Skip to main content

Part of the book series: Molekulare Medizin ((MOLMED))

  • 1098 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 29.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

2.3.6 Literatur

  • Adrian TE, Mitchenere P, Sagor G, Bloom SR (1982) Effect of pancreatic polypeptide on gallbladder pressure and hepatic bile secretion. Am J Physiol 243: G204–G207

    PubMed  CAS  Google Scholar 

  • Ahlman H, Nilsson O (2001) The gut as the largest endocrine organ in the body. Ann Oncology 12: S63–S68

    Google Scholar 

  • Amara SG, Jonas V, Rosenfeld MG, Ong ES, Evans RM (1982) Alternative RNA processing in calcitonin gene expression generates mRNAs encoding different polypeptide products. Nature 298: 240–244

    PubMed  CAS  Google Scholar 

  • Anastasi A, Erspamer V, Bucchi M (1971) Isolation and structure of bombesin and alytensin, two analogues active peptides from the skin of the European amphibians Bombina and Alytes. Experientia 27: 166–167

    PubMed  CAS  Google Scholar 

  • Aziz Q, Thompson DG (1998) Brain-gut axis in health and disease. Gastroenterology 114: 559–578

    PubMed  CAS  Google Scholar 

  • Barelli H, Vincent JP, Checler F (1988) Peripheral inactivation of neurotensin. Isolation and characterization of a metallopeptidase from rat ileum. Eur J Biochem 175: 481–489

    PubMed  CAS  Google Scholar 

  • Batterham RL, Bloom SR (2003) The gut hormone peptide YY regulates appetite. Ann NY Acad Sci 994: 162–168

    PubMed  CAS  Google Scholar 

  • Baum RP, Hofmann M (2004) Nuklearmedizinische Diagnostik neuroendokriner Tumoren. Onkologe 10: 598–610

    Google Scholar 

  • Bayliss WM, Starling EH (1902) The mechanism of pancreatic secretion. J Physiol 28: 325–353

    CAS  Google Scholar 

  • Bayliss WM, Starling EH (1904) Croonian lecture. The chemical regulation of the secretory process. Proc R Soc 73: 310–332

    Google Scholar 

  • Bednarek M, Feighner SD, Pong SS et al. (2000) Structure-function studies on the new growth-hormone-releasing peptide, ghrelin: Minimal sequence of ghrelin necessary for activation of growth-hormone secretagogue receptor la. J Med Chem 43: 4370–4376

    PubMed  CAS  Google Scholar 

  • Bell GI, Sanchez Pescador R, Laybourn PJ, Najarian RC (1983) Exon duplication and divergence in the human preproglucagon gene. Nature 304: 368–371

    PubMed  CAS  Google Scholar 

  • Benali N, Cordelier P, Calise D et al. (2000) Inhibition of growth and metastatic progression of pancreatic carcinoma in hamster after somatostatin receptor subtype 2 (sst2) gene expression and administration of cytotoxic somatostatin analog AN-238. Proc Natl Acad Sci USA 97: 9180–9185

    PubMed  CAS  Google Scholar 

  • Berson SA, Yalow RS (1972) Radioimmunoassays in gastroenterology. Gastroenterology 62: 1061–1069

    PubMed  CAS  Google Scholar 

  • Bowers CY, Momany FA, Reynolds GA, Hong A (1984) On the in vitro and in vivo activity of a new synthetic hexapeptide that acts on the pituitary to specifically release growth-hormone. Endocrinol 114: 1537–1545

    CAS  Google Scholar 

  • Brand SJ, Babyatsky M, Bachwich D, Tillotson L, Wang T (1994) Molecular approaches to the study of gut peptides. In: Walsh JH, Dockray GJ (eds) Gut peptides: Biochemistry and physiology. Raven Press, New York, pp 11–32

    Google Scholar 

  • Brazeau P, Vale W, Burgus R, Ling N, Butcher M, Rivier J, Guillemin R (1973) Hypothalamic polypeptide that inhibits the secretion of immunoreactive pituitary growth hormone. Science 179: 77–79

    PubMed  CAS  Google Scholar 

  • Bresnahan PA, Leduc R, Thomas L et al. (1990) Human fur gene encodes a yeast KEX2-like endoprotease that cleaves pro-beta-NGF in vivo. J Cell Biol 111: 2851–2859

    PubMed  CAS  Google Scholar 

  • Broglio F, Arvat E, Benso A et al. (2001) Ghrelin, a natural GH scretagogue produced by the stomach, induces hyperglycaemia and reduces insulin secretion in humans. J Clin Endocrinol Metab 86: 5083–5086

    PubMed  CAS  Google Scholar 

  • Broglio F, Gottero C, Arvat E, Ghigo E (2003) Endocrine and non-andocrine actions of ghrelin. Horm Res 59: 109–117

    PubMed  CAS  Google Scholar 

  • Bucceri AM, Calogero AE, Brogna A (2002) Gallbladder and gastric emptying: relation to cholecystokininemia in diabetics. Eur J Intern Med 13: 123–128

    PubMed  CAS  Google Scholar 

  • Bunnett N (1994) Gastrin-releasing peptide. In: Walsh JH, Dockray GJ (eds) Gut peptides: Biochemistry and physiology. Raven Press, New York, pp 423–446

    Google Scholar 

  • Caixas A, Bashore C, Nash W (2002) Insulin, unlike food in-take, does not suppress ghrelin in human subjects. J Clin Endocrinol Metab 87: 1902–1906

    PubMed  CAS  Google Scholar 

  • Cao T, Pinter E, Al-Rashed S et al. (2000) Neurokinin-1 receptor agonists are involved in mediating neutrophil accumulation in the inflamed, but not normal cutaneous microvasculature: An in vivo study using neurokinin-1 receptor knockout mice. J Immunol 164: 5424–5429

    PubMed  CAS  Google Scholar 

  • Casanueva FF, Dieguez C (1999) Growth-hormone secretagogues: Physiological role and clinical utility. Trends Endocrinol Metab 10: 30–38

    PubMed  CAS  Google Scholar 

  • Chang MM, Leeman SE (1970) Isolation of a sialagogic peptide from bovine hypothalamic tissue and its characterization as substance P. J Biol Chem 245: 4784–4790

    PubMed  CAS  Google Scholar 

  • Checler F, Ahmad S, Kostka P et al. (1987) Peptidases in dog-ileum circular and longitudinal smooth-muscle plasma membranes. Their relative contribution to the metabolism of neurotensin. Eur J Biochem 166: 461–468

    PubMed  CAS  Google Scholar 

  • Chiba T, Yamada T (1994) Gut somatostatin. In: Walsh JH, Dockray GJ (eds) Gut peptides: Biochemistry and physiology. Raven Press, New York, pp 123–145

    Google Scholar 

  • Claing A, Perry SJ, Achiriloaie M, Walker JK, Albanesi JP, Lefkowitz RJ, Premont RT (2000) Multiple endocytic pathways of G protein-coupled receptors delineated by GIT1 sensitivity. Proc Natl Acad Sci USA 97: 1119–1124

    PubMed  CAS  Google Scholar 

  • Conlon JM (1993) Proteolytic inactivation of neurohormonal peptides in the gastrointestinal tract. In: Brown DR (ed) Gastrointestinal regulatory peptides. Springer, Heidelberg, pp 177–198

    Google Scholar 

  • Creutzfeldt W (1996) Carcinoid tumors: Development of our knowledge. World J Surg 20: 126–131

    PubMed  CAS  Google Scholar 

  • Creutzfeldt W, Ebert R (1985) New developments in the incretin concept. Diabetologia28: 565–573

    PubMed  CAS  Google Scholar 

  • Creutzfeldt W, Nauck M (1992) Gut hormones and diabetes mellitus. Diab Metab Rev 8: 149–177

    CAS  Google Scholar 

  • Daaka Y, Luttrell LM, Lefkowitz RJ (1997) Switching of the coupling of the beta2-adrenergic receptor to different G proteins by protein kinase A. Nature 390: 88–91

    PubMed  CAS  Google Scholar 

  • Damholt AB, Kofod H, Buchan AM (1999) Immunocytochemical evidence for a paracrine interaction between GIP and GLP-1-producing cells in canine small intesine. Cell Tissue Res 298: 287–293

    PubMed  CAS  Google Scholar 

  • Danielsen EM, Vyas JP, Kenny AJ (1980) A neutral endopeptidase in the microvillar membrane of pig intestine. Partial purification and properties. Biochem J 191: 645–648

    PubMed  CAS  Google Scholar 

  • Date Y (2000) Ghrelin, a novel growth-hormone-releasing acylated peptide, is synthesized in a distinct endocrine cell type in the gastrointestinal tracts of rats and humans. Endocrinology 141: 4255–4261

    PubMed  CAS  Google Scholar 

  • Davis RJ (1995) Transcriptional regulation by MAP kinases. Mol Reprod Devel 42: 459–467

    PubMed  CAS  Google Scholar 

  • De Maturana RL, Willshaw A, Kuntsch A, Rudolph R, Donelly D (2003) The isolated N-terminal domain of the glucagon-like peptide-1 (GLP-1) receptor binds exendin peptids with much higher affinity than GLP-1. J Biol Chem 278: 10195–10200

    Google Scholar 

  • Deacon CF, Nauck MA, Toft-Nielsen M, Pridal L, Willms B, Hoist JJ (1995) Both subcutaneously and intravenously administered glucagon-like peptide 1 are rapidly degraded from the NH 2-terminus in type 2-diabetic patients and in healthy subjects. Diabetes 44: 1126–1131

    PubMed  CAS  Google Scholar 

  • Del Rincon JP, Thorner MO, Gaylinn BD (2001) Motilin-related peptide and ghrelin: Lessons from molecular techniques, peptide chemistry, and receptor biology. Gastroenterology 120: 587–588

    PubMed  Google Scholar 

  • Deprez PH, Sempoux C, De Saeger C, Rahier J, Mainguet P, Pauwels S, Geubel A (2002) Expression of cholecystokinin in the duodenum of patients with celiac disease: Respective role of atrophy and lymphocytic infiltration. Clin Sci (Lond) 103: 171–177

    CAS  Google Scholar 

  • Ding WQ, Kuntz S, Bohmig M, Wiedenmann B, Miller LJ (2002) Dominant negative action of an abnormal secretin receptor arising from mRNA missplicing in a gastrinoma. Gastroenterology 122: 500–511

    PubMed  CAS  Google Scholar 

  • Dockray GJ (1994 a) Substance P and other tachykinins. In: Walsh JH and Dockray GJ (eds) Gut peptides: Biochemistry and physiology. Raven Press, New York, pp 401–422

    Google Scholar 

  • Dockray GJ (1994 b) Vasoactive intestinal polypeptide and related peptides. Gut peptides: Biochemistry and Physiology, JH Walsh, GJ Dockray (Hrsg.). Raven Press, New York 447–492

    Google Scholar 

  • Dockray GJ, Varro A, Dimaline R, Wang T (2001) The Gastrins: Their production and biological activities. Ann Rev Phys 63: 119–139

    CAS  Google Scholar 

  • Drucker DJ (2001) Glucagon-like peptide 2. J Clin Endocrinol Metab 86: 1759–1764

    PubMed  CAS  Google Scholar 

  • Drucker DJ (2003) Glucagon-like peptides: Regulators of cell proliferation, differentiation, and apoptosis. Mol Endocrinol 17: 161–171

    PubMed  CAS  Google Scholar 

  • Dupre J, Ross SA, Watson D, Brown JC (1973) Stimulation of insulin secretion by gastric inhibitory polypeptide in man. J Clin Endocrinol Metab 37: 826–828

    PubMed  CAS  Google Scholar 

  • Edkins JS (1905) On the chemical mechanisms of gastric secretion. Proc R Soc Lond B Biol Sci 76: 376

    CAS  Google Scholar 

  • Eissele R, Göke R, Willemer S, Harthus HP, Vermeer H, Arnold R, Göke B (1992) Glucagon-like peptide-1 cells in the gastrointestinal tract of rat, pig and man. Eur J Clin Invest 22: 283–291

    PubMed  CAS  Google Scholar 

  • Erdos EG, Skidgel RA (1987) The angiotensin I-converting enzyme. Lab Invest 56: 345–348

    PubMed  CAS  Google Scholar 

  • Fahrenkrug J (1993) Transmitter role of vasoactive intestinal peptide. Pharmacol Toxicol 72: 354–363

    PubMed  CAS  Google Scholar 

  • Fahrenkrug J, Schaffalitzky de Muckadell OB (1977) Plasma secretin concentration in man: effect of intraduodenal glucose, fat, amino acids, ethanol, HCl or ingestion of a meal. Eur J Clin Invest 7: 201–203

    PubMed  CAS  Google Scholar 

  • Fehmann HC, Göke B (1997) The insulinotropic gut hormone glucagon-like peptide 1. Frontiers Diabetes 13: 1–240

    Google Scholar 

  • Fehmann HC, Habener JF (1992) Insulinotropic hormone glucagon-like peptide-1 (7–37) stimulation of proinsulin gene expression and proinsulin biosynthesis in insulinoma βTC-1 cells. Endocrinology 130: 159–166

    PubMed  CAS  Google Scholar 

  • Fehmann HC, Göke R, Göke B (1995) Cell and molecular biology of the incretin hormones glucagon-like peptide 1 (GLP-1) and glucose-dependent insulin releasing polypeptide (GIP). Endocrine Reviews 16: 390–410

    PubMed  CAS  Google Scholar 

  • Figini M, Emanueli C, Grady EF et al. (1997) Substance P and bradykinin stimulate plasma extravasation in the mouse gastrointestinal tract and pancreas. Am J Physiol 272: G785–G793

    PubMed  CAS  Google Scholar 

  • Fink H, Rex A, Voits M, Voigt JP (1998) Major biological actions of CCK — a critical evaluation of research findings. Exp Brain Res 123: 77–83

    PubMed  CAS  Google Scholar 

  • Flint A, Raben A, Astrup A, Hoist JJ (1998) Glucagon-like peptide 1 promotes satiety and suppresses energy intake in humans. J Clin Invest 101(3): 515–520

    PubMed  CAS  Google Scholar 

  • Fricker LD, Adelman JP, Douglass J, Thompson RC, von Strandmann RP, Hutton J (1989) Isolation and sequence analysis of cDNA for rat carboxypeptidase E [EC 3.4.17.10], a neuropeptide processing enzyme. Mol Endocrinol 3: 666–6673

    PubMed  CAS  Google Scholar 

  • Frohman LA, Jansson JO (1986) Growth-hormone-releasing-hormone. Endocr Rev 7: 223–253

    PubMed  CAS  Google Scholar 

  • Geracioti TD Jr, Liddle RA (1988) Impaired cholecystokinin secretion in bulimia nervosa. N Engl J Med 319: 683–688

    PubMed  Google Scholar 

  • Gnanapavan S, Kola B, Bustin SA (2002) The tissue distribution of the mRNA of ghrelin and subtypes of its receptor, GHS-R, in humans. J Clin Endocrinol Metab 87: 2988–2991

    PubMed  CAS  Google Scholar 

  • Göke B, Printz H, Koop I, Rausch U, Richter G, Arnold R, Adler G (1986) Endogenous CCK release and pancreatic growth in rats after feeding a proteinase inhibitor. Pancreas 1: 509–515

    PubMed  Google Scholar 

  • Göke B, Fenchel K, Knobloch S, Arnold R, Adler G (1988) Increased CCK-response to proteinase inhibitor feeding after induction of pancreatic hypertrophy in rats. Pancreas 3: 576–579

    PubMed  Google Scholar 

  • Göke R, Fehmann HC, Linn T, Schmidt H, Krause M, Eng J, Göke B (1993) Exendin-4 is a high potency agonist and truncated exendin (9–39) amide a potent agonist at the GLP-1 (7–37) amide receptor of insulin-secreting β-cells. J Biol Chem 268: 19650–19655

    PubMed  Google Scholar 

  • Goodman OB, Krupnick JG, Santini F et al. (1996) Beta-arrestin acts as a clathrin adaptor in endocytosis of the beta2-adrenergic receptor. Nature 383: 447–450

    PubMed  CAS  Google Scholar 

  • Gossrau R (1979) Peptidases II. Localization of dipeptidylpeptidase IV (DPP IV). Histochemical and biochemical study. Histochem 60: 231–248

    CAS  Google Scholar 

  • Goulon M, Rapin M, Charleux H et al. (1966) Watery diarrhea and hypokalemia associated with a non-insulin-secreting islet cell tumor. Apropos of a case with immediate and defintive cure of the diarrhea by tumoral excision. Nosologic discussion of this syndrome and Zollinger Ellison syndrome. Bull Mem Soc Med Hop Paris 117: 623–646

    PubMed  CAS  Google Scholar 

  • Greenberg R, Haddad R, Kashtan H, Kaplan O (2000) The effects of somatostatin and octreotide on experimental and human acute pancreatitis. J Lab Clin Med 135: 112–121

    PubMed  CAS  Google Scholar 

  • Guard S, Watson SP (1991) Tachykinin receptor types: Classification and membrane signalling mechanisms. Neurochem Int 18: 149–165

    CAS  Google Scholar 

  • Gutkind JS (1998) The pathways connecting G protein-coupled receptors to the nucleus through divergent mitogen-activated protein kinase cascades. J Biol Chem 273: 1839–1842

    PubMed  CAS  Google Scholar 

  • Hanahan D (1989) Transgenic mice as probes into complex systems. Science 246: 1265–1275

    PubMed  CAS  Google Scholar 

  • Hansen L, Deacon CF, Orskov C, Hoist JJ (1999) Glucagon-like peptide-1-(7–36) amide is transformed to glucagon-like peptide-1-(9–36) amide by DPP IV in the capillaries supplying the L cells of the porcine intestine. Endocrinology 140: 5356–5363

    PubMed  CAS  Google Scholar 

  • Hansen L, Hartmann B, Bisgaard T, Mineo H, Jorgensen PN, Hoist JJ (2000) Somatostatin restrains the secretion of glucagons-like peptide and 2 from isolated perfused porcine ileum. Am J Physiol 278(6): E1010–E1018

    CAS  Google Scholar 

  • Hansotani T, Drucker JD (2005) GIP and GLP-1 as incretin hormones: lessons from single and double incretin receptor knockout mice. Reg Peptides 128: 125–134

    Google Scholar 

  • Hardikar AA (2004) Role of incretins in pancreas growth and development. J Pancreas (online) 5: 454–456

    Google Scholar 

  • Harmar AJ, Arimura A, Gozes I et al. (1998) International Union of Pharmacology. XVIII. Nomenclature of receptors for vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide. Pharmacol Rev 50: 265–270

    PubMed  CAS  Google Scholar 

  • Harper AA, Raper HS (1943) Pancreozymin, a stimulant of secretion of pancreatic enzymes in extracts of the small intestine. J Physiol 102: 115–125

    CAS  Google Scholar 

  • Hartmann B, Harr MB, Jeppesen PB, Wojdemann M, Deacon CF, Mortensen PB, Hoist JJ (2000) In vivo and in vitro degradation of glucagon-like peptide-2 in humans. J Clin Endocrinol Metab 85: 2884–2888

    PubMed  CAS  Google Scholar 

  • Havu N (1986) Enterochromaffin-like cell carcinoids of gastric mucosa in rats after lifelong inhibition of gastric secretion. Digestion 35Suppl 1: 42–55

    PubMed  Google Scholar 

  • Hazelwood RL (1993) The pancreatic polypeptide (PP-fold) family: Gastrointestinal, vascular, and feeding behavioural implications. Proc Soc Exp Biol Med 202: 44–63

    PubMed  CAS  Google Scholar 

  • Heinrich G, Gros P, Habener JF (1984) Glucagon gene sequence. Four of six exons encode separate functional domains of rat pre-proglucagon. J Biol Chem 259: 14082–14087

    PubMed  CAS  Google Scholar 

  • Herbach N, Göke B, Schneider M, Hermanns W, Wolf E, Wanke R (2005) Overexpression of a dominant negative GIP receptor in transgenic mice results in disturbed postnatal pancreatic islet and beta-cell development. Reg Peptides 125: 103–117

    CAS  Google Scholar 

  • Hershey AD, Krause JE (1990) Molecular characterization of a functional cDNA encoding the rat substance P receptor. Science 247: 958–962

    PubMed  CAS  Google Scholar 

  • Hoist JJ (2003) Implementation of GLP-1 based therapy of type 2 diabetes mellitus using DPP-IV inhibitors. Adv Exp Med Biol 524: 263–279

    Google Scholar 

  • Hoist JJ, Fahrenkrug J, Knuhtsen S, Jensen SL, Nielsen OV, Lundberg JM, Hokfelt T (1987) VIP and PHI in the pig pancreas: Coexistence, corelease, and kooperative effects. Am J Physiol 253: G13–G19

    Google Scholar 

  • Holtmann MH, Hadac EM, Miller LJ (1995) Critical contributions of amino-terminal extracellular domains in agonist binding and activation of secretin and vasoactive intestinal polypeptide receptors. Studies of chimeric receptors. J Biol Chem 270: 14394–14398

    PubMed  CAS  Google Scholar 

  • Holz GG, Kuhtreiber WM, Habener JF (1993) Pancreatic β-cells are rendered glucose-competent by the insulinotropic hormone glucagon-like peptide-1 (7–37). Nature 361: 362–365

    PubMed  CAS  Google Scholar 

  • Holzer P, Holzer-Petsche U (1997) Tachykinins in the gut. Part I. Expression, release and motor function. Pharmacol Ther 73: 173–217

    PubMed  CAS  Google Scholar 

  • Hosoda H, Kojima M, Matsuo H (2000) Purification and characterization of rat des-Gln14-ghrelin, a second endogenous ligand for the growth hormone secretagogue receptor. J Biol Chem 275: 21995–22000

    PubMed  CAS  Google Scholar 

  • Howard AD (1996) A receptor in pituitary and hypothalamus that functions in growth hormone release. Science 273: 974–977

    PubMed  CAS  Google Scholar 

  • Hwa JJ, Witten MB, Williams P et al. (1999) Activation of the NPY Y5 receptor regulates both feeding and energy expenditure. Am J Physiol 277: R1428–R1434

    PubMed  CAS  Google Scholar 

  • Inui A (2001) Ghrelin: An orexigenic and somatotrophic signal from the stomach. Nature Rev Neuroscience 2: 551–560

    CAS  Google Scholar 

  • Ishihara T, Nakamura S, Kaziro Y, Takahashi T, Takahashi K, Nagata S (1991) Molecular cloning and expression of a cDNA encoding the secretin receptor. Eur Mol Biol Organ J 10: 1635–1641

    CAS  Google Scholar 

  • Ivy AC, Oldberg E (1928) A hormone mechanism for gallbladder contraction and evacuation. Am J Physiol 65: 599–613

    Google Scholar 

  • Jeppesen PB, Hartmann B, Thulesen J et al. (2001) Glucagon-like peptide 2 improves nutrient absorption and nutritional status in short-bowel patients with no colon. Gastroenterology 120: 806–815

    PubMed  CAS  Google Scholar 

  • Ji B, Bi Y, Simeone D, Mortensen RM, Logsdon CD (2001) Human pancreatic acinar cells lack functional responses to cholecystokinin and gastrin. Gastroenterology 121: 1380–1390

    PubMed  CAS  Google Scholar 

  • Jin HO, Song CW, Chang TM, Chey WY (1994) Roles of gut hormones in negative feedback regulation of pancreatic exocrine secretion in humans. Gastroenterology 107(6): 1828–1834

    PubMed  CAS  Google Scholar 

  • Kato T, Nagatsu T, Fukasawa K, Harada M, Nagatsu I, Sakakibara S (1978) Successive cleavage of N-terminal Arg1-Pro2 and Lys3-Pro4 from substance P but no release of Arg1-Pro2 from bradykinin, by X-Pro dipeptidyl-aminopeptidase. Biochim Biophys Acta 525: 417–422

    PubMed  CAS  Google Scholar 

  • Kimball CP, Murlin JR (1923) Aqueous extracts of pancreas. J Biol Chem 58: 337–346

    CAS  Google Scholar 

  • Kimmel JR, Hayden LJ, Pollock HG (1975) Isolation and characterization of a new pancreatic polypeptide hormone. J Biol Chem 250: 9369–9376

    PubMed  CAS  Google Scholar 

  • Koh TJ, Goldenring JR, Ito S (1997) Gastrin deficiency results in altered gastric differentiation and decreased colonic proliferation in mice. Gastroenterology 113: 1015–1025

    PubMed  CAS  Google Scholar 

  • Kojima M, Hosoda H, Date Y (1999) Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature 402: 656–660

    PubMed  CAS  Google Scholar 

  • Kolligs F, Fehmann HC, Göke R, Göke B (1995) Reduction of the incretin effect in rats by the glucagon-like peptide 1 receptor antagonist exendin (9–39) amide. Diabetes 44:16–19

    PubMed  CAS  Google Scholar 

  • Kopin AS, Lee YM, McBride EW et al. (1992) Expression cloning and characterization of the canine parietal cell gastrin receptor. Proc Natl Acad Sci USA: 89: 3605–3609

    PubMed  CAS  Google Scholar 

  • Kramer MS, Cutler N, Feighner J, Shrivastava, Carman J et al. (1998) Distinct mechanism for antidepressant activity by blockade of central substance P receptors. Science 281: 1640–1645

    PubMed  CAS  Google Scholar 

  • Kvols LK, Moertel CG, O’Connell MJ, Schutt AJ, Rubin J, Hahn RG (1986) Treatment of the malignant carcinoid syndrome: Evaluation of a long-acting somatostatin analogue. N Engl. J Med 315: 663–666

    PubMed  CAS  Google Scholar 

  • La Barre J, Still EU (1930) Studies on the physiology of secretin. Am J Physiol 91: 649–653

    Google Scholar 

  • Lamberts S, Van Der Lely AJ, De Herder W, Hofland L (1996) Octreotide. N Engl J Med 334: 246–254

    PubMed  CAS  Google Scholar 

  • Larhammar D (1996) Evolution of neuropeptide Y, peptide YY, and pancreatic polypeptide. Regul Pept 62: 1–11

    PubMed  CAS  Google Scholar 

  • Larssin et al. (1990) Is the reduction of VIP the clue to the pathophysiology of Hirschsprung’s disease? Z Kinderchir 45: 164

    Google Scholar 

  • Larsson LI (1980) Gastrointestinal cells producing endocrine, neurocrine and paracrine messengers. Clin Gastroenterol 9: 485–516

    PubMed  CAS  Google Scholar 

  • Larsson LI, Sundler F, Hakanson R (1976) Pancreatic Polypeptide — a postulated new hormone: Identification of its cellular storage site by light and electron microscopic immunocytochemistry. Diabetologia 12: 211–226

    PubMed  CAS  Google Scholar 

  • Lewis JT, Dayanandan B, Habener JF, Kieffer TJ (2000) Glucose-dependent insulinotropic polypeptide confers early phase insulin release to oral glucose in rats: Demonstration by a receptor antagonist. Endocrinology 141(10): 3710–3716

    PubMed  CAS  Google Scholar 

  • Li Y, Hansotia T, Yusta B, Ris F, Halban PA, Drucker DJ (2003) Glucagon-like peptide-1 receptor signalling modulates beta cell apoptosis. J Biol Chem 278: 471–478

    PubMed  CAS  Google Scholar 

  • Liddle RA (1994) Gastrin. In: Walsh JH, Dockray GJ (ed) Gut peptides: Biochemistry and physiology. Raven Press, New York, pp 175–216

    Google Scholar 

  • Liddle RA (2000) Regulation of cholecystokinin secretion in humans. J Gastroenterol 35: 181–287

    PubMed  CAS  Google Scholar 

  • Lin TM, Evans DC, Chance RE, Spray GF (1977) Bovine pancreatic peptide: Action on gastric and pancreatic secretion in dogs. Am J Physiol 232: E311

    PubMed  CAS  Google Scholar 

  • Lloyd KC, Grandt D, Aurang K, Eysselein VE, Schmiczek M, Reeve JI, (1996) Inhibitory effect of PYY on vagally stimulated acid secretion is mediated predominantly by Y1 receptors. Am J Physiol 270: G123–G127

    PubMed  CAS  Google Scholar 

  • Lovshin J, Drucker DJ (2000) New frontiers in the biology of GLP-2. Regul Pept 90: 27–32

    PubMed  CAS  Google Scholar 

  • Makhlouf GM (1997) A century of regulatory peptides: From discovery to function. Gastroenterology 112: 2111–2113

    PubMed  CAS  Google Scholar 

  • Mannon P, Taylor IL (1994) The pancreatic polypeptide family. In: Walsh JH, Dockray GJ (eds) Gut peptides: Biochemistry and physiology. Raven Press, New York, pp 341–370

    Google Scholar 

  • Mantyh CR, Gates TS, Zimmerman RP et al. (1988) Receptor binding sites for substance P, but not substance K, or neuromedin K, are expressed in high concentrations by arterioles, venules, and lymph nodules insurgical specimens obtained from patients with ulcerative colitis and Crohn disease. Proc Natl Acad Sci USA 85: 3235–3239

    PubMed  CAS  Google Scholar 

  • Marinissen MJ, Gutkind JS (2001) G-protein-coupled receptors and signaling networks: emerging paradigms. Trends Pharmacol Sci 22: 368–376

    PubMed  CAS  Google Scholar 

  • Martinez V, Tache Y (2000) Bombesin and the brain-gut axis. Peptides 21: 1617–1625

    PubMed  CAS  Google Scholar 

  • Matsas R, Fulcher IS, Kenny AJ, Turner AJ (1983) Substance P and [Leu]enkephalin are hydrolyzed by an enzyme in pig caudate synaptic membranes that is identical with the endopeptidase of kidney microvilli. Proc Natl Acad Sci USA 80: 3111–3115

    PubMed  CAS  Google Scholar 

  • Mayer EA, Baldi JP (1991) Can regulatory peptides be regarded as words of a biological language? Am J Physiol 261: G171–G184

    PubMed  CAS  Google Scholar 

  • Mayo KE, Miller LJ, Bataille D, Dalle S, Göke B, Thorens B, Drucker DJ (2003) International Union of Pharmacology. XXXV. The glucagon receptor family. Pharmacol Rev 55: 167–194

    PubMed  CAS  Google Scholar 

  • McDougall JK, Dunn AR, Jones KW (1972) In situ hybridization of adenovirus RNA and DNA. Nature 236: 346–348

    PubMed  CAS  Google Scholar 

  • McIntyre N, Holdsworth CD, Turner DS (1964) New interpretation of oral glucose tolerance. Lancet II: 20–21

    Google Scholar 

  • Medeiros MD, Turner AJ (1994) Processing and metabolism of peptide YY: Pivotal roles of dipeptidylpeptidase-IV, aminopeptidase-P, and endopeptidase-24.11. Endocrinology 134: 2088–2094

    PubMed  CAS  Google Scholar 

  • Meier JJ, Gallwitz B, Siepmann N, Hoist JJ, Deacon CF, Schmidt WE, Nauck MA (2003) Gastric inhibitory polypeptide (GIP) dose-dependently stimulates glucagons secretion in healthy human subjects at euglycaemia. Diabetologia 46: 798–801

    PubMed  CAS  Google Scholar 

  • Michel MC, Beck-Sickinger A, Cox H, Doods HN (1998) International Union of Pharmacology recommendations for the nomenclature of neuropeptide Y, peptide YY, and pancreatic polypeptide receptors. Pharmacol Rev 50: 143

    PubMed  CAS  Google Scholar 

  • Miyawaki K, Yamada Y, Yano H et al. (1999) Glucose intolerance caused by a defect in the entero-insular axis: a study in gastric inhibitory polypeptide receptor knockout mice. Proc Natl Acad Sci USA 96(26): 14843–14847.

    PubMed  CAS  Google Scholar 

  • Miyawaki K, Yamada Y, Ban N et al. (2002) Inhibition of gastric inhibitory polypeptide signaling prevents obesity. Nat Med 8(7): 738–742

    PubMed  CAS  Google Scholar 

  • Mojsov S, Heinrich G, Wilson IB, Ravazzola M, Orci L, Habener JF (1986) Preproglucagon gene expression in pancreas and intestine diversifies at the level of posttranscriptional processing. J Biol Chem 261: 11880–11889

    PubMed  CAS  Google Scholar 

  • Munroe DG, Gupta AK, Kooshesh P et al. (1999) Prototypic G protein-coupled receptor for the intestinotrophic factor glucagon-like peptide 2. Proc Natl Acad Sci USA 96: 1569–1573

    PubMed  CAS  Google Scholar 

  • Murray CDR, Kamm MA, Bloom SR, Emmanuel AV (2003) Ghrelin for the gastroenterologist: history and potential. Gastroenterology 125: 1492–1502

    PubMed  CAS  Google Scholar 

  • Murthy KS, Grider JR, Jin JG (1995) Interplay of VIP and nitric oxide in regulation of neuromuscular activity in the gut. Arch Int Pharmacodyn Ther 329: 27–38

    PubMed  CAS  Google Scholar 

  • Mutt V (1980) Secretin: Isolation, structure and functions. In: Glass GBJ (ed) Gastrointestinal hormones. Raven Press, New York, pp 85–126

    Google Scholar 

  • Mutt V, Magnusson S, Jorpes JE, Dahl E (1966) Structure of porcine secretin I. Biochem J 4: 2358

    Google Scholar 

  • Nakazato M, Murakami N, Date Y, Kojima M, Matsuo H, Kangawa K, Matsukura S (2001) Ghrelin is a physiological mediator of feeding and acts through neuropeptide Y and agouti-related protein in the hypothalamus. Nature 409: 194–198

    PubMed  CAS  Google Scholar 

  • Nauck MA, Bartels E, Orskov C, Ebert R, Creutzfeldt W (1993 a) Additive insulinotropic effects of exogenous synthetic human gastric inhibitory polypeptide and glucagon-like peptide-l-(7-36) amide infused at near-physiological insulinotropic hormone and glucose concentrations. J Clin Endocrinol Metab 76: 912–917

    PubMed  CAS  Google Scholar 

  • Nauck MA, Heimesaat MM, Orskov C, Hoist JJ, Erbert R, Creutzfeldt W (1993 b) Preserved incretin activity of glucagon-like peptide 1 (7-36)amide but not of synthetic human gastric inhibitory polypeptide in patients with type 2 diabetes mellitus. J Clin Invest 91: 301–307

    PubMed  CAS  Google Scholar 

  • Nawa H, Kotani H, Nakanishi S (1984) Tissue-specific generation of two preprotachykinin mRNAs from one gene by alternative RNA splicing. Nature 312: 729–734

    PubMed  CAS  Google Scholar 

  • Onaga T, Zabielski R, Kato S (2002) Multiple regulation of peptide YY secretion in the digestive tract. Peptides 23: 279–290

    PubMed  CAS  Google Scholar 

  • Otsuka M, Yoshioka K (1993) Neurotransmitter functions of mammalian tachykinins. Physiol Rev 73: 229–308

    PubMed  CAS  Google Scholar 

  • Palmieri FE, Ward PE (1983) Mesentery vascular metabolism of substance P. Biochim Biophys Acta 755: 522–525

    PubMed  CAS  Google Scholar 

  • Parker JC, Andrews KM, Rescek DM et al. (1989) Structure-function analysis of a series of glucagon-like peptide 1 analogs. J Peptide Res 52: 398–409

    Google Scholar 

  • Patel YC, Murthy KK, Escher EE, Banville D, Spiess J, Srikant CB (1990) Mechanism of action of somatostatin: An overview of receptor function and studies of the molecular characterization and purification of somatostatin receptor proteins. Metabolism 39Suppl 2: 63–69

    PubMed  CAS  Google Scholar 

  • Pedrazzini T, Seydoux J, Kunstner P, et al. (1998) Cardiovascular response, feeding behaviour and locomotor activity in mice lacking the NPY Y1 receptor. Nat Med 4: 722

    PubMed  CAS  Google Scholar 

  • Perley MJ, Kipnis DM (1967) Plasma insulin responses to oral and intravenous glucose: Studies in normal and diabetic subjects. J Clin Invest 46: 1954–1962

    PubMed  CAS  Google Scholar 

  • Peterson H, Solomon T, Grossman MI (1978) Effect of chronic pentagastrin, cholecystokinin, and secretin on pancreas of rats. Am J Physiol 234: E286–E293

    Google Scholar 

  • Pierce KL, Premont RT, Lefkowitz RJ (2002) Seven-transmembrane receptors. 3: 639–650

    CAS  Google Scholar 

  • Pitcher JA, Freedman NJ, Lefkowitz RJ (1998) G protein-coupled receptor kinases. Ann Rev Biochem 67: 653–692

    PubMed  CAS  Google Scholar 

  • Qu X, Xiao D, Weber HC (2003) Biologic relevance of mammalian bombesin like peptides and their receptors in human malignancies. Curr Opin Endocrinol Diabetes 10: 60–71

    CAS  Google Scholar 

  • Read NW, McFarlane A, Kinsman RI et al. (1984) Effect of infusion of nutrient solutions into the ileum on gastrointestinal transit and plasma levels of neurotensin and enteroglucagon. Gastroenterology 86: 274–280

    PubMed  CAS  Google Scholar 

  • Reubi JC (2003) Peptide receptors as molecular targets for cancer diagnosis and therapy. Endocrine Rev 24: 389–427

    CAS  Google Scholar 

  • Raulf F, Perez J, Hoyer D, Bruns C (1994) Differential expression of five somatostatin receptor subtypes, SSTR1-5, in the CNS and peripheral tissue. Digestion 55Suppl 3: 46–53

    PubMed  CAS  Google Scholar 

  • Regnier F (1983) High-performance liquid chromatography of biopolymers. Science 222: 245–252

    PubMed  CAS  Google Scholar 

  • Rehfeld JF (1998 a) How to measure cholecystokinin in tissue, plasma and cerebrospinal fluid. Regulatory Peptides 78: 31–39

    PubMed  CAS  Google Scholar 

  • Rehfeld JF (1998b) Processing of precursors of gastroenteropancreatic hormones: Diagnostic significance. J Mol Med 76: 338–345

    PubMed  CAS  Google Scholar 

  • Rehfeld JF (1998 c) The new biology of gastrointestinal hormones. Physiol Rev 78: 1087–1108

    PubMed  CAS  Google Scholar 

  • Rehfeld JF, Goetze JP (2003) The posttranslational phase of gene expression: New possibilities in molecular diagnosis. Curr Mol Med 3: 25–38

    PubMed  CAS  Google Scholar 

  • Rindi G, Ratineau C, Ronco A, Candusso ME, Tsai M, Leiter AB (1999) Targeted ablation of secretin-producing cells in transgenic mice reveals a common differentiation pathway with multiple enteroendocrine cell lineages in the small intestine. Development 126: 4149–4156

    PubMed  CAS  Google Scholar 

  • Rocca AS, Brubaker PL (1999) Role of the vagus nerve in mediating proximal nutrient-induced glucagon-like peptide-1 secretion. Endocrinology 140: 1687–1694

    PubMed  CAS  Google Scholar 

  • Rosenfeld MG, Mermod JJ, Amara SG et al. (1983) Production of a novel neuropeptide encoded by the calcitonin gene via tissue-specific RNA processing. Nature 304: 129–135

    PubMed  CAS  Google Scholar 

  • Ruiz-Grande C, Pintado J, Alarcon C, Castilla C, Valverde I, Lopez-Novoa JM (1990) Renal catabolism of human glucagon-like peptides 1 and 2. Can J Physiol Pharmacol 68: 1568–1573

    PubMed  CAS  Google Scholar 

  • Saad MF, Bernaba B, Hwu CM (2002) Insulin regulates plasma ghrelin concentration. J Clin Endocrinol Metab 87: 3997–4000

    PubMed  CAS  Google Scholar 

  • Schäfer G, Nau R, Cole T, Conlon M (1986) Specific binding and proteolytic inactivation of bradykinin by membrane vesicles from pig intestinal smooth muscle. Biochem Pharmacol 35: 3719–3725

    PubMed  Google Scholar 

  • Schirra J, Göke B (2005) The physiological role of GLP-1 in human: Incretin, ileal brake or more ? Reg Peptides: 128: 109–115

    CAS  Google Scholar 

  • Schirra J, Katschinski M, Weidmann C, Schäfer T, Wank U, Arnold R, Göke B (1996) Gastric emptying and release of incretin hormones after glucose ingestion in humans. J Clin Invest 97: 92–103

    PubMed  CAS  Google Scholar 

  • Schirra J, Stumm K, Leicht P, Arnold R, Göke B, Katschinski M (1998) Exendin (9-39) amide is an antagonist of glucagon-like peptide 1 (7-36) amide in human. J Clin Invest 101: 1421–1430

    PubMed  CAS  Google Scholar 

  • Schirra J, Houk P, Wank U, Arnold R, Göke B, Katschinski M (2000) Effects of glucagon-like peptide-1 (7-36) amide on antro-pyloro-duodenal motility in the interdigestive state and with duodenal lipid perfusion in humans. Gut 56: 622–631

    Google Scholar 

  • Schmidt WE, Bojko JB (1999) Regulation of gastric acid secretion. In: HG Greeley (ed) Gastrointestinal endocrinology. Humana, Totowa, NJ, pp 353–391

    Google Scholar 

  • Schwartz GJ (2000) The role of gastrointestinal vagal afferents in the control of food intake; current prospects. Nutrition 16: 866–873

    PubMed  CAS  Google Scholar 

  • Schwartz TW (1986) The processing of peptide precursors. „Proline-directed arginyl cleavage“ and other monobasic processing mechanisms. FEBS Lett 200: 1–10

    PubMed  CAS  Google Scholar 

  • Severini C, Improta G, Falonieri-Erspamer G, Salvadiri S, Erspamer V (2002) The tachykinine peptide family. Pharmacol Rev 54: 285–322

    PubMed  CAS  Google Scholar 

  • Sherwood NM, Krueckl SL, McRoy JE (2000) The origin and function of the pituitary adenylate cyclase-activating polypeptide (PACAP)/glucagons superfamiliy. Endocrine Reviews 21: 619–670

    PubMed  CAS  Google Scholar 

  • Smith JP, Solomon TE, Bagheri S, Kramer S (1990) Cholecystokinin stimulates growth of human pancreatic adenocarcinoma. Dig Dis Sci 35: 1377–1384

    PubMed  CAS  Google Scholar 

  • Smith RG et al. (1997) Peptidomimetic regulation of growth hormone secretion. Endocr Rev 18: 621–645

    PubMed  CAS  Google Scholar 

  • Solomon TE, Vanier M, Morisset (1983) Cell site and time course of DNA synthesis in pancreas after caerulein and secretin. Am J Physiol 245: G99–G105

    PubMed  CAS  Google Scholar 

  • Spannagel AW, Green GM, Guan D, Liddle RA, Faull K, Reeve JR (1996) Purification and characterization of a luminal cholecystokinin-releasing factor from rat intestinal secretion. Proc Natl Acad Sci USA 93: 4415–4420

    PubMed  CAS  Google Scholar 

  • Spengler B, Kirsch D, Kaufmann R, Jaeger E (1992) Peptide sequencing by matrix-assisted laser-desorption mass spectrometrie. Rapid Commun Mass Spec 6: 105–108

    CAS  Google Scholar 

  • Spiegel K, Tasali E, Penev P, Cauter EV (2004) Sleep curtailment in healthy young men is associated with decreased leptin levels, elevated ghrelin levels, and increased hunger and appetite. Ann Intern Med 141: 846–850

    PubMed  Google Scholar 

  • Spiller RC, Trotman IF, Higgins BE et al. (1984) The ileal brake inhibition of jejunal motility after ileal fat perfusion in man. Gut 25: 365–374

    PubMed  CAS  Google Scholar 

  • Sporn MB, Roberts AB (1985) Autocrine growth factors and cancer. Nature 313: 745–747

    PubMed  CAS  Google Scholar 

  • Sussman KE, Vaughan GD, Timmer RF (1966) An in vitro method for studying insulin secretion in the perfused isolated rat pancreas. Metabolism 15: 466–476

    PubMed  CAS  Google Scholar 

  • Takahashi Y, Fukushige S, Murotsu T, Matsubara K (1986) Structure of human cholecystokinine gene and its chromosomal location. Gene 50: 353–360

    PubMed  CAS  Google Scholar 

  • Takeda J, Seino Y, Tanaka K et al. (1987) Sequence of an intestinal cDNA encoding human gastric inhibitory polypeptide precursor. Proc Natl Acad Sci USA 84: 7005–7008

    PubMed  CAS  Google Scholar 

  • Thomas RP, Hellmich MR, Townsend CM, Evers BM (2003) Role of gastrointestinal hormones in the proliferation of normal and neoplastic tissues. Endocrine Reviews 24: 571–599

    PubMed  CAS  Google Scholar 

  • Thorburn CM, Friedman GD, Dickinson CJ, Vogelman JH, Orentreich N, Parsonnet J (1998) Gastrin and colorectal cancer: A prospective study. Gastroenterology 115: 275–280

    PubMed  CAS  Google Scholar 

  • Trimble ER, Bruzzone R, Biden TJ, Meehan CJ, Andreu D, Merrifeld RB (1987) Secretin stimulates cyclic AMP and inositol triphosphate production in rat pancreatic acinar tissue by two fully independent mechanisms. Proc Natl Acad Sci USA 84: 3146–3150

    PubMed  CAS  Google Scholar 

  • Trümper A, Trümper K, Trusheim H, Arnold R, Göke B, Hörsch D (2001) Glucose-dependent insulinotropic poly-peptide is a growth factor for beta (INS-1) cells by pleiotropic signaling. Mol Endocrinol 15: 1559–1570

    PubMed  Google Scholar 

  • Tschöp M, Wexer C, Tataranni PA, Devanarayan V, Ravussin E, Heiman ML (2001) Circulating ghrelin levels are decreased in human obesity. Diabetes 50: 707–709

    PubMed  Google Scholar 

  • Tseng CC, Kieffer TJ, Jarboe LA, Usdin TB, Wolfe MM (1996) Postprandial stimulation of insulin release by glucose-dependent insulinotropic polypeptide (GIP). Effect of a specific glucose-dependent insulinotropic polypeptide receptor antagonist in the rat. J Clin Invest 98(11): 2440–2445

    PubMed  CAS  Google Scholar 

  • Turton MD, O’Shea D, Gunn I et al. (1996) A role for glucagon-like peptide 1 in the central regulation of feeding. Nature 379: 69–72

    PubMed  CAS  Google Scholar 

  • Ueno N, Inui A, Iwamoto M et al. (1999) Decreased food intake and body weight in pancreatic polypeptide-overexpressing mice. Gastroenterology 117: 1427–1432

    PubMed  CAS  Google Scholar 

  • Unger RH, Ketterer H, Eisentraut AM (1966) Distribution of immunoassayable glucagon in gastrointestinal tissues. Metabolism 15: 865–867

    PubMed  CAS  Google Scholar 

  • Urosawa IA, Farilla L, Hui H, D’Amico E, Perfetti R (2004) GLP-1 inhibition of pancreatic islet cell apoptosis. Trends Endocrinol Metab 15: 27–33

    Google Scholar 

  • Usdin TB, Mezey E, Button DC, Brownstein MJ, Bonner TI (1993) Gastric inhibitory polypeptide receptor, a member of the secretin-vasoactive intestinal peptide receptor family, is widely distributed in peripheral organs and the brain. Endocrinology 133: 2861–2870

    PubMed  CAS  Google Scholar 

  • Valenzuela JE, Schubert T, Fogel MR et al. (1989) A multicenter, randomized, double-blind trial of somatostatin in the management of acute hemorrhage from esophageal varices. Hepatology 10: 958–961

    PubMed  CAS  Google Scholar 

  • Varner AA, Modlin IM, Walsh JH (1981) High potency of bombesin for stimulation of human gastrin release and gastric acid secretion. Regul Pept 1: 289–296

    PubMed  CAS  Google Scholar 

  • Vilsboll T, Krarup T, Deacon CF, Madsbad S, Hoist JJ (2001) Reduced postprandial concentrations of intact biologically active glucagon-like peptide 1 in type 2 diabetic patients. Diabetes 50(3): 609–613

    PubMed  CAS  Google Scholar 

  • Walsh JH (1993) Gastrointestinal hormones: Past, present, and future. Gastroenterology 104: 653–657

    Google Scholar 

  • Wang TC, Brand SJ (1992) Function and regulation of gastrin in transfenic mice: a review. Yale J Biol Med 65: 705–713

    PubMed  CAS  Google Scholar 

  • Wang Y, Prpic V, Green GM, Reeve JR, Liddle RA (2002) Luminal CCK-releasing factor stimulates CCK release from human intestinal endocrine and STC-1 cells. Am J Physiol Gastrointest Liver Physiol 282: G16–G22

    PubMed  CAS  Google Scholar 

  • Ward PE, Sheridan MA, Hammon KJ, Erdos EG (1980) Angiotensin I converting enzyme (kininase II) of the brush border of human and swine intestine. Biochem Pharmacol 29: 1525–1529

    PubMed  CAS  Google Scholar 

  • Wen J, Phillips SE, Sarr MG et al. (1995) PYY and GLP-1 contribute to feedback inhibition from the canine ileum and colon. Am J Physiol 169: G945–952

    Google Scholar 

  • Wettergren A, Wojdemann M, Hoist JJ (1998) Glucagon-like peptide 1 inhibits gastropancreatic function by inhibiting central parasympathetic outflow. Am J Physiol 275: G984–992

    PubMed  CAS  Google Scholar 

  • Williams JA (2001) Intracellular signalling mechanisms activated by cholecystokinin-regulating synthesis and secretion of digestive enzymes in pancreatic acinar cells. Annu Rev Physiol 63: 77–97

    PubMed  CAS  Google Scholar 

  • Wobus AM (2003) Zellkulturtechniken, Zellmodelle und Tissue Engineering. In: Ganten D, Ruckpaul K (Hrsg) Grundlagen der Molekularen Medizin, Springer, Berlin Heidelberg, S 255–291

    Google Scholar 

  • Wolfe MM, Song DH, Jepeal LI, Moore TC (2003) Gastrin peptides: Pathophysiologic role in gastrointestinal carcinogenesis. Curr Opin Endocrinol Diabetes 10: 39–49

    CAS  Google Scholar 

  • Wynick D, Anderson JV, Williams SJ, Bloom SR (1989) Resistance to metastatic pancreatic endocrine tumours after long-term treatment with the somatostatin analogue octreotide (SMS 201-995). Clin Endocrinol (Oxf) 30: 385–388

    CAS  Google Scholar 

  • Xiao Q, Boushey RP, Drucker DJ, Brubaker PL (1999) Secretion of the intestinotropic hormone glucagon-like peptide 2 is differentially regulated by nutrients in humans. Gastroenterology 117: 99–105

    PubMed  CAS  Google Scholar 

  • Xiao Q, Boushey RP, Cino M, Drucker DJ, Brukaber PL (2000) Circulating levels of glucagon-like peptide 2 in human subjects with inflammatory bowel disease. Am J Physiol 278: R1057–1063

    CAS  Google Scholar 

  • Xu G, Staffers DA, Habener JF, Bonner-Weir S (1999) Exendin-4 stimulates both beta-cell replication and neogenesis, resulting in increased beta-cell mass and improved glucose tolerance in diabetic rats. Diabetes 48(12): 2270–2276

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Göke, B., de Heer, J., Göke, R. (2006). Gastrointestinale Hormonsysteme und ihre Regulation. In: Ganten, D., Ruckpaul, K., Köhrle, J. (eds) Molekularmedizinische Grundlagen von para- und autokrinen Regulationsstörungen. Molekulare Medizin. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-28782-5_11

Download citation

Publish with us

Policies and ethics