Skip to main content

Human Connexins in Skin Development and Skin Disorders

  • Chapter
Gap Junctions in Development and Disease

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alvarez A, Del Castillo I, Pera A, Villamar M, Moreno-Pelayo MA, Moreno F, Moreno R, Tapia MC (2003) De novo mutation in the gene encoding connexin-26 (GJB2) in a sporadic case of keratitis-ichthyosis-deafness (KID) syndrome. Am J Med Genet 117A:89–91

    Article  Google Scholar 

  • Arita K, Akiyama M, Tsuji Y, McMillan JR, Eady RA, Shimizu H (2002) Changes in gap junction distribution and connexin expression pattern during human fetal skin development. J Histochem Cytochem 50:1493–1500

    PubMed  Google Scholar 

  • Arita K, Akiyama M, Tsuji Y, Onozuka T, Shimizu H (2003) Erythrokeratoderma variabilis without connexin 31 or connexin 30.3 gene mutation: immunohistological, ultrastructural and genetic studies. Acta Derm Venereol 83:266–270

    Article  PubMed  Google Scholar 

  • Bakirtzis G, Choudhry R, Aasen T, Shore L, Brown K, Bryson S, Forrow S, Tetley L, Finbow M, Greenhalgh D, Hodgins M (2003) Targeted epidermal expression of mutant Connexin 26(D66H) mimics true Vohwinkel syndrome and provides a model for the pathogenesis of dominant connexin disorders. Hum Mol Genet 12:1737–1744

    PubMed  Google Scholar 

  • Bart RS, Pumphrey RE (1967) Knuckle pads, leukonychia and deafness. A dominantly inherited syndrome. N Engl J Med 276:202–207

    PubMed  Google Scholar 

  • Brandner JM, Houdek P, Husing B, Kaiser C, Moll I (2004) Connexins 26, 30, and 43: differences among spontaneous, chronic, and accelerated human wound healing. J Invest Dermatol 122:1310–1320

    Article  PubMed  Google Scholar 

  • Brown CW, Levy ML, Flaitz CM, Reid BS, Manolidis S, Hebert AA, Bender MM, Heilstedt HA, Plunkett KS, Fang P, Roa BB, Chung P, Tang HY, Richard G, Alford RL (2003) A novel GJB2 (connexin 26) mutation, F142L, in a patient with unusual mucocutaneous findings and deafness. J Invest Dermatol 121:1221–1223

    Article  PubMed  Google Scholar 

  • Butterweck A, Elfgang K, Willeke K, Traub O (1994) Differential expression of the gap junction proteins connexin45,-43,-40,-31, and-26 in mouse skin. Eur J Cell Biol 65:152–163

    PubMed  Google Scholar 

  • Caceres-Rios H, Tamayo-Sanchez L, Duran-Mckinster C, de la Luz Orozco M, Ruiz-Maldonado R (1996) Keratitis, ichthyosis, and deafness (KID syndrome): review of the literature and proposal of a new terminology. Pediatr Dermatol 13:105–113

    PubMed  Google Scholar 

  • Camisa C, Rossana C (1984) Variant of keratoderma hereditaria mutilans (Vohwinkel’s syndrome). Treatment with orally administered isotretinoin. Arch Dermatol 120:1323–1328

    Article  PubMed  Google Scholar 

  • Choudhry R, Pitts JD, Hodgins MB (1997) Changing patterns of gap junctional intercellular communication and connexin distribution in mouse epidermis and hair follicles during embryonic development. Dev Dyn 210:417–430

    PubMed  Google Scholar 

  • Coffey KL, Krushinsky A, Green CR, Donaldson PJ (2002) Molecular profiling and cellular localization of connexin isoforms in the rat ciliary epithelium. Exp Eye Res 75:9–21

    Article  PubMed  Google Scholar 

  • Common JE, Becker D, Di WL, Leigh IM, O’Toole EA, Kelsell DP (2002) Functional studies of human skin disease-and deafness-associated connexin 30mutations. Biochem Biophys Res Commun 298:651–656

    Article  PubMed  Google Scholar 

  • Common JE, Di WL, Davies D, Galvin H, Leigh IM, O’Toole EA, Kelsell DP (2003) Cellular mechanisms of mutant connexins in skin disease and hearing loss. Cell Commun Adhes 10:347–351

    PubMed  Google Scholar 

  • Common JE, Di WL, Davies D, Kelsell DP (2004) Further evidence for heterozygote advantage of GJB2 deafness mutations: a link with cell survival. J Med Genet 41:573–575

    Article  PubMed  Google Scholar 

  • Coutinho P, Qiu C, Frank S, Tamber K, Becker D (2003) Dynamic changes in connexin expression correlate with key events in the wound healing process. Cell Biol Int 27:525–541

    Article  PubMed  Google Scholar 

  • del Castillo I, Villamar M, Moreno-Pelayo MA, del Castillo FJ, Alvarez A, Telleria D, Menendez I, Moreno F (2002) A deletion involving the connexin 30 gene in nonsyndromic hearing impairment. N Engl J Med 346:243–249.

    Article  PubMed  Google Scholar 

  • Di WL, Rugg EL, Leigh IM, Kelsell DP (2001) Multiple epidermal connexins are expressed in different keratinocyte subpopulations including connexin 31. J Invest Dermatol 117:958–964

    PubMed  Google Scholar 

  • Di WL, Monypenny J, Common JE, Kennedy CT, Holland KA, Leigh IM, Rugg EL, Zicha D, Kelsell DP (2002) Defective trafficking and cell death is characteristic of skin disease-associated connexin 31 mutations. Hum Mol Genet 11:2005–2014

    Article  PubMed  Google Scholar 

  • Diestel S, Richard G, Doring B, Traub O (2002) Expression of a connexin31 mutation causing erythrokeratodermia variabilis is lethal for HeLa cells. Biochem Biophys Res Commun 296:721–728

    PubMed  Google Scholar 

  • Essenfelder GM, Bruzzone R, Lamartine J, Charollais A, Blanchet-Bardon C, Barbe MT, Meda P, Waksman G (2004) Connexin30 mutations responsible for hidrotic ectodermal dysplasia cause abnormal hemichannel activity. Hum Mol Genet 13:1703–1714

    Article  PubMed  Google Scholar 

  • Feldmeyer L, Plantard L, Mevorah B, Huber M, Hohl D (2005) Novel mutation of connexin31 causing erythrokeratodermia variabilis. Br J Dermatol 152:1072–1074

    PubMed  Google Scholar 

  • Fonseca PC, Nihei OK, Urban-Maldonado M, Abreu S, De Carvalho AC, Spray DC, Savino W, Alves LA (2004) Characterization of connexin 30.3 and 43 in thymocytes. Immunol Lett 94:65–75

    Article  PubMed  Google Scholar 

  • Forge A, Marziano NK, Casalotti SO, Becker DL, Jagger D (2003b) The inner ear contains heteromeric channels composed of cx26 and cx30 and deafness-related mutations in cx26 have a dominant negative effect on cx30. Cell Commun Adhes 10:341–346

    PubMed  Google Scholar 

  • Gabriel HD, Strobl B, Hellmann P, Buettner R, Winterhager E (2001) Organization and regulation of the rat Cx31 gene. Implication for a crucial role of the intron region. Eur J Biochem 268:1749–1759

    Article  PubMed  Google Scholar 

  • Goldberg GS, Lampe PD, Nicholson BJ (1999) Selective transfer of endogenous metabolites through gap junctions composed of different connexins. Nat Cell Biol 1:457–459

    Article  PubMed  Google Scholar 

  • Goliger JA, Paul DL (1994) Expression of gap junction proteins cx26, cx31.1, cx37, and cx43 in developing and mature rat epidermis. Dev Dyn 200:1–13

    PubMed  Google Scholar 

  • Goliger JA, Paul DL (1995) Wounding alters epidermal connexin expression and gap junction-mediated intercellular communication. Mol Biol Cell 6:1491–1501

    PubMed  Google Scholar 

  • Goodenough DA, Paul DL (2003) Beyond the gap: functions of unpaired connexon channels. Nat Rev Mol Cell Biol 4:285–294

    Article  PubMed  Google Scholar 

  • Goodenough DA, Goliger JA, Paul DL (1996) Connexins, connexons, and intercellular communication. Annu Rev Biochem 65:475–502

    Article  PubMed  Google Scholar 

  • Gorlin RJ, Cohen MMJ, Hennekam RCM (2001) Oculodentoosseous dysplasia (oculodentodigital syndrome). Syndromes of the head and neck. Oxford University Press, New York, pp 234–235

    Google Scholar 

  • Gottfried I, Landau M, Glaser F, Di WL, Ophir J, Mevorah B, Ben-Tal N, Kelsell DP, Avraham KB (2002) A mutation in GJB3 is associated with recessive erythrokeratodermia variabilis (EKV) and leads to defective trafficking of the connexin 31 protein. Hum Mol Genet 11:1311–1316

    Article  PubMed  Google Scholar 

  • Grifa A, Wagner CA, D’Ambrosio L, Melchionda S, Bernardi F, Lopez-Bigas N, Rabionet R, Arbones M, Monica MD, Estivill X, Zelante L, Lang F, Gasparini P (1999) Mutations in GJB6 cause nonsyndromic autosomal dominant deafness at DFNA3 locus. Nat Genet 23:16–18

    PubMed  Google Scholar 

  • Heathcote K, Syrris P, Carter ND, Patton MA (2000) A connexin 26 mutation causes a syndrome of sensorineural hearing loss and palmoplantar hyperkeratosis (MIM 148350). J Med Genet 37:50–51

    Article  PubMed  Google Scholar 

  • Hentula M, Peltonen J, Peltonen S (2001) Expression profiles of cell-cell and cell-matrix junction proteins in developing human epidermis. Arch Dermatol Res 293:259–267

    Article  PubMed  Google Scholar 

  • Holbrook KA (1979) Human epidermal embryogenesis. Int J Dermatol 18:329–356

    PubMed  Google Scholar 

  • Holbrook KA, Odland GF (1975) The fine structure of developing human epidermis: light, scanning, and transmission electron microscopy of the periderm. J Invest Dermatol 65:16–38

    Article  PubMed  Google Scholar 

  • Iguchi M, Hara M, Manome H, Kobayasi H, Tagami H, Aiba S (2003) Communication network in the follicular papilla and connective tissue sheath through gap junctions in human hair follicles. Exp Dermatol 12:283–288

    Article  PubMed  Google Scholar 

  • Ishida-Yamamoto A (2003) Loricrin keratoderma: a novel disease entity characterized by nuclear accumulation of mutant loricrin. J Dermatol Sci 31:3–8

    Article  PubMed  Google Scholar 

  • Ishida-Yamamoto A, Kelsell D, Common J, Houseman MJ, Hashimoto M, Shibaki H, Asano K, Takahashi H, Hashimoto Y, Senshu T, Leigh IM, Iizuka H (2000) A case of erythrokeratoderma variabilis without mutations in connexin 31. Br J Dermatol 143:1283–1287

    Article  PubMed  Google Scholar 

  • Jan AY, Amin S, Ratajczak P, Richard G, Sybert VP (2004) Genetic heterogeneity of KID syndrome: identification of aCx30 gene (GJB6) mutation in a patient with KID syndrome and congenital atrichia. J Invest Dermatol 122:1108–1113

    PubMed  Google Scholar 

  • Juneja SC (2003) mRNA expression pattern of multiple members of connexin gene family in normal and abnormal fetal gonads in mouse. Indian J Physiol Pharmacol 47:147–156

    PubMed  Google Scholar 

  • Jungbluth S, Willecke K, Champagnat J (2002) Segment-specific expression of connexin31 in the embryonic hindbrain is regulated by Krox20. Dev Dyn 223:544–551

    Article  PubMed  Google Scholar 

  • Kellermayer R, Keller M, Ratajczak P, Richardson PE, Harangi F, Mérei E, Melegh B, Kosztolányi G, Richard G (2005) Bigenic connexin mutations in a patient with hidrotic ectodermal dysplasia. Eur J Dermatol 15:75–79

    Article  PubMed  Google Scholar 

  • Kelsell DP, Wilgoss AL, Richard G, Stevens HP, Munro CS, Leigh IM (2000) Connexin mutations associated with palmoplantar keratoderma and profound deafness in a single family. Eur J Hum Genet 8:141–144

    Article  PubMed  Google Scholar 

  • Kibar Z, Der Kaloustian VM, Brais B, Hani V, Fraser FC, Rouleau GA (1996) The gene responsible for Clouston hidrotic ectodermal dysplasia maps to the pericentromeric region of chromosome 13q. Hum Mol Genet 5:543–547

    Article  PubMed  Google Scholar 

  • Kimyai-Asadi A, Kotcher LB, Jih MH (2002) The molecular basis of hereditary palmoplantar keratodermas. J Am Acad Dermatol 47:327–343

    Article  PubMed  Google Scholar 

  • Kjaer KW, Hansen L, Eiberg H, Leicht P, Opitz JM, Tommerup N (2004) Novel Connexin 43 (GJA1) mutation causes oculo-dento-digital dysplasia with curly hair. Am J Med Genet 127A:152–157

    Article  Google Scholar 

  • Kretz M, Euwens C, Hombach S, Eckardt D, Teubner B, Traub O, Willecke K, Ott T (2003) Altered connexin expression and wound healing in the epidermis of connexin-deficient mice. J Cell Sci 116:3443–3452

    Article  PubMed  Google Scholar 

  • Labarthe MP, Bosco D, Saurat JH, Meda P, Salomon D (1998) Upregulation of connexin 26 between keratinocytes of psoriatic lesions. J Invest Dermatol 111:72–76

    Article  PubMed  Google Scholar 

  • Lagree V, Brunschwig K, Lopez P, Gilula NB, Richard G, Falk MM(2003) Specific amino-acid residues in the N-terminus and TM3 implicated in channel function and oligomerization compatibility of connexin43. J Cell Sci 116:3189–3201

    Article  PubMed  Google Scholar 

  • Lamartine J, Munhoz Essenfelder G, Kibar Z et al. (2000) Mutations in GJB6 cause hidrotic ectodermal dysplasia. Nat Genet 26:142–144

    Article  PubMed  Google Scholar 

  • Lerer I, Sagi M, Ben-Neriah Z, Wang T, Levi H, Abeliovich D (2001) A deletion mutation in GJB6 cooperating with a GJB2 mutation in trans in non-syndromic deafness: A novel founder mutation in Ashkenazi Jews. Hum Mutat 18:460

    Article  Google Scholar 

  • Liu XZ, Xia XJ, Xu LR, Pandya A, Liang CY, Blanton SH, Brown SD, Steel KP, Nance WE (2000) Mutations in connexin31 underlie recessive as well as dominant non-syndromic hearing loss. Hum Mol Genet 9:63–67

    Article  PubMed  Google Scholar 

  • Loffeld A, Kelsell DP (2000) Palmoplantar kerato-derma and sensorineural deafness in an 8-year-old boy: a case report. Br J Dermatol 143:A38

    Google Scholar 

  • Lopez-Bigas N, Rabionet R, Martinez E, Banchs I, Volpini V, Vance JM, Arbones ML, Estivill X (2000) Identification of seven novel SNPS (five nucleotide and two amino acid substitutions) in the connexin31 (GJB3) gene. Hum Mutat 15:481–482

    Article  Google Scholar 

  • Lopez-Bigas N, Olive M, Rabionet R, Ben-David O, Martinez-Matos JA, Bravo O, Banchs I, Volpini V, Gasparini P, Avraham KB, Ferrer I, Arbones ML, Estivill X (2001a) Connexin 31 (GJB3) is expressed in the peripheral and auditory nerves and causes neuropathy and hearing impairment. Hum Mol Genet 10:947–952

    Article  PubMed  Google Scholar 

  • Lopez-Bigas N, Rabionet R, Arbones ML, Estivill X (2001b) R32 W variant in Connexin 31: mutation or polymorphism for deafness and skin disease? Eur J Hum Genet 9:70

    Article  PubMed  Google Scholar 

  • Lopez-Bigas N, Melchionda S, Gasparini P, Borragan A, Arbones ML, Estivill X (2002) A common frameshift mutation and other variants in GJB4 (connexin 30.3): Analysis of hearing impairment families. Hum Mutat 19:458

    Article  Google Scholar 

  • Lucke T, Choudhry R, Thom R, Selmer IS, Burden AD, Hodgins MB (1999) Upregulation of connexin 26 is a feature of keratinocyte differentiation in hyperproliferative epidermis, vaginal epithelium, and buccal epithelium. J Invest Dermatol 112:354–361

    Article  PubMed  Google Scholar 

  • Macari F, Landau M, Cousin P, Mevorah B, Brenner S, Panizzon R, Schorderet DF, Hohl D, Huber M (2000) Mutation in the gene for connexin 30.3 in a family with erythrokeratodermia variabilis. Am J Hum Genet 67:1296–1301

    PubMed  Google Scholar 

  • MacFarlane AW, Chapman SJ, Verbov JL (1991) Is erythrokeratoderma one disorder? A clinical and ultrastructural study of two siblings. Br J Dermatol 124:487–491

    PubMed  Google Scholar 

  • Maestrini E, Korge BP, Ocana-Sierra J, Calzolari E, Cambiaghi S, Scudder PM, Hovnanian A, Monaco AP, Munro CS (1999) A missense mutation in connexin26, D66H, causes mutilating keratoderma with sensorineural deafness (Vohwinkel’s syndrome) in three unrelated families. Hum Mol Genet 8:1237–1243

    Article  PubMed  Google Scholar 

  • Maestrini E, Monaco AP, McGrath JA, Ishida-Yamamoto A, Camisa C, Hovnanian A, Weeks DE, Lathrop M, Uitto J, Christiano AM (1996) A molecular defect in loricrin, the major component of the cornified cell envelope, underlies Vohwinkel’s syndrome. Nat Genet 13:70–77

    Article  PubMed  Google Scholar 

  • Martin PE, Coleman LS, Casalotti SO, Forge A, Evans WH (1999) Properties of connexin26 gap junctional proteins derived from mutations associated with non-syndromal hereditary deafness. Hum Mol Genet 8:2369–2376

    Article  PubMed  Google Scholar 

  • Marziano NK, Casalotti SO, Portelli AE, Becker DL, Forge A (2003) Mutations in the gene for connexin 26 (GJB2) that cause hearing loss have a dominant negative effect on connexin 30. Hum Mol Genet 12:805–812

    Article  PubMed  Google Scholar 

  • Masuda M, Usami S, Yamazaki K, Takumi Y, Shinkawa H, Kurashima K, Kunihiro T, Kanzaki J (2001) Connexin 26 distribution in gap junctions between melanocytes in the human vestibular dark cell area. Anat Rec 262:137–146

    Article  PubMed  Google Scholar 

  • Mendes da Costa S (1925) Erythro-et keratodermia variabilis in a mother and a daughter. Acta Derm Venerol 6:255–261

    Google Scholar 

  • Montgomery JR, White TW, Martin BL, Turner ML, Holland SM (2004) A novel connexin 26 gene mutation associated with features of the keratitis-ichthyosis-deafness syndrome and the follicular occlusion triad. J Am Acad Dermatol 51:377–382

    Article  PubMed  Google Scholar 

  • Morley SM, White MI, Rogers M, Wasserman D, Ratajczak P, McLean WHI, Richard G (2005) A new, recurrent mutation of GJB3 (Cx31) in erythrokeratodermia variabilis. Br J Dermatol 152:1143–1148

    Article  PubMed  Google Scholar 

  • Nance WE (2003) The genetics of deafness. Ment Retard Dev Disabil Res Rev 9:109–119

    Article  PubMed  Google Scholar 

  • Niessen H, Harz H, Bedner P, Kramer K, Willecke K (2000) Selective permeability of different connexin channels to the second messenger inositol 1,4,5-trisphosphate. J Cell Sci 113:1365–1372

    PubMed  Google Scholar 

  • Oshima A, Doi T, Mitsuoka K, Maeda S, Fujiyoshi Y (2003) Roles ofM34, C64, and R75 in the assembly of human connexin 26: Implication for key amino acid residues for channel formation and function. J Biol Chem 278:1807–1816.

    Article  PubMed  Google Scholar 

  • Paznekas WA, Boyadjiev SA, Shapiro RE, Daniels O, Wollnik B, Keegan CE, Innis JW, Dinulos MB, Christian C, Hannibal MC, Jabs EW (2003) Connexin 43 (GJA1)mutations cause the pleiotropic phenotype of oculodentodigital dysplasia. Am J Hum Genet 72:408–418

    Article  PubMed  Google Scholar 

  • Pizzuti A, Flex E, Mingarelli R, Salpietro C, Zelante L, Dallapiccola B (2004) A homozygous GJA1 gene mutation causes a Hallermann-Streiff/ODDD spectrum phenotype. Hum Mutat 23:286

    Article  Google Scholar 

  • Plantard L, Huber M, Macari F, Meda P, Hohl D (2003) Molecular interaction of connexin 30.3 and connexin 31 suggests a dominant-negative mechanism associated with erythrokeratodermia variabilis. Hum Mol Genet 12:3287–3294

    Article  PubMed  Google Scholar 

  • Qiu C, Coutinho P, Frank S, Franke S, Law LY, Martin P, Green CR, Becker DL (2003) Targeting connexin43 expression accelerates the rate of wound repair. Curr Biol 13:1697–1703

    Article  PubMed  Google Scholar 

  • Quist AP, Rhee SK, Lin H, Lal R (2000) Physiological role of gap-junctional hemichannels. Extracellular calcium-dependent isosmotic volume regulation. J Cell Biol 148:1063–1074

    Article  PubMed  Google Scholar 

  • Rajagopalan K, Tay CH (1977) Hidrotic ectodermal dysplasia: study of a large Chinese pedigree. Arch Dermatol 113:481–485

    Article  PubMed  Google Scholar 

  • Ramer JC, Vasily DB, Ladda RL (1994) Familial leuconychia, knuckle pads, hearing loss, and palmoplantar hyperkeratosis: an additional family with Bart-Pumphrey syndrome. J Med Genet 31:68–71

    PubMed  Google Scholar 

  • Rappaport IP, Goldes JA, Goltz RW (1986) Erythrokeratodermia variabilis treated with isotretinoin. A clinical, histologic, and ultrastructural study. Arch Dermatol 122:441–445

    Article  PubMed  Google Scholar 

  • Ressot C, Bruzzone R (2000) Connexin channels in Schwann cells and the development of the X-linked form of Charcot-Marie-Tooth disease. Brain Res Brain Res Rev 32:192–202

    Article  PubMed  Google Scholar 

  • Richard G (2003) Ichthyosis and disorders of keratinization. In: Schachner LA, Hansen RC (eds) Pediatric dermatology. Mosby, New York, pp 385–445

    Google Scholar 

  • Richard G (2005) Erythrokeratodermia variabilis: an update on clinics and genetics. G Ital Dermatol Venereol, in press

    Google Scholar 

  • Richard G, Andreoli JM, Compton JG (1997a) Expression of epidermal connexins in erythrokeratodermia variabilis (EKV) and normal skin. J Invest Dermatol 108:587

    Google Scholar 

  • Richard G, Lin JP, Smith L, Whyte YM, Itin P, Wollina U, Epstein E, Jr., Hohl D, Giroux JM, Charnas L, Bale SJ, DiGiovanna JJ (1997b) Linkage studies in erythrokeratodermias: fine mapping, genetic heterogeneity and analysis of candidate genes. J Invest Dermatol 109:666–671

    Article  PubMed  Google Scholar 

  • Richard G, Smith LE, Bailey RA, Itin P, Hohl D, Epstein J, E.H., DiGiovanna JJ, Compton JG, Bale SJ (1998a) Mutations in the human connexin gene GJB3 cause erythrokeratodermia variabilis. Nat Genet 20:366–369

    Article  PubMed  Google Scholar 

  • Richard G, White TW, Smith LE, Bailey RA, Compton JG, Paul DL, Bale SJ (1998b) Functional defects of Cx26 resulting from a heterozygous missense mutation in a family with dominant deaf-mutism and palmoplantar keratoderma. Hum Genet 103:393–399

    Article  PubMed  Google Scholar 

  • Richard G, Brown N, Smith LE, Terrinoni A, Melino G, Mackie RM, Bale SJ, Uitto J (2000) The spectrum of mutations in erythrokeratodermias — novel and de novo mutations in GJB3. Hum Genet 106:321–329

    Article  PubMed  Google Scholar 

  • Richard G, Rouan F, Willoughby CE, Brown N, Chung P, Ryynanen M, Jabs EW, Bale SJ, DiGiovanna JJ, Uitto J, Russell L (2002) Missense mutations in GJB2 encoding connexin-26 cause the ectodermal dysplasia keratitis-ichthyosis-deafness syndrome. Am J Hum Genet 70:1341–1348

    Article  PubMed  Google Scholar 

  • Richard G, Brown N, Rouan F, Van der Schroeff JG, Bijlsma E, Eichenfield LF, Sybert VP, Greer KE, Hogan P, Campanelli C, Compton JG, Bale SJ, DiGiovanna JJ, Uitto J (2003) Genetic heterogeneity in erythrokeratodermia variabilis: novel mutations in the connexin gene GJB4 (Cx30.3) and genotype-phenotype correlations. J Invest Dermatol 120:601–609

    Article  PubMed  Google Scholar 

  • Richard G, Brown N, Ishida-Yamamoto A, Krol A (2004) Expanding the phenotypic spectrum of Cx26 disorders: Bart-Pumphrey syndrome is caused by a novel missense mutation in GJB2. J Invest Dermatol 123:856–863

    Article  PubMed  Google Scholar 

  • Richardson R, Donnai D, Meire F, Dixon MJ (2004) Expression of Gja1 correlates with the phenotype observed in oculodentodigital syndrome/type III syndactyly. J Med Genet 41:60–67

    Article  PubMed  Google Scholar 

  • Rivas MV, Jarvis ED, Morisaki S, Carbonaro H, Gottlieb AB, Krueger JG (1997) Identification of aberrantly regulated genes in diseased skin using the cDNA differential display technique. J Invest Dermatol 108:188–194

    Article  PubMed  Google Scholar 

  • Rouan F, White TW, Brown N, Taylor AM, Lucke TW, Paul DL, Munro CS, Uitto J, Hodgins MB, Richard G (2001) trans-dominant inhibition of connexin-43 by mutant connexin-26: implications for dominant connexin disorders affecting epidermal differentiation. J Cell Sci 114:2105–2113

    PubMed  Google Scholar 

  • Rouan F, Lo CW, Fertala A, Wahl M, Jost M, Rodeck U, Uitto J, Richard G (2003a) Divergent effects of two sequence variants of GJB3 (G12D and R32W) on the function of connexin 31 in vitro. Exp Dermatol 12:191–197

    Article  PubMed  Google Scholar 

  • Rouan F, Yi LS, Uitto J, Richard G (2003b) Pathogenic mutations affecting Cx31and Cx30.3 impair gap junction function and induce cell death in vitro. J Invest Dermatol 121:A603

    Google Scholar 

  • Rubin JB, Verselis VK, Bennett MV, Bargiello TA (1992) Molecular analysis of voltage dependence of heterotypic gap junctions formed by connexins 26 and 32. Biophys J 62:183–193; discussion 193–185

    PubMed  Google Scholar 

  • Salomon D, Saurat JH, Meda P (1988) Cell-to-cell communication within intact human skin. J Clin Invest 82:248–254

    PubMed  Google Scholar 

  • Salomon D, Masgrau E, Vischer S, Ullrich S, Dupont E, Sappino P, Saurat JH, Meda P (1994) Topography of mammalian connexins in human skin. J Invest Dermatol 103:240–247

    Article  PubMed  Google Scholar 

  • Seki A, Coombs W, Taffet SM, Delmar M (2004) Loss of electrical communication, but not plaque formation, after mutations in the cytoplasmic loop of Cx43. Heart Rhythm 1:227–233

    Article  PubMed  Google Scholar 

  • Shurman DL, Glazewski L, Gumpert A, Zieske JD, Richard G (2005) In vivo and in vitro expression of connexins in the human corneal epithelium. IOVS, in press

    Google Scholar 

  • Smith F (2003) The molecular genetics of keratin disorders. Am J Clin Dermatol 4:347–364

    PubMed  Google Scholar 

  • Smith FJ, Morley SM, McLean WH (2002) A novel connexin 30 mutation in Clouston syndrome. J Invest Dermatol 118:530–532

    Article  PubMed  Google Scholar 

  • Sundaram S, Willoughby C, Itin P, Ryynaenen M, Lewanda A, P. SV, Richard G (2003) The clinical spectrum of keratitis-ichthyosis-deafness syndrome. J Invest Dermatol 121:A660

    Google Scholar 

  • Szymko-Bennett YM, Russell LJ, Bale SJ, Griffith AJ (2002) Auditory manifestations of keratitis-ichthyosis-deafness (KID) syndrome. Laryngoscope 112:272–280

    Article  PubMed  Google Scholar 

  • Tada J, Hashimoto K (1997) Ultrastructural localization of gap junction protein connexin 43 in normal human skin, basal cell carcinoma, and squamous cell carcinoma. J Cutan Pathol 24:628–635

    PubMed  Google Scholar 

  • Tang H-Y, Brown CW, Richard G, Alford RL (2004) In vitro functional analysis of a Connexin 26 protein bearing an F142L amino acid substitution. 5th Meeting for Molecular Biology of Hearing and Deafness. Bethesda, Maryland

    Google Scholar 

  • Terrinoni A, Leta A, Pedicelli C, Candi E, Ranalli M, Puddu P, Paradis M, Angelo C, Baggetta G, Melino G (2004) A novel recessive connexin 31 (GJB3)mutation in a case of erythrokeratodermia variabilis. J Invest Dermatol 122:837–839

    Article  PubMed  Google Scholar 

  • Thomas T, Aasen T, Hodgins M, Laird DW (2003) Transport and function of cx26 mutants involved in skin and deafness disorders. Cell Commun Adhes 10:353–358

    PubMed  Google Scholar 

  • Thomas T, Telford D, Laird DW (2004) Functional domain mapping and selective trans-dominant effects exhibited by Cx26 disease-causing mutations. J Biol Chem 279:19157–19168

    Article  PubMed  Google Scholar 

  • Tuppurainen K, Fraki J, Karjalainen S, Paljarvi L, Suhonen R, Ryynanen M (1988) The KID-syndrome in Finland. A report of four cases. Acta Ophthalmol (Copenh) 66:692–698

    Google Scholar 

  • Unger VM, Kumar NM, Gilula NB, Yeager M (1999) Three-dimensional structure of a recombinant gap junction membrane channel. Science 283:1176–1180

    Article  PubMed  Google Scholar 

  • Uyguner O, Tukel T, Baykal C, Eris H, Emiroglu M, Hafiz G, Ghanbari A, Baserer N, Yuksel-Apak M, Wollnik B (2002) The novel R75Qmutation in the GJB2 gene causes autosomal dominant hearing loss and palmoplantar keratoderma in a Turkish family. Clin Genet 62:306–309

    Article  PubMed  Google Scholar 

  • van der Schroeff JG, Nijenhuis LE, Meera Khan P, Bernini LF, Schreuder GM, van Loghem E, Volkers WS, Went LN (1984) Genetic linkage between erythrokeratodermia variabilis and Rh locus. Hum Genet 68:165–168

    Article  PubMed  Google Scholar 

  • van Geel M, van Steensel MA, Kuster W, Hennies HC, Happle R, Steijlen PM, Konig A (2002a) HID and KID syndromes are associated with the same connexin 26 mutation. Br J Dermatol 146:938–942

    Article  PubMed  Google Scholar 

  • van Geel M, van Steensel MA, Steijlen PM (2002b) Connexin 30.3 (GJB4) is not required for normal skin function in humans. Br J Dermatol 147:1275–1277

    Article  PubMed  Google Scholar 

  • van Steensel M (2004) Does progressive symmetric erythrokeratoderma exist? Br J Dermatol 150:1043–1045

    Article  PubMed  Google Scholar 

  • van Steensel MA, van Geel M, Nahuys M, Smitt JH, Steijlen PM (2002) A novel connexin 26 mutation in a patient diagnosed with keratitis-ichthyosis-deafness syndrome. J Invest Dermatol 118:724–727

    Article  PubMed  Google Scholar 

  • van Steensel MA, Jonkman MF, van Geel M, Steijlen PM, McLean WH, Smith FJ (2003) Clouston syndrome can mimic pachyonychia congenita. J Invest Dermatol 121:1035–1038

    Article  PubMed  Google Scholar 

  • van Steensel MA, Steijlen PM, Bladergroen RS, Hoefsloot EH, van Ravenswaaij-Arts CM, van Geel M (2004) A phenotype resembling the Clouston syndrome with deafness is associated with a novel missense GJB2 mutation. J Invest Dermatol 123:291–293

    Article  PubMed  Google Scholar 

  • van Steensel MA, Spruijt L, van der Burgt I, Bladergroen RS, Vermeer M, Steijlen PM, van Geel M (2005) A 2-bp deletion in the GJA1 gene is associated with oculo-dento-digital dysplasia with palmoplantar keratoderma. Am J Med Genet 132:171–174

    Article  Google Scholar 

  • Vandersteen PR, Muller SA (1971) Erythrokeratodermia variabilis. An enzyme histochemical and ultrastructural study. Arch Dermatol 103:362–370

    Article  PubMed  Google Scholar 

  • VanSlyke JK, Deschenes SM, Musil LS (2000) Intracellular transport, assembly, and degradation of wild-type and disease-linked mutant gap junction proteins. Mol Biol Cell 11:1933–1946

    PubMed  Google Scholar 

  • Vohwinkel KH (1929) Keratoma hereditarium mutilans. Arch Derm Syph 158:354–364

    Article  Google Scholar 

  • Wasserman D, Richard G, Sundaram S, Kozic H, Itin P, Lewanda A, Antaya R, Willoughby CE, Uitto J (2003) Genotype-phenotype correlations in KID syndrome: Novel GJB2 mutations and association with squamous cell carcinoma. J Invest Dermatol 121:A666

    Google Scholar 

  • Watt FM (2002) The stem cell compartment in human interfollicular epidermis. J Dermatol Sci 28:173–180

    Article  PubMed  Google Scholar 

  • White TW, Bruzzone R (1996) Multiple connexin proteins in single intercellular channels: connexin compatibility and functional consequences. J Bioenerg Biomembr 28:339–350

    Article  PubMed  Google Scholar 

  • White TW, Paul DL, Goodenough DA, Bruzzone R (1995) Functional analysis of selective interactions among rodent connexins. Mol Biol Cell 6:459–470

    PubMed  Google Scholar 

  • Wilgoss A, Leigh IM, Barnes MR, Dopping-Hepenstal P, Eady RA, Walter JM, Kennedy CT, Kelsell DP (1999) Identification of a novel mutation R42P in the gap junction protein beta-3 associated with autosomal dominant erythrokeratoderma variabilis. J Invest Dermatol 113:1119–1122

    Article  PubMed  Google Scholar 

  • Willecke K, Eiberger J, Degen J, Eckardt D, Romualdi A, Guldenagel M, Deutsch U, Sohl G (2002) Structural and functional diversity of connexin genes in the mouse and human genome. Biol Chem 383:725–737

    Article  PubMed  Google Scholar 

  • Williams ML, Hanley K, Elias PM, Feingold KR (1998) Ontogeny of the epidermal permeability barrier. J Investig Dermatol Symp Proc 3:75–79

    PubMed  Google Scholar 

  • Xia AP, Ikeda K, Katori Y, Oshima T, Kikuchi T, Takasaka T (2000) Expression of connexin 31 in the developing mouse cochlea. Neuroreport 11:2449–2453

    PubMed  Google Scholar 

  • Xia JH, Liu CY, Tang BS et al. (1998) Mutations in the gene encoding gap junction protein beta-3 associated with autosomal dominant hearing impairment. Nat Genet 20:370–373

    Article  PubMed  Google Scholar 

  • Yotsumoto S, Hashiguchi T, Chen X, Ohtake N, Tomitaka A, Akamatsu H, Matsunaga K, Shiraishi S, Miura H, Adachi J, Kanzaki T (2003) Novel mutations in GJB2 encoding connexin-26 in Japanese patients with keratitis-ichthyosis-deafness syndrome. Br J Dermatol 148:649–653

    Article  PubMed  Google Scholar 

  • Zhang XJ, Chen JJ, Yang S, Cui Y, Xiong XY, He PP, Dong PL, Xu SJ, Li YB, Zhou Q, Wang Y, Huang W (2003) A mutation in the connexin 30 gene in Chinese Han patients with hidrotic ectodermal dysplasia. J Dermatol Sci 32:11–17

    Article  PubMed  Google Scholar 

  • Zhou XW, Pfahnl A, Werner R, Hudder A, Llanes A, Luebke A, Dahl G (1997) Identification of a pore lining segment in gap junction hemichannels. Biophys J 72:1946–1953

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Richard, G. (2005). Human Connexins in Skin Development and Skin Disorders. In: Winterhager, E. (eds) Gap Junctions in Development and Disease. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-28621-7_7

Download citation

Publish with us

Policies and ethics