3D Radiative Transfer in Stochastic Media

  • N. Byrne
Part of the Physics of Earth and Space Environments book series (EARTH)


Direct Numerical Simulation Radiative Transfer Optical Depth Chord Length Atmospheric General Circulation Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams, M.L., E.W. Larsen, and G.C. Pomraning (1989). Benchmark results for particle transport in a binary Markov statistical medium. J. Quant. Spectrosc. Radiat. Transfer, 42, 253–266.CrossRefGoogle Scholar
  2. Astin, I. and B.G. Latter (1998). A case for exponential cloud fields? J. Appl. Meteor., 37, 1375–1382.CrossRefGoogle Scholar
  3. Avaste, O.A. and G.M. Vainikko (1974). Solar radiative transfer in broken clouds. Izv. Acad. Sci. USSR Atmos. Oceanic Phys., 10, 1054–1061.Google Scholar
  4. Avaste, O.A., Y.R. Mullamaa, K.Y. Niylisk, and M.A. Sulev (1974). On the coverage of sky by clouds. In Heat Transfer in the Atmosphere. Technical Report (Tech. Transl. TT-F-790), NASA, Washington (DC).Google Scholar
  5. Benner, T.C. and K.F. Evans (2001). Three-dimensional solar radiative transfer in small tropical cumulus field derived from high-resolution imagery. J. Geophys. Res., 106, 14,975–14,984.Google Scholar
  6. Byrne, R.N., R.C.J. Somerville, and B. Subasilar (1996). Broken-cloud enhancement of solar radiation absorption. J. Atmos. Sci., 53, 878–886.CrossRefGoogle Scholar
  7. Cahalan, R.F. (1989). Overview of fractal clouds. In Advances in Remote Sensing. A. Deepak Publishing, Hampton, VA, pp. 371–388.Google Scholar
  8. Cairns, B. (1992). An Investigation of Radiative Transfer and Multiple Scattering. Ph.D. dissertation, University of Rochester, Rochester (NY).Google Scholar
  9. Cairns, B., A.A. Lacis, and B.E. Carlson (2000). Absorption within inhomogeneous clouds and its parameterization in general circulation models. J. Atmos. Sci., 57, 700–714.CrossRefGoogle Scholar
  10. Cess, R.D., G.L. Potter, J.-P. Blanchet, G.J. Boer, S.J. Ghan, J.T. Kiehl, S.B.A. Liang, J.F.B. Mitchell, D.A. Randall, M.R. Riches, E. Roeckner, U. Schlese, A. Slingo, K.E. Taylor, W.M. Washington, R.T. Wetherald, and I. Yagai (1989). Interpretation of cloud-climate feedback as produced by 14 atmospheric general circulation models. Science, 245, 513–516.Google Scholar
  11. Cess, R.D., M.-H. Zhang, P. Minnis, L. Corsetti, E.G. Dutton, B.W. Forgan, D.P. Garber, W.L. Gates, J.J. Hack, E.F. Harrison, X. Jing, J.T. Kiehl, C.N. Long, J.-J Morcrette, G. L. Potter, V. Ramanathan, B. Subasilar, C.H. Whitlock, D.F. Young, and Y. Zhou (1995). Absorption of solar radiation by clouds: Observations versus models. Science, 267, 496–499.Google Scholar
  12. Davis, A., P.M. Gabriel, S.M. Lovejoy, D. Schertzer, and G.L. Austin (1990). Discrete angle radiative transfer III: Numerical results and meteorological applications. J. Geophys. Res., 95, 11,729–11,742.Google Scholar
  13. Evans, K.F. (1998). The spherical harmonics discrete ordinate method for threedimensional atmospheric radiative transfer. J. Atmos. Sci., 55, 429–446.CrossRefGoogle Scholar
  14. Gabriel, P.M., S.M. Lovejoy, A. Davis, D. Schertzer, and G.L. Austin (1990). Discrete angle radiative transfer II: Renormalization approach for homogeneous and fractal clouds. J. Geophys. Res., 95, 11,717–11,728.CrossRefGoogle Scholar
  15. Geleyn, J.-F. and A. Hollingsworth (1979). An economical analytical method for the computation of the interaction between scattering and line absorption of radiation. Contrib. Atmos. Phys., 52, 1–16.Google Scholar
  16. Graziani, F. and D. Slone (2003). Radiation transport in 3D heterogeneous materials: Direct numerical simulation. In Proceedings of the American Nuclear Society Winter Meeting, New Orleans, LA. ANS, LaGrange Park, IL.Google Scholar
  17. Lane, D.E. (2000). Ph.D. dissertation, University of California, San Diego (CA).Google Scholar
  18. Lane, D.E., K. Goris, and R.C.J. Somerville (2002). Radiative transfer through broken cloud fields: Observations and model validation. J. Climate, 15, 2921–2933.CrossRefGoogle Scholar
  19. Levermore, C.D., G.C. Pomraning, D.L Sanzo, and J. Wong (1986). Linear transport theory in a random medium. J. Math. Phys., 27, 2526–2536.CrossRefGoogle Scholar
  20. Levermore, C.D., J. Wong, and G.C. Pomraning (1988). Renewal theory for transport processes in binary statistical mixtures. J. Math. Phys., 29, 995–1004.CrossRefGoogle Scholar
  21. Malvagi, F., R.N. Byrne, G.C. Pomraning, and R.C.J. Somerville (1993). Stochastic radiative transfer in a partially cloudy atmosphere. J. Atmos. Sci., 50, 2146–2158.CrossRefGoogle Scholar
  22. O’Hirok, W. and C. Gautier (1998). A three-dimensional radiative transfer model to investigate the solar radiation within a cloudy atmosphere. Part I: Spatial effects. J. Atmos. Sci., 55, 2162–2179.CrossRefGoogle Scholar
  23. Plank, V.G. (1969). The size distribution of cumulus clouds in representative Florida populations. J. Appl. Meteor., 8, 46–67.CrossRefGoogle Scholar
  24. Pomraning, G.C. (1986). Transport and diffusion in a statistical medium. Transp. Theory and Stat. Phys., 5, 773–802.Google Scholar
  25. Pomraning, G.C. (1989). Statistics, renewal theory and particle transport. J. Quant. Spectrosc. Radiat. Transfer, 42, 279–293.CrossRefGoogle Scholar
  26. Pomraning, G.C. (1991a). A model for interface intesities in stochastic particle transport. J. Quant. Spectrosc. Radiat. Transfer, 46, 221–236.CrossRefGoogle Scholar
  27. Pomraning, G.C. (1991b). Linear kinetic theory and particle transport in stochastic mixtures. In Waves and Stability in Continuous Media. S. Rionero (ed.). World Scientific Publishing, Singapore.Google Scholar
  28. Pomraning, G.C. (1998). Radiative transfer and transport phenomena in stochastic media. Int. J. of Eng. Sci., 36, 1595–1621.CrossRefGoogle Scholar
  29. Ramanathan, V., B. Subasilar, G. Zhang, W. Conant, R. Cess, J. Kiehl, H. Grassl, and L. Shi (1995). Warm pool heat budget and shortwave cloud forcing: A missing physics? Science, 267, 499–503.Google Scholar
  30. Sanchez, R., O. Zuchuat, and F. Malvagi (1994). Symmetry and translations in multimaterial line statistics. J. Quant. Spectrosc. Radiat. Transfer, 51, 801–812.CrossRefGoogle Scholar
  31. Su, B.J. and G.C. Pomraning (1993). Benchmark results for particle transport in binary non-Markovian mixtures. J. Quant. Spectrosc. Radiat. Transfer, 50, 211–226.CrossRefGoogle Scholar
  32. Su, B.J. and G.C. Pomraning (1995). Modification to a previous higher order model for particle transport in binary stochastic media. J. Quant. Spectrosc. Radiat. Transfer, 54, 779–801.CrossRefGoogle Scholar
  33. Titov, G.A. (1990). Statistical description of radiation transfer in clouds. J. Atmos. Sci., 47, 24–38.CrossRefGoogle Scholar
  34. Vainikko, G.M. (1973). Transfer approach to the mean intensity of radiation in noncontinuous clouds. Trudy MGK SSSR, Meteorological Investigations, 21, 28–37.Google Scholar
  35. Vanderhaegen, D. (1986). Radiative transfer in statistically inhomogeneous mixtures. J. Quant. Spectrosc. Radiat. Transfer, 36, 557–561.Google Scholar
  36. Zuchuat, O., R. Sanchez, I. Zmijarevic, and F. Malvagi (1994). Transport in renewal statistical media: Benchmarking and comparison with models. J. Quant. Spectrosc. Radiat. Transfer, 51, 689–722.CrossRefGoogle Scholar

Suggestions for Further Reading

  1. Audic, S. and H. Frisch (1993). Monte-Carlo simulation of a radiative transfer problem in a random medium: Application to a binary mixture. J. Quant. Spectrosc. Radiat. Transf., 50, 127–147.CrossRefGoogle Scholar
  2. Borovoi, A.G. (1984). Radiative transfer in inhomogeneous media. Dok. Akad. Nauk SSSR, 276, 1374–1378. (English version: Sov. Phys. Dokl., 29, no 6.)Google Scholar
  3. Davis, A. and A. Marshak (1997). Lévy kinetics in slab geometry: Scaling of transmission probability. In Fractal Frontiers. M.M. Novak and T.G. Dewey (eds.), World Scientific, Singapore, pp. 63–72.Google Scholar
  4. Davis, A.B. and A. Marshak (2001). Multiple scattering in clouds: Insights from three-dimensional diffusion/P1 theory. Nucl. Sci. Eng., 137, 251–288. (Special Issue “In Memory of Gerald C. Pomraning”.)Google Scholar
  5. Davis, A.B. and A. Marshak (2004). Photon propagation in heterogeneous optical media with spatial correlations: Enhanced mean-free-paths and wider-than-exponential free-path distributions. J. Quant. Spectrosc. Rad. Transf., 84, 3–34.CrossRefGoogle Scholar
  6. Evans, K.F. (1993). A general solution for stochastic radiative transfer. Geophys. Res. Lett., 20, 2075–2078.Google Scholar
  7. Kassianov, E. (2003). Stochastic radiative transfer in multilayer broken clouds. Part I: Markovian approach. J. Quant. Spectrosc. Radiat. Transf., 77, 373–394.CrossRefGoogle Scholar
  8. Kassianov E., T.P. Ackerman, R. Marchand and M. Ovtchinnikov (2003). Stochastic radiative transfer in multilayer broken clouds. Part II: Validation test. J. Quant. Spectrosc. Radiat. Transf., 77, 395–416.CrossRefGoogle Scholar
  9. Kostinski, A.B. (2001). On the extinction of radiation by a homogeneous but spatially correlated random medium. J. Opt. Soc. Am. A, 18, 1929–1933.Google Scholar
  10. Lane-Veron, D.E. and R.C.J. Somerville (2004). Stochastic theory of radiative transfer through generalized cloud fields. J. Geophys. Res., 109, D18113, doi:10.1029/2004JD004524.Google Scholar
  11. Lovejoy, S.M., A. Davis, P.M. Gabriel, D. Schertzer and G.L. Austin (1990). Discrete angle radiative transfer. Part 1: Scaling, similarity, universality and diffusion. J. Geophys. Res., 95, 11,699–11,715.Google Scholar
  12. Newman W.I., J.K. Lew, G.L. Siscoe, and R.G. Fovell (1995). Systematic effects of randomness in radiative transfer. J. Atmos. Sci., 52, 427–435.CrossRefGoogle Scholar
  13. Peltoniemi, J. (1993). Radiative transfer in stochastically inhomogeneous media. J. Quant. Spectrosc. Radiat. Transf., 50, 655–672.CrossRefGoogle Scholar
  14. Pfeilsticker, K. (1999). First geometrical pathlength distribution measurements of skylight using the oxygen A-band absorption technique — Part II, Derivation of the Lévy-index for skylight transmitted by mid-latitude clouds. J. Geophys. Res., 104, 4101–4116.CrossRefGoogle Scholar
  15. Pomraning, G.C. (1996). Transport theory in discrete stochastic mixtures. Adv. Nuclear Sci. Tech., 24, 47–93.CrossRefGoogle Scholar
  16. Stephens, G.L. (1988). Radiative transfer through arbitrarily shaped media. Part 2: Group theory and closures. J. Atmos. Sci., 45, 1836–1848.Google Scholar
  17. Titov G.A., T.B. Zhuravleva and V.E. Zuev (1997). Mean radiation fluxes in the near-IR spectral range: Algorithms for calculation. J. Geophys. Res., 102, 1819–1832.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • N. Byrne

There are no affiliations available

Personalised recommendations