM (1992) Vasoactive intestinal peptide: Autocrine growth factor in neuroblastoma. Regul Pept 37: 213–226PubMedGoogle Scholar
  68. Öberg K (1992) Interferons in the management of neuroendocrine tumors and their possible mechanism of action. Yale J Biol Med 65: 519–529PubMedGoogle Scholar
  69. Öberg K (1994) Expression of growth factors and their receptors in neuroendocrine gut and pancreatic tumors, and prognostic factors for survival. Ann NY Acad Sci 733: 46–55PubMedGoogle Scholar
  70. Olivier B, Soudijn W, van Wijngaarden I (2000) Serotonin, dopamine and norepinephrine transporters in the central nervous system and their inhibitors. Prog Drug Res 54: 59–119PubMedGoogle Scholar
  71. Onuki N, Wistuba II, Travis WD et al. (1999) Genetic changes in the spectrum of neuroendocrine lung tumors. Cancer 85: 600–607PubMedGoogle Scholar
  72. Pagliacci MC, Tognellini R, Grignani F, Nicoletti I (1991) Inhibition of human breast cancer cell (MCF-7) growth in vitro by the somatostatin analog SMS 201-995: Effects on cell cycle parameters and apoptotic cell death. Endocrinology 129: 2555–2562PubMedGoogle Scholar
  73. Patel YC (1999) Somatostatin and its receptor family. Front Neuroendocrinol 20: 157–198PubMedGoogle Scholar
  74. Pincus DW, DiCicco-Bloom EM, Black IB (1990) Vasoactive intestinal peptide regulates mitosis, differentiation and survival of cultured sympathetic neuroblasts. Nature 343: 564–567PubMedGoogle Scholar
  75. Racke K, Reimann A, Schworer H, Kilbinger H (1996) Regulation of 5-HT release from enterochromaffin cells. Behav Brain Res 73: 83–87PubMedGoogle Scholar
  76. Reubi JC (2000) In vitro evaluation of VIP/PACAP receptors in healthy and diseased human tissues. Clinical implications. Ann NY Acad Sci 921: 1–25PubMedGoogle Scholar
  77. Reubi JC (2003) Peptide receptors as molecular targets for cancer diagnosis and therapy. Endocr Rev 24: 389–427PubMedGoogle Scholar
  78. Reubi JC, Waser B, Schaer JC, Laissue JA (1999) Neurotensin receptors in human neoplasms: high incidence in Ewing’s sarcomas. Int J Cancer 82: 213–218PubMedGoogle Scholar
  79. Reubi JC, Waser B, Liu Q, Laissue JA, Schonbrunn A (2000) Subcellular distribution of somatostatin sst2 A receptors in human tumors of the nervous and neuroendocrine systems: Membranous versus intracellular location. J Clin Endocrinol Metab 85: 3882–3891PubMedGoogle Scholar
  80. Schally AV, Comaru-Schally AM, Nagy A et al. (2001) Hypothalamic hormones and cancer. Front Neuroendocrinol 22: 248–291PubMedGoogle Scholar
  81. Scherübl H, Hescheler J, Riecken EO (1993) Molecular mechanisms of somatostatin’s inhibition of hormone release: participation of voltage-gated calcium channels and G-proteins. Horm Metab Res Suppl 27: 1–4Google Scholar
  82. Scherübl H, Schaaf L, Raue F, Faiss S, Zeitz M (2004 a) Here-ditary neuroendocrine gastroenteropancreatic tumors and multiple endocrine neoplasia type 1. Part one: Diagnosis. Dtsch Med Wochenschr 129: 630–633PubMedGoogle Scholar
  83. Scherübl H, Schaaf L, Raue F, Faiss S, Zeitz M (2004b) Hereditary neuroendocrine gastroenteropancreatic tumors and multiple endocrine neoplasia type 1. Dtsch Med Wochenschr 129: 689–692PubMedGoogle Scholar
  84. Scott N, Millward E, Cartwright EJ, Preston SR, Coletta PL (2004) Gastrin releasing peptide and gastrin releasing peptide receptor expression in gastrointestinal carcinoid tumours. J Clin Pathol 57: 189–192PubMedGoogle Scholar
  85. Serrano J, Goebel SU, Peghini PL, Lubensky IA, Gibril F, Jensen RT (2000) Alterations in the p16INK4a/CDKN2A tumor suppressor gene in gastrinomas. J Clin Endocrinol Metab 85: 4146–4156PubMedGoogle Scholar
  86. Shimizu T, Tanaka S, Haruma K et al. (2000) Growth characteristics of rectal carcinoid tumors. Oncology 59: 229–237PubMedGoogle Scholar
  87. Smets LA, Bout B, Wisse J (1988) Cytotoxic and antitumor effects of the norepinephrine analogue metaiodo-benzyl-guanidine (MIBG). Cancer Chemother Pharmacol 21: 9–13PubMedGoogle Scholar
  88. Stuart K, Levy DE, Anderson T et al. (2004) Phase II study of interferon gamma in malignant carcinoid tumors (E9292): A trial of the Eastern Cooperative Oncology Group. Invest New Drugs 22: 75–81PubMedGoogle Scholar
  89. Szepeshazi K, Schally AV, Halmos G, Sun B, Hebert F, Csernus B, Nagy A (2001) Targeting of cytotoxic somatostatin analog AN-238 to somatostatin receptor subtypes 5 and/ or 3 in experimental pancreatic cancers. Clin Cancer Res 7: 2854–2861PubMedGoogle Scholar
  90. Taal BG, Hoefnagel CA, Valdes Olmos RA, Boot H, Beijnen JH (1996) Palliative effect of metaiodobenzylguanidine in metastatic carcinoid tumors. J Clin Oncol 14: 1829–1838PubMedGoogle Scholar
  91. Takikawa O, Kuroiwa T, Yamazaki F, Kido R (1988) Mechanism of interferon-gamma action. Characterization of indoleamine 2,3-dioxygenase in cultured human cells induced by interferon-gamma and evaluation of the enzyme-mediated tryptophan degradation in its anticellular activity. J Biol Chem 263: 2041–2048PubMedGoogle Scholar
  92. Terris B, Scoazec JY, Rubbia L et al. (1998) Expression of vascular endothelial growth factor in digestive neuroendocrine tumours. Histopathology 32: 133–138PubMedGoogle Scholar
  93. Toi-Scott M, Jones CL, Kane MA (1996) Clinical correlates of bombesin-like peptide receptor subtype expression in human lung cancer cells. Lung Cancer 15: 341–354PubMedGoogle Scholar
  94. Ulrich CD, Holtmann M, Miller LJ (1998) Secretin and vasoactive intestinal peptide receptors: Members of a unique family of G protein-coupled receptors. Gastroenterology 114: 382–397PubMedGoogle Scholar
  95. Van WC de, Dumont F, Vanden Broecke R et al. (2000) Technetium-99 m RP527, a GRP analogue for visualisation of GRP receptor-expressing malignancies: A feasibility study. Eur J Nucl Med 27: 1694–1699Google Scholar
  96. Virgolini I, Yang Q, Li S et al. (1994) Cross-competition between vasoactive intestinal peptide and somatostatin for binding to tumor cell membrane receptors. Cancer Res 54: 690–700PubMedGoogle Scholar
  97. Virgolini I, Traub T, Leimer M et al. (2000) New radiopharmaceuticals for receptor scintigraphy and radionuclide therapy. Q J Nucl Med 44: 50–58PubMedGoogle Scholar
  98. Wichert G von, Jehle PM, Hoeflich A et al. (2000) Insulin-like growth factor-I is an autocrine regulator of chromogranin A secretion and growth in human neuroendocrine tumor cells. Cancer Res 60: 4573–4581Google Scholar
  99. Wakeling AE, Barker AJ, Davies DH, Brown DS, Green LR, Cartlidge SA, Woodburn JR (1996) Specific inhibition of epidermal growth factor receptor tyrosine kinase by 4-anilinoquinazolines. Breast Cancer Res Treat 38: 67–73PubMedGoogle Scholar
  100. Wang DG, Johnston CF, Buchanan KD (1997) Oncogene expression in gastroenteropancreatic neuroendocrine tumors: Implications for pathogenesis. Cancer 80: 668–675PubMedGoogle Scholar
  101. Williams ED, Sandier M (1963) The classification of carcinoid tumours. Lancet 238–239Google Scholar
  102. Wimmel A, Wiedenmann B, Rosewicz S (2003) Autocrine growth inhibition by transforming growth factor beta-1 (TGFbeta-1) in human neuroendocrine tumour cells. Gut 52: 1308–1316PubMedGoogle Scholar
  103. Zhou Y, Gobl A, Wang S et al. (1998) Expression of p68 protein kinase and its prognostic significance during IFN-alpha therapy in patients with carcinoid tumours. Eur J Cancer 34: 2046–2052PubMedGoogle Scholar
  104. Zuetenhorst H, Taal BG, Boot H, Valdes OR, Hoefnagel C (1999) Longterm palliation in metastatic carcinoid tumours with various applications of meta-iodobenzylguanidin (MIBG): Pharmacological MIBG, 131I-labelled MIBG and the combination. Eur J Gastroenterol Hepatol 11: 1157–1164PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Patricia Grabowski
    • 1
  • Andreas P. Sutter
    • 2
  • Hans Scherübl
    • 1
  1. 1.Campus Benjamin Franklin, Medizinische Klinik I, Gastroenterologie/Infektiologie/RheumatologieUniversitätsmedizin BerlinBerlin
  2. 2.Experimental ToxicologySchering AGBerlin

Personalised recommendations