Advertisement

Broadband Irradiances and Heating Rates for Cloudy Atmospheres

  • H.W. Barker
Part of the Physics of Earth and Space Environments book series (EARTH)

Keywords

Radiative Transfer Cloud Fraction Radiative Transfer Model Cloud Radiative Effect Atmospheric Radiation Measurement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barker, H.W. and Q. Fu (2000). Assessment and optimization of the gamma-weighted two-stream approximation. J. Atmos. Sci., 57, 1181–1188.CrossRefGoogle Scholar
  2. Barker, H.W. and B.A. Wielicki (1997). Parameterizing grid-averaged longwave fluxes for inhomogenous marine boundary layer clouds. J. Atmos. Sci., 54, 2785–2798.CrossRefGoogle Scholar
  3. Barker, H.W., B.A. Wielicki, and L. Parker (1996). A parameterization for computing grid-averaged solar fluxes for inhomogeneous marine boundary layer clouds-Part 2, Validation using satellite data. J. Atmos. Sci., 53, 2304–2316.CrossRefGoogle Scholar
  4. Barker, H.W., J.-J. Morcrette, and G.D. Alexander (1998). Broadband solar fluxes and heating rates for atmospheres with 3D broken clouds. Quart. J. Roy. Meteor. Soc., 124, 1245–1271.CrossRefGoogle Scholar
  5. Barker, H.W., G.L. Stephens, and Q. Fu (1999). The sensitivity of domain-averaged solar fluxes to assumptions about cloud geometry. Quart. J. Roy. Meteor. Soc., 125, 2127–2152.CrossRefGoogle Scholar
  6. Barker, H.W., G.L. Stephens, P.T. Partain, J.W. Bergman, B. Bonnel, K. Campana, E.E. Clothiaux, S. Clough, S. Cusack, J. Delamere, J. Edwards, K.F. Evans, Y. Fouquart, S. Freidenreich, V. Galin, Y. Hou, S. Kato, J. Li, E. Mlawer, J.-J. Morcrette, W. O’Hirok, P. Räisänen, V. Ramaswamy, B. Ritter, E. Rozanov, M. Schlesinger, K. Shibata, P. Sporyshev, Z. Sun, M. Wendisch, N. Wood, and F. Yang (2003). Assessing 1D atmospheric solar radiative transfer models: Interpretation and handling of unresolved clouds. J. Climate, 16, 2676–2699.CrossRefGoogle Scholar
  7. Cess, R.D., M.-H. Zhang, G.L. Potter, H.W. Barker, R.A. Colman, D.A. Dazlich, A.D. Del Genio, M. Esch, J.R. Fraser, V. Galin, W.L. Gates, J.J. Hack, W. Ingram, J.T. Kiehl, A.A. Lacis, H. Le Treut, Z.-X. Li, X.-Z. Liang, J.F. Mahfouf, B.J. McAvaney, V.P. Meleshko, J.-J. Morcrette, D.A. Randall, E. Roeckner, J.-F. Royer, A.P. Sokolov, P.V. Sporyshev, K.E. Taylor, W.-C. Wang, and R.T. Wetherald (1993). Intercomparison of CO2 radiative forcing in atmospheric general circulation models. Science, 262, 1252–1255.Google Scholar
  8. Cess, R.D., M.-H. Zhang, P. Minnis, L. Corsetti, E.G. Dutton, B.W. Forgan, D.P. Garber, W.L. Gates, J.J. Hack, E.F. Harrison, X. Jing, J.T. Kiehl, C.N. Long, J.-J Morcrette, G. L. Potter, V. Ramanathan, B. Subasilar, C.H. Whitlock, D.F. Young, and Y. Zhou (1995). Absorption of solar radiation by clouds: Observations versus models. Science, 267, 496–499.Google Scholar
  9. Fouquart, Y., B. Bonnel, and V. Ramaswamy (1991). Intercomparing shortwave radiation codes for climate studies. J. Geophys. Res., 96, 8955–8968.Google Scholar
  10. Fu, Q. and K.-N. Liou (1992). On the correlated-k distribution method for radiative transfer in inhomogeneous atmospheres. J. Atmos. Sci., 49, 2139–2156.CrossRefGoogle Scholar
  11. Geleyn, J.-F. and A. Hollingsworth (1979). An economical analytical method for the computation of the interaction between scattering and line absorption of radiation. Contrib. Atmos. Phys., 52, 1–16.Google Scholar
  12. Grabowski, W.W., X. Wu, M.W. Moncrieff, and W.D. Hall (1998). Cloud-resolving modeling of cloud systems during phase III of GATE. Part II: Effects of resolution and the third spatial dimension. J. Atmos. Sci., 55, 3264–3282.CrossRefGoogle Scholar
  13. Hansen, J.E. and L.D. Travis (1974). Light scattering in planetary atmospheres. Space Sci. Rev., 16, 527–610.CrossRefGoogle Scholar
  14. Hogan, R.J. and A.J. Illingworth (2000). Derived cloud overlap statistics from radar. Quart. J. Roy. Meteor. Soc., 126, 2903–2909.CrossRefGoogle Scholar
  15. Hu, Y.-X. and K. Stamnes (1993). An accurate parameterization of the radiative properties of water clouds suitable for use in climate models. J. Climate, 6, 728–742.CrossRefGoogle Scholar
  16. Intergovernmental Panel on Climate Change (1996). The Science of Climate Change: Report of the Intergovernmental Panel on Climate Change (IPCC), J.T. Houghton et al. (eds.). Cambridge University Press, New York (NY).Google Scholar
  17. Lacis, A.A. and V. Oinas (1991). A description of the correlated-k method for modeling nongrey gaseous absorption, thermal emission, and multiple scattering in vertically inhomogeneous atmospheres. J. Geophys. Res., 96, 9027–9063.Google Scholar
  18. Lacis, A.A., W.C. Wang, and J.E. Hansen (1979). Correlated-k method for radiative transfer in climate models: Application to the effect of cirrus clouds on climate. Technical Report NASA Conf. Publ. 2076, NASA.Google Scholar
  19. Li, J. (2002). Accounting for unresolved clouds in a 1D infrared radiative transfer model. Part I: Solution for radiative transfer, scattering, and cloud overlap. J. Atmos. Sci., 59, 3302–3320.CrossRefGoogle Scholar
  20. Li, J. and H.W. Barker (2002). Accounting for unresolved clouds in a 1D infrared radiative transfer model. Part II: Horizontal variability of cloud water path. J. Atmos. Sci., 59, 3321–3339.CrossRefGoogle Scholar
  21. Liou, K.-N. (1992). Radiation and Cloud Processes in the Atmosphere. Oxford University Press, New York (NY).Google Scholar
  22. Meador, W.E. and W.R. Weaver (1980). Two-stream approximations to radiative transfer in planetary atmospheres: A unified description of existing methods and a new improvement. J. Atmos. Sci., 37, 630–643.CrossRefGoogle Scholar
  23. Mlawer, E.J., P.D. Brown, S.A. Clough, L.C. Harrison, J.J. Michalsky, P.W. Kiedron, and T. Shippert (2000). Comparison of spectral direct and diffuse solar irradiance measurements and calculations for cloud-free conditions. Geophys. Res. Lett., 27, 2653–2656.CrossRefGoogle Scholar
  24. O’Hirok, W. and C. Gautier (1998a). A three-dimensional radiative transfer model to investigate the solar radiation within a cloudy atmosphere. Part I: Spatial effects. J. Atmos. Sci., 55, 2162–2179.CrossRefGoogle Scholar
  25. O’Hirok, W. and C. Gautier (1998b). A three-dimensional radiative transfer model to investigate the solar radiation within a cloudy atmosphere. Part II: Spectral effects. J. Atmos. Sci., 55, 3065–3075.CrossRefGoogle Scholar
  26. Oreopoulos, L. and H.W. Barker (1999). Accounting for subgrid-scale cloud variability in a multi-layer, 1D solar radiative transfer algorithm. Quart. J. Roy. Meteor. Soc., 125, 301–330.CrossRefGoogle Scholar
  27. Rossow, W.B. (1989). Measuring cloud properties from space: A review. J. Climate, 2, 201–213.CrossRefGoogle Scholar
  28. Schlesinger, M.E. and J.F.B. Mitchell (1987). Climate model simulations of the equilibrium climatic response to increased carbon dioxide. Review of Geophys., 4, 760–798.Google Scholar
  29. Senior, C.A. (1999). Comparison of mechanisms of cloud-climate feedbacks in GCMs. J. Climate, 12, 1480–1489.CrossRefGoogle Scholar
  30. Slingo, A. (1989). A GCM parameterization for the shortwave radiative properties of water clouds. J. Atmos. Sci., 46, 1419–1427.CrossRefGoogle Scholar
  31. Smith, R.N.B. (1990). A scheme for predicting layer clouds and their water content in a GCM. Quart. J. Roy. Meteor. Soc., 116, 435–460.CrossRefGoogle Scholar
  32. Stephens, G.L. (1988). Radiative transfer through arbitrary shaped optical media, II: Group theory and simple closures. J. Atmos. Sci., 45, 1837–1848.CrossRefGoogle Scholar
  33. Stokes, G.M. and S.E. Schwartz (1994). The Atmospheric Radiation Measurement (ARM) program: Programmatic background and design of the cloud and radiation test bed. Bull. Amer. Meteor. Soc., 75, 1201–1221.CrossRefGoogle Scholar
  34. Warren, S.G., C.J. Hahn, J. London, R.M. Chervin, and R.L. Jenne (1986). Global distribution of total cloud cover and cloud type amounts over land. Technical Report TN-273+STR., NCAR, Boulder (CO).Google Scholar
  35. Welch, R.M. and B.A. Wielicki (1985). A radiative parameterization of stratocumulus cloud fields. J. Atmos. Sci., 42, 2888–2897.CrossRefGoogle Scholar

Clouds, Radiation, and Climate

  1. Cess, R.D., M.-H. Zhang, W.J. Ingram, G.L. Potter, V. Alekseev, H.W. Barker, E. Cohen-Solal, R.A. Colman, D.A. Dazlich, A.D. Del Genio, M.R. Dix, M. Esch, L.D. Fowler, J.R. Fraser, V. Galin, W.L. Gates, J.J. Hack, J.T. Kiehl, H. Le Treut, K.K.-W. Lo, B.J. McAvaney, V.P. Meleshko, J.-J. Morcrette, D.A. Randall, E. Roeckner, J.-F. Royer, M.E. Schlesinger, P.V. Sporyshev, B. Timbal, E.M. Volodin, K.E. Taylor, W.C. Wang and R.T. Wetherald (1996). Cloud feedback in atmospheric general circulation models: An update. J. Geophys. Res., 101, 12,791–12,794.Google Scholar
  2. Cess, R.D., M.-H. Zhang, G.L. Potter, V. Alekseev, H.W. Barker, S. Bony, R.A. Colman, D.A. Dazlich, A.D. Del Genio, M. Déqué, M.R. Dix, V. Dymnikov, M. Esch, L.D. Fowler, J.R. Fraser, V. Galin, W.L. Gates, J.J. Hack, W.J. Ingram, J.T. Kiehl, Y. Kim, H. Le Treut, X.Z. Liang, B.J. McAvaney, V.P. Meleshko, J.-J. Morcrette, D.A. Randall, E. Roeckner, M.E. Schlesinger, P.V. Sporyshev, K.E. Taylor, B. Timbal, E.M. Volodin, W. Wang, W.C. Wang and R.T. Wetherald (1997). Comparison of the seasonal change in cloud-radiative forcing from atmospheric general circulation models and satellite observations. J. Geophys. Res., 102, 16,593–16,603.CrossRefGoogle Scholar
  3. Fu, Q., S.K. Krueger and K.-N. Liou (1995). Interactions of radiation and convection in simulated tropical cloud clusters. J. Atmos. Sci., 52, 1310–1328.CrossRefGoogle Scholar
  4. Hansen, J.E., D. Russell, D. Rind, P. Stone, A. Lacis, L. Travis, S. Lebedeff and R. Ruedy (1983). Efficient three-dimensional global models for climate studies: Models I and II. Mon. Wea. Rev., 111, 609–662.CrossRefGoogle Scholar
  5. Liou, K.-N. (1992). Radiation and cloud processes in the atmosphere. Oxford University Press, New York, USA, 487pp.Google Scholar
  6. Mitchell, J.F.B., R.A. Davis, W.J. Ingram and C.A. Senior (1995). On surface temperature, greenhouse gases, and aerosols: Models and observations. J. Climate, 8, 2364–2386.CrossRefGoogle Scholar
  7. Potter, G.L., J.M. Slingo, J.-J. Morcrette and L. Corsetti (1992). A modelling perspective on cloud radiative forcing. J. Geophys. Res., 97, 20,507–20,518.Google Scholar
  8. Ramanathan, V. (1987). The role of Earth radiation budget studies in climate and general circulation research. J. Geophys. Res., 92, 4075–4095.Google Scholar
  9. Schlesinger, M.E. and J.F.B. Mitchell (1987). Climate model simulations of the equilibrium climatic response to increased carbon dioxide. Rev. of Geophys., 4, 760–798.Google Scholar

Clear Sky

  1. Arking, A. and K. Grossman (1972). The influence of of line shape and band structure on temperatures in planetary atmospheres. J. Atmos. Sci., 29, 937–949.CrossRefGoogle Scholar
  2. Chou, M.D. and K.T. Lee (1996). Parameterizations for the absorption of solar radiation by water vapor and ozone, J. Atmos. Sci., 53, 1203–1208.CrossRefGoogle Scholar
  3. Clough, S.A., F.X. Kneizys and R.W. Davies (1989). Line shape and the water vapor continuum. Atmos. Res., 23, 229–241.CrossRefGoogle Scholar
  4. Fu, Q. and K.-N. Liou (1992). On the correlated-k distribution method for radiative transfer in inhomogeneous atmospheres. J. Atmos. Sci., 49, 2139–2156.CrossRefGoogle Scholar
  5. Kato, S, T.P. Ackerman, J.H. Mather and E.E. Clothiaux (1999). The k-distribution method and correlated-k approximation for a shortwave radiative transfer model. J. Quant. Spectrosc. Radiat. Transfer, 62, 109–121.CrossRefGoogle Scholar
  6. Lacis, A.A. and V. Oinas (1991). A description of the correlated-k method for modeling nongrey gaseous absorption, thermal emission, and multiple scattering in vertically inhomogeneous atmospheres. J. Geophys. Res., 96, 9027–9063.Google Scholar
  7. Wiscombe, W.J. and J.W. Evans (1976). Exponential-sum fitting of radiative transmission functions. J. Comp. Phys., 24, 416–444.CrossRefGoogle Scholar

Ocean Albedo

  1. Cox, C. and W. Munk (1956). Slopes of the sea surface deduced from photographs of the sun glitter. Bull. Scripps Inst. Ocean., 6, 401–488.Google Scholar
  2. Payne, R.E. (1972). Albedo of the sea surface. J. Atmos. Sci., 29, 959–970.CrossRefGoogle Scholar
  3. Preisendorfer, R.W. and C.D. Mobley (1986). Albedos and glitter patterns of a wind-roughened sea surface. J. Phy. Ocean., 16, 1293–1316.CrossRefGoogle Scholar

Cloud Optical Properties

  1. Fu, Q. and K.-N. Liou (1993). Parameterization of the radiative properties of cirrus clouds. J. Atmos. Sci., 50, 2008–2025.CrossRefGoogle Scholar
  2. Hu, Y.-X. and K. Stamnes (1993). An accurate parameterization of the radiative properties of water clouds suitable for use in climate models. J. Climate, 6, 728–742.CrossRefGoogle Scholar
  3. Li, J., S.M. Freidenreich and V. Ramaswamy (1997). Solar spectral weight at low cloud tops. J. Geophys. Res., 102, 11,139–11,143.Google Scholar
  4. Macke, A., J. Mueller and E. Raschke (1996). Single scattering properties of atmospheric ice crystals. J. Atmos. Sci., 53, 2813–2825.CrossRefGoogle Scholar
  5. Räisänen, P. (1999). Parameterization of water and ice-cloud near-infrared single-scattering co-albedo in broadband radiation schemes. J. Atmos. Sci., 56, 626–641.CrossRefGoogle Scholar
  6. Slingo, A. (1989). A GCM parameterization for the shortwave radiative properties of water clouds. J. Atmos. Sci., 46, 1419–1427.CrossRefGoogle Scholar
  7. Stephens, G.L. and S.-C. Tsay (1990). On the cloud absorption anomaly. Quart. J. Roy. Meteo. Soc.; 116, 671–704.CrossRefGoogle Scholar
  8. Sun, Z. and K.P. Shine (1994). Studies of the radiative properties of ice and mixed-phase clouds. Quart. J. Roy. Meteo. Soc.; 120, 111–137.CrossRefGoogle Scholar

1D Models

  1. Edwards, J.M. and A. Slingo (1996). Studies with a flexible new radiation code. I: Choosing a configuration for a large-scale model. Quart. J. Roy. Meteo. Soc.; 122, 689–719.CrossRefGoogle Scholar
  2. Fouquart, Y. and B. Bonnel (1980). Computations of solar heating of the Earth’s atmosphere: A new parameterization. Cont. Atmos. Phys., 53, 35–62.Google Scholar
  3. Li., J. (2002). Accounting for unresolved clouds in a 1D infrared radiative transfer model. Part I: Solution for radiative transfer, scattering, and cloud overlap. J. Atmos. Sci., 59, 3302–3320.CrossRefGoogle Scholar
  4. Ramaswamy, V. and S. Freidenreich (1991). Solar radiative line-by-line determination of water vapor absorption and water cloud extinction in inhomogeneous atmospheres. J. Geophys. Res., 96, 9133–9157.Google Scholar
  5. Ritter, B. and J.-F. Geleyn (1992). A comprehensive radiation scheme for numerical weather prediction models with potential applications in climate simulations. Mon. Wea. Rev., 120, 303–325.CrossRefGoogle Scholar

1D Models and Unresolved Clouds

  1. Barker, H.W. and B.A. Wielicki (1997). Parameterizing grid-averaged longwave fluxes for inhomogeneous marine boundary layer clouds. J. Atmos. Sci., 54, 2785–2798.CrossRefGoogle Scholar
  2. Cairns, B., A.A. Lacis and B.E. Carlson (2000). Absorption within inhomogeneous clouds and its parameterization in general circulation models. J. Atmos. Sci., 57, 700–714.CrossRefGoogle Scholar
  3. Hogan, R.J. and A.J. Illingworth (2000). Derived cloud overlap statistics from radar. Quart. J. Roy. Meteo Soc., 126, 2903–2909.CrossRefGoogle Scholar
  4. Li, J. and H.W. Barker (2002). Accounting for unresolved clouds in a 1D infrared radiative transfer model. Part II: Horizontal variability of cloud water path. J. Atmos. Sci., 59, 3321–3339.CrossRefGoogle Scholar
  5. Morcrette, J.-J. and Y. Fouquart (1986). The overlapping of cloud layers in shortwave radiation parameterizations. J. Atmos. Sci., 43, 321–328.CrossRefGoogle Scholar
  6. Oreopoulos, L. and H.W. Barker (1999). Accounting for subgrid-scale cloud variability in a multi-layer, 1D solar radiative transfer algorithm. Quart. J. Roy. Meteo. Soc., 125, 301–330.CrossRefGoogle Scholar
  7. Stubenrauch, C.J., A.D. Del Genio and W.B. Rossow (1997). Implementation of sub-grid cloud vertical structure inside a GCM and its effects on the radiation budget. J. Climate, 10, 273–287.CrossRefGoogle Scholar
  8. Tian, L. and J.A. Curry (1989). Cloud overlap statistics. J. Geophys. Res., 94, 9925–9935.Google Scholar

3D Simulations

  1. Barker, H.W., J.-J. Morcrette and G.D. Alexander (1998). Broadband solar fluxes and heating rates for atmospheres with 3D broken clouds. Quart. J. Roy. Meteo. Soc., 124, 1245–1271.CrossRefGoogle Scholar
  2. Barker, H.W., G.L. Stephens and Q. Fu (1999). The sensitivity of domain-averaged solar fluxes to assumptions about cloud geometry. Quart. J. Roy. Meteo. Soc., 125, 2127–2152.CrossRefGoogle Scholar
  3. O’Hirok, W. and C. Gautier (1998). A three-dimensional radiative transfer model to investigate the solar radiation within a cloudy atmosphere. Part I: Spatial effects. J. Atmos. Sci., 55, 2162–2179.CrossRefGoogle Scholar
  4. O’Hirok, W. and C. Gautier (1998). A three-dimensional radiative transfer model to investigate the solar radiation within a cloudy atmosphere. Part II: Spectral effects. J. Atmos. Sci., 55, 3065–3075.CrossRefGoogle Scholar

Model Intercomparisons

  1. Barker, H.W., G.L. Stephens, P.T. Partain, J.W. Bergman, B. Bonnel, K. Campana, E.E. Clothiaux, S.A. Clough, S. Cusack, J. Delamere, J. Edwards, K.F. Evans, Y. Fouquart, Freidenreich, S., Galin, V., Hou, Y., Kato, S., Li, J., E. Mlawer, J.-J. Morcrette, W. O’Hirok, P. Räisänen, V. Ramaswamy, B. Ritter, E. Rozanov, M. Schlesinger, K. Shibata, P. Sporyshev, Z. Sun, M. Wendisch, N. Wood and F. Yang (2003). Assessing 1D atmospheric solar radiative transfer models: Interpretation and handling of unresolved clouds. J. Climate, 16, 2676–2699.CrossRefGoogle Scholar
  2. Boucher, O., S.E. Schwartz, T.P. Ackerman, T.L. Anderson, B. Bergstrom, B. Bonnel, P. Chylek, A. Dahlback, Y. Fouquart, Q. Fu, R.N. Halthore, J.M. Haywood, T. Iverson, S. Kato, S. Kinne, A. Kirkevag, K.R. Knapp, A. Lacis, I. Laszlo, M.I. Mishchenko, S. Nemesure, V. Ramaswamy, D. L. Roberts, P. Russell, M.E. Schlesinger, G.L. Stephens, R. Wagener, M. Wang, J. Wong and F. Yang (1998). Intercomparison of models representing direct shortwave radiative forcing by sulfate aerosols. J. Geophys. Res., 103, 16,979–16,998.CrossRefGoogle Scholar
  3. Cess, R.D., M.-H. Zhang, G.L. Potterd H.W. Barker, R.A. Colman, D.A. Dazlich, A.D. Del Genio, M. Esch, J.R. Fraser, V. Galin, W.L. Gates, J.J. Hack, W. Ingram, J.T. Kiehl, A.A. Lacis, H. Le Treut, Z.-X. Li, X.-Z. Liang, J.F. Mahfouf, B.J. McAvaney, V.P. Meleshko, J.-J. Morcrette, D.A. Randall, E. Roeckner, J.-F. Royer, A.P. Sokolov, P.V. Sporyshev, K.E. Taylor, W.-C. Wang and R.T. Wetherald (1993). Intercomparison of CO2 radiative forcing in atmospheric general circulation models. Science, 262, 1252–1255.Google Scholar
  4. Ellingson, R.G. and Y. Fouquart (1991). The intercomparison of radiation codes in climate models (ICRCCM): An overview. J. Geophys. Res., 96, 8926–8929.Google Scholar
  5. Fouquart, Y., B. Bonnel and V. Ramaswamy (1991). Intercomparing shortwave radiation codes for climate studies. J. Geophys. Res., 96, 8955–8968.CrossRefGoogle Scholar
  6. Kinne, S., R. Bergstrom, O.B. Toon, E. Dutton and M. Shiobara (1998). Clear-sky atmospheric solar transmission: An analysis based on FIRE 1991 field experiment data. J. Geophys. Res., 103, 19,709–19,720.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • H.W. Barker

There are no affiliations available

Personalised recommendations