Skip to main content

Gap Junction and Connexin Remodeling in Human Heart Disease

  • Chapter
Book cover Gap Junctions in Development and Disease

Abstract

Gap junctions, assembled from connexins, form the cell-to-cell pathways for propagation of the precisely orchestrated patterns of current flow that govern the normal rhythm of the healthy heart. As in most tissues and organs, multiple connexin types are co-expressed in the heart; connexin43, connexin40 and connexin45 are found in distinctive combinations and relative quantities in different, functionally-specialized subsets of cardiomyocyte. Alterations of gap junction organization and connexin expression are now well established as a consistent feature of human heart disease in which there is an arrhythmic tendency. These alterations may take the form of structural remodeling, involving disturbances in the distribution of gap junctions, and/or remodeling of connexin expression, involving alteration of the amount or type of connexin(s) expressed. In the diseased ventricle, the most consistent quantitative alteration involves heterogeneous reduction in connexin43 expression. In the atria, features of gap junction organization and connexin expression may contribute to both the initiation and persistence of atrial fibrillation. By correlating data from studies on the human patient with those from animal and cell models, alterations in gap junctions and connexins have emerged as important factors to be considered in understanding the pro-arrhythmic substrate found in a variety of forms of heart disease. Our knowledge of the functional correlates of the specific patterns of connexin co-expression in different subsets of myocyte in the healthy and diseased heart still remains limited, however, and the development of new experimental cell models heralds future advances in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alcolea S, Theveniau-Ruissy M, Jarry-Guichard T, Marics I, Tzouanacou E, Chauvin JP, Briand JP, Moorman AF, Lamers WH, Gros DB (1999) Downregulation of connexin 45 gene products during mouse heart development. Circ Res 84:1365–1379

    PubMed  Google Scholar 

  • Allessie M, Ausma J, Schotten U (2002) Electrical, contractile and structural remodeling during atrial fibrillation. Cardiovasc Res 54:230–246

    Article  PubMed  Google Scholar 

  • Angst BD, Khan LUR, Severs NJ, Whitely K, Rothery S, Thompson RP, Magee AI, Gourdie RG (1997) Dissociated spatial patterning of gap junctions and cell adhesion junctions during postnatal differentiation of ventricular myocardium. Circ Res 80:88–94

    PubMed  Google Scholar 

  • Ausma J, van der Velden HM, Lenders MH, van Ankeren EP, Jongsma HJ, Ramaekers FC, Borgers M, Allessie MA (2003) Reverse structural and gap-junctional remodeling after prolonged atrial fibrillation in the goat. Circulation 107:2051–2058

    Article  PubMed  Google Scholar 

  • Barker RJ, Price RL, Gourdie RG (2002) Increased association of ZO-1 with connexin43 during remodeling of cardiac gap junctions. Circ Res 90:317–324

    Article  PubMed  Google Scholar 

  • Bastide B, Neyses L, Ganten D, Paul M, Willecke K, Traub O (1993) Gap junction protein connexin40 is preferentially expressed in vascular endothelium and conductive bundles of rat myocardium and is increased under hypertensive conditions. Circ Res 73:1138–1149

    PubMed  Google Scholar 

  • Beardslee MA, Lerner DL, Tadros PN, Laing JG, Beyer EC, Yamada KA, Kléber AG, Schuessler RB, Saffitz JE (2000) Dephosphorylation and intracellular redistribution of ventricular connexin43 during electrical uncoupling induced by ischemia. Circ Res 87:656–662

    PubMed  Google Scholar 

  • Beyer E, Seul KH, Larson DM (1997) Cardiovascular gap junction proteins: molecular characterization and biochemical regulation. In: De Mello WC, Janse MJ, Norwell MA (eds) Heart Cell Communication in Health and Disease. Kluwer, New York, pp 45–51

    Google Scholar 

  • Bukauskas FF, Elfgang C, Willecke K, Weingart R (1995) Biophysical properties of gap junction channels formed by mouse connexin40 in induced pairs of transfected human HeLa cells. Biophys J 68:2289–2298

    PubMed  Google Scholar 

  • Camici PG, Wijns W, Borgers M, DeSilva R, Ferrari R, Knuuti J, Lammertsma AA, Liedtke AJ, Paternostro G, Vatner SF (1997) Pathophysiological mechanisms of chronic reversible left ventricular dysfunction due to coronary artery disease (hibernating myocardium). Circulation 96:3205–3214

    PubMed  Google Scholar 

  • Claycomb WC, Lanson NA, Stallworth BS, Egeland DB, Delcarpio JB, Bahinski A, Izzo NJ (1998) HL-1 cells: A cardiac muscle cell line that contracts and retains phenotypic characteristics of the adult cardiomyocyte. Proc Natl Acad Sci USA 95:2979–2984

    Article  PubMed  Google Scholar 

  • Coppen SR, Dupont E, Rothery S, Severs NJ (1998) Connexin45 expression is preferentially associated with the ventricular conduction system in mouse and rat heart. Circ Res 82:232–243

    PubMed  Google Scholar 

  • Coppen SR, Gourdie RG, Severs NJ (2001) Connexin45 is the first connexin to be expressed in the central conduction system of the mouse heart. Exp Clin Cardiol 6:17–23

    Google Scholar 

  • Coppen SR, Kaba RA, Halliday D, Dupont E, Skepper JN, Elneil S, Severs NJ (2003) Comparison of connexin expression patterns in the developing mouse heart and human foetal heart. Mol Cell Biochem 242:121–127

    Article  PubMed  Google Scholar 

  • Coppen SR, Kodama I, Boyett MR, Dobrzynski H, Takagishi Y, Honjo H, Yeh H-I, Severs NJ (1999a) Connexin45, a major connexin of the rabbit sinoatrial node, is co-expressed with connexin43 in a restricted zone at the nodal-crista terminalis border. J Histochem Cytochem 47:907–918

    PubMed  Google Scholar 

  • Coppen SR, Severs NJ (2002) Diversity of connexin expression patterns in the atrioventricular node: vestigial consequence or functional specialization? J Cardiovasc Electrophysiol 13:625–626

    Article  PubMed  Google Scholar 

  • Coppen SR, Severs NJ, Gourdie RG (1999b) Connexin45 (a6) expression delineates an extended conduction system in theembryonic and mature rodent heart. Dev Genet 24:82–90

    Google Scholar 

  • Daleau P, Boudriau S, Michaud M, Jolicoeur C, Kingma JG, Jr. (2001) Preconditioning in the absence or presence of sustained ischemia modulates myocardial Cx43 protein levels and gap junction distribution. Can J Physiol Pharmacol 79:371–378

    Article  PubMed  Google Scholar 

  • Davis LM, Rodefeld ME, Green K, Beyer EC, Saffitz JE (1995) Gap junction protein phenotypes of the human heart and conduction system. J Cardiovasc Electrophysiol 6:813–822

    PubMed  Google Scholar 

  • Dupont E, Ko YS, Rothery S, Coppen SR, Baghai M, Haw M, Severs NJ (2001a) The gap-junctional protein, connexin40, is elevated in patients susceptible to post-operative atrial fibrillation. Circulation 103:842–849

    PubMed  Google Scholar 

  • Dupont E, Matsushita T, Kaba R, Vozzi C, Coppen SR, Khan N, Kaprielian R, Yacoub MH, Severs NJ (2001b) Altered connexin expression in human congestive heart failure. J Mol Cell Cardiol 33:359–371

    Article  PubMed  Google Scholar 

  • Elvan A, Huang X, Pressler ML, Zipes DP (1997) Radiofrequency catheter ablation of the atria eliminates pacing-induced sustained atrial fibrillation and reduces connexin43 in dogs. Circulation 96:1675–1685

    PubMed  Google Scholar 

  • Emdad L, Uzzaman M, Takagishi Y, Honjo H, Uchida T, Severs NJ, Kodama I, Murata Y (2001) Gap junction remodelling in hypertrophied left ventricles of aortic-banded rats: prevention by angiotensin II type 1 receptor blockade. J Mol Cell Cardiol 33:219–231

    Article  PubMed  Google Scholar 

  • Gourdie RG, Green CR, Severs NJ (1991) Gap junction distribution in adult mammalian myocardium revealed by an antipeptide antibody and laser scanning confocal microscopy. J Cell Sci 99:41–55

    PubMed  Google Scholar 

  • Gourdie RG, Severs NJ, Green CR, Rothery S, Germroth P, Thompson RP (1993) The spatial distribution and relative abundance of gap-junctional connexin40 and connexin43 correlate to functional properties of the cardiac atrioventricular conduction system. J Cell Sci 105:985–991

    PubMed  Google Scholar 

  • Green CR, Severs NJ (1993) Distribution and role of gap junctions in normal myocardium and human ischemic heart disease. Histochemistry 99:105–120

    Article  PubMed  Google Scholar 

  • Gros D, Jarry-Guichard T, ten Velde I, De Mazière AMGL, Van Kempen MJA, Davoust J, Briand JP, Moorman AFM, Jongsma HJ (1994) Restricted distribution of connexin40, a gap junctional protein, in mammalian heart. Circ Res 74:839–851

    PubMed  Google Scholar 

  • Guerrero PA, Schuessler RB, Davis LM, Beyer EC, Johnson CM, Yamada KA, Saffitz JE (1997) Slow ventricular conduction in mice heterozygous for connexin43 null mutation. J Clin Invest 99:1991–1998

    PubMed  Google Scholar 

  • Gutstein DE, Liu FY, Zhang J, Chen FL, Ghodsi N, Kini AS, Fishman GI (2002) Progressive loss of connexin43 in the heart yields a phenotypic shift from ventricular dysfunction to fatal arrhythmias. Circulation 106:767

    Google Scholar 

  • Gutstein DE, Morley GE, Tamaddon H, Vaidya D, Schneider MD, Chen J, Chien KR, Stuhlmann H, Fishman GI (2001a) Conduction slowing and sudden arrhythmic death in mice with cardiac-restricted inactivation of connexin43. Circ Res 88:333–339

    PubMed  Google Scholar 

  • Gutstein DE, Morley GE, Vaidya D, Liu F, Chen FL, Stuhlmann H, Fishman GI (2001b) Heterogeneous expression of gap junction channels in the heart leads to conduction defects and ventricular dysfunction. Circulation 104:1194–1199

    PubMed  Google Scholar 

  • Hall DG, Morley GE, Vaidya D, Ard M, Kimball TR, Witt SA, Colbert MC (2000) Early onset heart failure in transgenic mice with dilated cardiomyopathy. Pediatr Res 48:36–42

    PubMed  Google Scholar 

  • Heusch G (1998) Hibernating myocardium. Physiol Rev 78:1055–1085

    PubMed  Google Scholar 

  • Honjo H, Boyett MR, Coppen SR, Takagishi Y, Severs NJ, Kodama I (2002) Heterogeneous expression of connexins in rabbit sinoatrial node cells: correlation between connexin isoform and cell size. Cardiovasc Res 50:89–96

    Article  Google Scholar 

  • Hoyt RH, Cohen ML, Saffitz JE (1989) Distribution and three-dimensional structure of intercellular junctions in canine myocardium. Circ Res 64:563–574

    PubMed  Google Scholar 

  • Jain SK, Schuessler RB, Saffitz JE (2003) Mechanisms of delayed electrical uncoupling induced by ischemic preconditioning. Circ Res 92:1138–1144

    Article  PubMed  Google Scholar 

  • Jalife J (2003) Rotors and spiral waves in atrial fibrillation. J Cardiovasc Electrophysiol 14:776–780

    PubMed  Google Scholar 

  • Jongsma HJ, Wilders R (2000) Gap junctions in cardiovascular disease. Circ Res 86:1193–1197

    PubMed  Google Scholar 

  • Kaba RA, Coppen SR, Dupont E, Skepper JN, Elneil S, Haw MP, Pepper JR, Yacoub MH, Rothery S, Severs NJ (2001) Comparison of connexin 43, 40 and 45 expression patterns in the developing human and mouse hearts. Cell Communication and Adhesion 8:339–343

    PubMed  Google Scholar 

  • Kaba RA, Coppen SR, Rothery S, Dupont E, Yacoub MH, De Souza AC, Pepper JR, Severs N (2003) Relevance of cardiac gap junctions to the clinical course of patients with chronic atrial fibrillation. Eur Heart J 24:508

    Article  Google Scholar 

  • Kanagaratnam P, Cherian A, Stanbridge RD, Glenville B, Severs NJ, Peters NS (2004) Relationship between connexins and atrial activation during human atrial fibrillation. J Cardiovasc Electrophysiol 15:206–216

    Article  PubMed  Google Scholar 

  • Kanno S, Kovacs A, Yamada KA, Saffitz JE (2003)Connexin43 as a determinant of myocardial infarct size following coronary occlusion in mice. J Am Coll Cardiol 41:681–686

    Article  PubMed  Google Scholar 

  • Kanno S, Saffitz JE (2001) The role of myocardial gap junctions in electrical conduction and arrhythmogenesis. Cardiovasc Pathol 10:169–177

    Article  PubMed  Google Scholar 

  • Kaprielian RR, Gunning M, Dupont E, Sheppard MN, Rothery SM, Underwood R, Pennell DJ, Fox K, Pepper J, Poole-Wilson PA, Severs NJ (1998) Down-regulation of immunodetectable connexin43 and decreased gap junction size in the pathogenesis of chronic hibernation in the human left ventricle. Circulation 97:651–660

    PubMed  Google Scholar 

  • Kitamura H, Ohnishi Y, Yoshida A, Okajima K, Azumi H, Ishida A, Galeano EJ, Kubo S, Hayashi Y, Itoh H, Yokoyama M (2002) Heterogeneous loss of connexin43 protein in nonischemic dilated cardiomyopathy with ventricular tachycardia. J Cardiovasc Electrophysiol 13:865–870

    Article  PubMed  Google Scholar 

  • Ko YS, Yeh HI, Ko YL, Hsu YC, Chen CF, Wu S, Lee YS, Severs NJ (2004) Three-dimensional reconstruction of the rabbit atrioventricular conduction axis by combining histological, desmin, and connexin mapping data. Circulation 109:1172–1179

    Article  PubMed  Google Scholar 

  • Kostin S, Dammer S, Hein S, Klovekorn WP, Bauer EP, Schaper J (2004) Connexin 43 expression and distribution in compensated and decompensated cardiac hypertrophy in patients with aortic stenosis. Cardiovasc Res 62:426–436

    Article  PubMed  Google Scholar 

  • Kostin S, Klein G, Szalay Z, Hein S, Bauer EP, Schaper J (2002) Structural correlate of atrial fibrillation in human patients. Cardiovasc Res 54:361–379

    Article  PubMed  Google Scholar 

  • Kostin S, Rieger M, Dammer S, Hein S, Richter M, Klovekorn WP, Bauer EP, Schaper J (2003) Gap junction remodeling and altered connexin43 expression in the failing human heart. Mol Cell Biochem 242:135–144

    PubMed  Google Scholar 

  • Lerner DL, Beardslee MA, Saffitz JE (2001) The role of altered intercellular coupling in arrhythmias induced by acute myocardial ischemia. Cardiovasc Res 50:263–269

    Article  PubMed  Google Scholar 

  • Lerner DL, Yamada KA, Schuessler RB, Saffitz JE (2000) Accelerated onset and increased incidence of ventricular arrhythmias induced by ischemia in Cx43-deficient mice. Circulation 101:547–552

    PubMed  Google Scholar 

  • Luke RA, Saffitz JE (1991) Remodeling of ventricular conduction pathways in healed canine infarct border zones. J Clin Invest 87:1594–1602

    PubMed  Google Scholar 

  • Martinez AD, Hayrapetyan V, Moreno AP, Beyer EC (2002) Connexin43 and connexin45 form heteromeric gap junction channels in which individual components determine permeability and regulation. Circ Res 90:1100–1107

    Article  PubMed  Google Scholar 

  • Matsushita T, Oyamada M, Fujimoto K, Yasuda Y, Masuda S, Wada Y, Oka T, Takamatsu T (1999) Remodeling of cell-cell and cell-extracellular matrix interactions at the border zone of rat myocardial infarcts. Circ Res 85:1046–1055

    PubMed  Google Scholar 

  • Moreno AP, Laing JG, Beyer EC, Spray DC (1995) Properties of gap junction channels formed of connexin 45 endogenously expressed in human hepatoma (SKHep1) cells. Am J Physiol 268:C356–C365

    PubMed  Google Scholar 

  • Morley GE, Vaidya D, Samie FH, Lo C, Delmar M, Jalife J (1999) Characterization of conduction in the ventricles of normal and heterozygous Cx43 knockout mice using optical mapping. J Cardiovasc Electrophysiol 10:1361–1375

    PubMed  Google Scholar 

  • Nao T, Ohkusa T, Hisamatsu Y, Inoue N, Matsumoto T, Yamada J, Shimizu A, Yoshiga Y, Yamagata T, Kobayashi S, Yano M, Hamano K, Matsuzaki M (2003) Comparison of expression of connexin in right atrial myocardium in patients with chronic atrial fibrillation versus those in sinus rhythm. Am J Cardiol 91:678–683

    Article  PubMed  Google Scholar 

  • Peters NS, Green CR, Poole-Wilson PA, Severs NJ (1993) Reduced content of connexin43 gap junctions in ventricular myocardium from hypertrophied and ischaemic human hearts. Circulation 88:864–875

    PubMed  Google Scholar 

  • Peters NS, Severs NJ, Coromilas J, Wit AL (1997) Disturbed connexin43 gap junction distribution correlates with the location of reentrant circuits in the epicardial border zone of healing canine infarcts that cause ventricular tachycardia. Circulation 95:988–996

    PubMed  Google Scholar 

  • Peters NS, Severs NJ, Rothery SM, Lincoln C, Yacoub MH, Green CR (1994) Spatiotemporal relation between gap junctions and fascia adherens junctions during postnatal development of human ventricular myocardium. Circulation 90:713–725

    PubMed  Google Scholar 

  • Petrich BG, Eloff BC, Lerner DL, Kovacs A, Saffitz JE, Rosenbaum DS, Wang Y (2004) Targeted activation of c-Jun N-terminal kinase in vivo induces restrictive cardiomyopathy and conduction defects. J Biol Chem 279:15330–15338

    Article  PubMed  Google Scholar 

  • Petrich BG, Gong X, Lerner DL, Wang X, Brown JH, Saffitz JE, Wang Y (2002) c-Jun N-terminal kinase activation mediates downregulation of connexin43 in cardiomyocytes. Circ Res 91:640–647

    Article  PubMed  Google Scholar 

  • Pimentel RC, Yamada KA, Kléber AG, Saffitz JE (2002) Autocrine regulation of myocyte Cx43 expression by VEGF. Circ Res 90:671–677

    Article  PubMed  Google Scholar 

  • Plum A, Hallas G, Magin T, Dombrowski F, Hagendorff A, Schumacher B, Wolpert C, Kim J-S, Lamers WH, Evert M, Meda P, Traub O, Willecke K (2000) Unique and shared functions of different connexins in mice. Curr Biol 10:1083–1091

    Article  PubMed  Google Scholar 

  • Polontchouk L, Haefliger J-A, Ebelt B, Schafer T, Stuhlmann D, Mehlhorn U, Kuhn-Regnier F, Rainer De Vivie E, Dhein S (2001) Effects of chronic atrial fibrillation on gap junction distribution in human and rat atria. J Am Coll Cardiol 38:883–891

    Article  PubMed  Google Scholar 

  • Rohr S, Kucera JP, Fast VG, Kléber AG (1997) Paradoxical improvement of impulse conduction in cardiac tissue by partial cellular uncoupling. Science 275:841–844

    Article  PubMed  Google Scholar 

  • Rudy Y, Shaw RM (1997) Cardiac excitation: an interactive process of ion channels and gap junctions. Adv Exp Med Biol 430:269–279

    PubMed  Google Scholar 

  • Saffitz JE, Kléber AG (2004) Effects of mechanical forces and mediators of hypertrophy on remodeling of gap junctions in the heart. Circ Res 94:585–591

    Article  PubMed  Google Scholar 

  • Sakabe M, Fujiki A, Nishida K, Sugao M, Nagasawa H, Tsuneda T, Mizumaki K, Inoue H (2004) Enalapril prevents perpetuation of atrial fibrillation by suppressing atrial fibrosis and over-expression of connexin43 in a canine model of atrial pacing-induced left ventricular dysfunction. J Cardiovasc Pharmacol 43:851–859

    Article  PubMed  Google Scholar 

  • Schulz R, Gres P, Skyschally A, Duschin A, Belosjorow S, Konietzka I, Heusch G (2003) Ischemic preconditioning preserves connexin 43 phosphorylation during sustained ischemia in pig hearts in vivo. FASEB J 17:1355–1357

    PubMed  Google Scholar 

  • Schulz R, Heusch G (2004) Connexin 43 and ischemic preconditioning. Cardiovasc Res 62:335–344

    Article  PubMed  Google Scholar 

  • Schwanke U, Konietzka I, Duschin A, Li X, Schulz R, Heusch G (2002) No ischemic preconditioning in heterozygous connexin43-deficient mice. Am J Physiol (Heart Circ Physiol) 283:H1740–H1742

    Google Scholar 

  • Sepp R, Severs NJ, Gourdie RG (1996) Altered patterns of cardiac intercellular junction distribution in hypertrophic cardiomyopathy. Heart 76:412–417

    PubMed  Google Scholar 

  • Severs NJ (1985) Intercellular junctions and the cardiac intercalated disk. In: Harris P, Poole-Wilson PA (eds) Advances in myocardiology. Plenum, New York, pp 223–242

    Google Scholar 

  • Severs NJ (1989) Constituent cells of the heart and isolated cell models in cardiovascular research. In: Piper HM, Isenberg G (Eds) Isolated adult cardiomyocytes. volume 1. CRC, Boca Raton, pp 3–41

    Google Scholar 

  • Severs NJ (1999) Cardiovascular disease. In: Cardew G (Ed.) Gap junction-mediated intercellular signalling in health and disease. Wiley, New York, pp 188–206

    Google Scholar 

  • Severs NJ (2001) Gap junction remodeling and cardiac arrhythmogenesis: cause or coincidence? J Cell Mol Med 5:355–366

    PubMed  Google Scholar 

  • Severs NJ (2002) Gap junctions and connexin expression in human heart disease. In: De Mello WC, Janse MJ (eds) Heart cell coupling and impulse propagation in health and disease. Kluwer, Boston, pp 321–334

    Google Scholar 

  • Severs NJ (2003) Communicating junctions, connexins and the cardiomyocyte: from cell biology to cardiology. In: Singal PK, Dixon IMC, Kirshenbaum LA, Dhalla NS (Eds) Cardiac remodeling and failure. Kluwer, Boston, pp 417–434

    Google Scholar 

  • Severs NJ, Coppen SR, Dupont E, Yeh HI, Ko YS, Matsushita T (2004a) Gap junction alterations in human cardiac disease. Cardiovasc Res 62:368–377

    Article  PubMed  Google Scholar 

  • Severs NJ, Dupont E, Coppen SR, Halliday D, Inett E, Baylis D, Rothery S (2004b) Remodelling of gap junctions and connexin expression in heart disease. Biochim Biophys Acta 1662:138–148

    PubMed  Google Scholar 

  • Severs NJ, Rothery S, Dupont E, Coppen SR, Yeh H-I, Ko Y-S, Matsushita T, Kaba R, Halliday D (2001) Immunocytochemical analysis of connexin expression in the healthy and diseased cardiovascular system. Microsc Res Tech 52:301–322

    Article  PubMed  Google Scholar 

  • Shaw RM, Rudy Y (1997) Ionic mechanisms of propagation in cardiac tissue — roles of the sodium and L-type calcium currents during reduced excitability and decreased gap junction coupling. Circ Res 81:727–741

    PubMed  Google Scholar 

  • Smith JH, Green CR, Peters NS, Rothery S, Severs NJ (1991) Altered patterns of gap junction distribution in ischemic heart disease. An immunohistochemical study of human myocardium using laser scanning confocal microscopy. Am J Pathol 139:801–821

    PubMed  Google Scholar 

  • Spach MS, Heidlage JF, Dolber PC, Barr RC (2000) Electrophysiological effects of remodeling cardiac gap junctions and cell size. Circ Res 86:302–311

    PubMed  Google Scholar 

  • Spach MS, Starmer CF (1995) Altering the topology of gap junctions, a major therapeutic target for atrial fibrillation. Cardiovasc Res 30:337–344

    Article  PubMed  Google Scholar 

  • Uzzaman M, Honjo H, Takagishi Y, Emdad L, Magee AI, Severs NJ, Kodama I (2000) Remodeling of gap-junctional coupling in hypertrophied right ventricles of rats with monocrotaline-induced pulmonary hypertension. Circ Res 86:871–878

    PubMed  Google Scholar 

  • van der Velden HM, Jongsma HJ (2002a) Cardiac gap junctions and connexins: their role in atrial fibrillation and potential as therapeutic targets. Cardiovasc Res 54:270–279

    Article  PubMed  Google Scholar 

  • van der Velden HM, van Kempen MJ, Wijffels MC, van Zijverden M, Groenewegen WA, Allessie MA, Jongsma HJ (1998) Altered pattern of connexin40 distribution in persistent atrial fibrillation in the goat. J Cardiovasc Electrophysiol 9:596–607

    PubMed  Google Scholar 

  • van der Velden HMW, Ausma J, Rook MB, Hellemons AJCGM, Van Veen TAAB, Allessie MA, Jongsma HJ (2000) Gap junctional remodeling in relation to stabilization of atrial fibrillation in the goat. Cardiovasc Res 46:476–486

    Article  PubMed  Google Scholar 

  • van der Velden HMW, Jongsma HJ (2002b) Cardiac gap junctions and connexins: their role in atrial fibrillation and potential as therapeutic targets. Cardiovasc Res 54:270–279

    Article  PubMed  Google Scholar 

  • Van Kempen MJA, ten Velde I, Wessels A, Oosthoek PW, Gros D, Jongsma HJ, Moorman AFM, Lamers WH (1995) Differential connexin distribution accommodates cardiac function in different species. Microsc Res Tech 31:420–436

    Article  PubMed  Google Scholar 

  • Van Kempen MJA, Vermeulen JLM, Moorman AFM, Gros D, Paul DL, Lamers WH (1996) Developmental changes of connexin40 and connexin43 messenger RNA. Cardiovasc Res 32:886–900

    Google Scholar 

  • van Veen TA, van Rijen HV, Jongsma HJ (2000) Electrical conductance of mouse connexin45 gap junction channels is modulated by phosphorylation. Cardiovasc Res 46:496–510

    Article  PubMed  Google Scholar 

  • Veenstra RD, Wang HZ, Beyer EC, Brink PR (1994) Selective dye and ionic permeability of gap junction channels formed by connexin45. Circ Res 75:483–490

    PubMed  Google Scholar 

  • Viswanathan PC, Shaw RM, Rudy Y (1999) Effects of IKr and IKs heterogeneity on action potential duration and its rate dependence: a simulation study. Circulation 99:2466–2474

    PubMed  Google Scholar 

  • Vozzi C, Dupont E, Coppen SR, Yeh H-I, Severs NJ (1999) Chamber-related differences in connexin expression in the human heart. J Mol Cell Cardiol 31:991–1003

    Article  PubMed  Google Scholar 

  • Wijffels MCEF, Kirchhof CJHJ, Dorland R, Allessie MA (1995) Atrial fibrillation begets atrial fibrillation: a study in awake chronically instrumented goats. Circulation 92:1954–1968

    PubMed  Google Scholar 

  • Yamada KA, Rogers JG, Sundset R, Steinberg TH, Saffitz JE (2003) Up-regulation of connexin45 in heart failure. J Cardiovasc Electrophysiol 14:1205–1212

    Article  PubMed  Google Scholar 

  • Yao JA, Gutstein DE, Liu FY, Wit AL, Fishman GI (2002) Dissociation of heart function from electrophysiological properties of gap junctions in cardiac-restricted connexin43 knockout mice. Circulation 106:638

    Google Scholar 

  • Yeh H-I, Lai Y-J, Lee S-H, Lee Y-N, Ko Y-S, Chen S-A, Severs NJ, Tsai C-H (2001) Heterogeneity of myocardial sleeve morphology and gap junctions in canine superior vena cava. Circulation 104:3152–3157

    PubMed  Google Scholar 

  • Yeh HI, Hou SH, Hu HR, Lee YN, Li JY, Dupont E, Coppen SR, Ko YS, Severs NJ, Tsai CH (2002) Alteration of gap junctions and connexins in the right atrial appendage during cardiopulmonary bypass. J Thorac Cardiovasc Surg 124:1106–1112

    Article  PubMed  Google Scholar 

  • Zipes DP (1997) Specific arrhythmias: diagnosis and treatment. In: Braunwald E (ed) Heart disease. WB Saunders, Philadelphia, pp 640–704

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Severs, N.J., Dupont, E., Kaba, R., Thomas, N. (2005). Gap Junction and Connexin Remodeling in Human Heart Disease. In: Winterhager, E. (eds) Gap Junctions in Development and Disease. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-28621-7_4

Download citation

Publish with us

Policies and ethics