Advertisement

Keywords

Monte Carlo Radiative Transfer Phase Function Source Function Discrete Ordinate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Antyufeev, V.S. (1996). Solution of the generalized transport equation with a peakshaped indicatrix by the Monte Carlo method. Russ. J. Numer. Anal. and Modeling, 11, 113–137.CrossRefGoogle Scholar
  2. Balsara, D. (2001). Fast and accurate discrete ordinate methods for multidimensional radiative transfer. Part I, basic methods. J. Quant. Spectrosc. Radiat. Transfer, 69, 671–707.CrossRefGoogle Scholar
  3. Cahalan, R.F., L. Oreopoulos, A. Marshak, K.F. Evans, A.B. Davis, R. Pincus, K. Yetzer, B. Mayer, R. Davies, T.P. Ackerman, H.W. Barker, E.E. Clothiaux, R.G. Ellingson, M.J. Garay, E. Kassianov, S. Kinne, A. Macke, W. O’Hirok, P.T. Partain, S.M. Prigarin, A.N. Rublev, G.L. Stephens, F. Szczap, E.E. Takara, T. Várnai, G. Wen, and T.B. Zhuravleva (2005). The international Intercomparison of 3D Radiation Codes (I3RC): Bringing together the most advanced radiative transfer tools for cloudy atmospheres. Bull. Amer. Meteor. Soc., to appear in Sept 2005 issue.Google Scholar
  4. Carlson, B.G. and K.D. Lathrop (1968). Transport theory — the method of discrete ordinates. In Computing Methods in Reactor Physics. Gordon & Breach, New York (NY).Google Scholar
  5. Chandrasekhar, S. (1950). Radiative Transfer. Oxford University Press, reprinted by Dover Publications (1960), New York (NY).Google Scholar
  6. de Oliveira, C.R.E. (1986). An arbitrary geometry finite element method for multigroup neutron transport with anisotropic scattering. Prog. in Nuclear Engin., 18, 227–236.CrossRefGoogle Scholar
  7. Evans, K.F. (1993). Two-dimensional radiative transfer in cloudy atmospheres: The spherical harmonic spatial grid method. J. Atmos. Sci., 50, 3111–3124.CrossRefGoogle Scholar
  8. Evans, K.F. (1998). The spherical harmonics discrete ordinate method for three-dimensional atmospheric radiative transfer. J. Atmos. Sci., 55, 429–446.CrossRefGoogle Scholar
  9. Fiveland, W.A. (1988). Three-dimensional radiative heat-transfer solutions by the discrete-ordinates method. J. Thermophysics and Heat Transfer, 2, 309–316.CrossRefGoogle Scholar
  10. Gabriel, P.M., S.-C. Tsay, and G.L. Stephens (1993). A Fourier-Riccati approach to radiative transfer. Part I: Foundations. J. Atmos. Sci., 50, 3125–3147.CrossRefGoogle Scholar
  11. Gerstl, S.A. and A. Zardecki (1985). Discrete-ordinate finite-element method for atmospheric radiative transfer and remote sensing. Appl. Optics, 24, 81–93.Google Scholar
  12. Grant, I.P. and G.E. Hunt (1969). Discrete space theory of radiative transfer i: Fundamentals. Proc. Roy. Soc. London, A313, 183–197.Google Scholar
  13. Haferman, J.L., T.F. Smith, and W.F. Krajewski (1997). A multi-dimensional discrete-ordinates method for polarized radiative transfer. I. Validation for randomly oriented axisymmetric particles. J. Quant. Spectrosc. Radiat. Transfer, 58, 379–398.CrossRefGoogle Scholar
  14. Kuo, K.-S., R.C. Weger, R.M. Welch, and S.K. Cox (1996). The Picard iterative approximation to the solution of the integral equation of radiative transfer. Part II: Three-dimensional geometry. J. Quant. Spectrosc. Radiat. Transfer, 55, 195–213.CrossRefGoogle Scholar
  15. Larsen, E.W. (1982). Unconditionally stable diffusion synthetic acceleration methods for the slab geometry discrete ordinates equations. Part I: Theory. Nuclear Sci. Engin., 82, 47.Google Scholar
  16. Lathrop, K.D. (1966). Use of discrete-ordinate methods for solution of photon transport problems. Nuclear Sci. Engin., 24, 381–388.Google Scholar
  17. L’Ecuyer, P. (1998). Random number generation. In The Handbook of Simulation. J. Banks (ed.). Wiley and Sons, New York (NY), pp. 93–137.Google Scholar
  18. Lenoble, J. (ed.) (1985). Radiative Transfer in Scattering and Absorbing Atmospheres: Standard Computational Procedures. Deepak Publishing, Hampton (VA).Google Scholar
  19. Liou, K.-N. and N. Rao (1996). Radiative transfer in cirrus clouds. Part IV: On the cloud geometry, inhomogeneity, and absorption. J. Atmos. Sci., 53, 3046–3065.CrossRefGoogle Scholar
  20. Lyapustin, A.I. and T.Z. Muldashev (2001). Solution for atmospheric optical transfer function using spherical harmonic method. J. Quant. Spectrosc. Radiat. Transfer, 68, 43–56.CrossRefGoogle Scholar
  21. Marchuk, G., G. Mikhailov, M. Nazaraliev, R. Darbinjan, B. Kargin, and B. Elepov (1980). The Monte Carlo Methods in Atmospheric Optics. Springer-Verlag, New York (NY).Google Scholar
  22. Marshak, R.E. (1947). Note on the spherical harmonic methods as applied to the Milne problem for a sphere. Phys. Rev., 71, 443–446.CrossRefGoogle Scholar
  23. Martonchik, J.V. and D.J. Diner (1985). Three-dimensional radiative transfer using a Fourier-transform matrix-operator method. J. Quant. Spectrosc. Radiat. Transfer, 34, 133–148.CrossRefGoogle Scholar
  24. Modest, M.F. (1993). Radiative Heat Transfer. McGraw-Hill, Inc., New York (NY).Google Scholar
  25. Nakajima, T. and M. Tanaka (1988). Algorithms for radiative intensity calculations in moderately thick atmospheres using a truncation approximation. J. Quant. Spectrosc. Radiat. Transfer, 40, 51–69.CrossRefGoogle Scholar
  26. Oreopoulos, L. and R. Davies (1998). Plane parallel albedo biases from satellite observations. Part I: Dependence on resolution and other factors. J. Climate, 11, 919–932.CrossRefGoogle Scholar
  27. Papoulis, A. (1965). Probability, Random Variables, and Stochastic Processes. McGraw-Hill, New York (NY).Google Scholar
  28. Ramone, G.L., M.L. Adams, and P.F. Nowak (1997). A transport synthetic acceleration method for transport iterations. Nuclear Sci. Engin., 125, 257.Google Scholar
  29. Sanchez, A., T.F. Smith, and W.F. Krajewski (1994). A three-dimensional atmospheric radiative transfer model based on the discrete-ordinates method. Atmos. Research, 33, 283–308.CrossRefGoogle Scholar
  30. Sobol, I.M. (1974). The Monte Carlo Method. The University of Chicago Press, Chicago (IL).Google Scholar
  31. Stamnes, K., S.-C. Tsay, W.J. Wiscombe, and K. Jayaweera (1988). Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media. Appl. Opt., 27, 2502–2509.Google Scholar
  32. Stenholm, L.G., H. Storzer, and R. Wehrse (1991). An efficient method for the solution of 3D radiative transfer problems. J. Quant. Spectrosc. Radiat. Transfer, 45, 47–56.CrossRefGoogle Scholar
  33. Stephens, G.L. (1988). Radiative transfer through arbitrary shaped optical media, I: A general method of solution. J. Atmos. Sci., 45, 1818–1836.CrossRefGoogle Scholar
  34. Stevens, B., C.-H. Moeng, and P.P. Sullivan (1999). Large-Eddy simulations of radiatively driven convection: Sensitivities to the representation of small scales. J. Atmos. Sci., 56, 3963–3984.CrossRefGoogle Scholar
  35. Thomas, G. and K. Stamnes (1999). Radiative Transfer in the Atmosphere and Ocean. Cambridge University Press, New York (NY).Google Scholar
  36. Tofsted, D.H. and S.G. O’Brien (1998). Physics-based visualization of dense natural clouds. I. Three-dimensional discrete-ordinates radiative transfer. Appl. Optics, 37, 7718–7728.CrossRefGoogle Scholar
  37. Truelove, J.S. (1988). Three-Dimensional radiation in absorbing-emitting-scattering media using the discrete-ordinates approximation. J. Quant. Spectrosc. Radiat. Transfer, 39, 27–31.CrossRefGoogle Scholar
  38. Wiscombe, W.J. (1977). The delta-M method: Rapid yet accurate radiative flux calculations for strongly asymmetric phase functions. J. Atmos. Sci., 34, 1408–1422.CrossRefGoogle Scholar

• for Explicit Methods

  1. Evans, K.F. (1993). Two-dimensional radiative transfer in cloudy atmospheres: The spherical harmonic spatial grid method. J. Atmos. Sci., 50, 3111–3124.CrossRefGoogle Scholar
  2. Evans, K.F. (1998). The spherical harmonics discrete ordinate method for three-dimensional atmospheric radiative transfer. J. Atmos. Sci., 55, 429–446.CrossRefGoogle Scholar
  3. Gerstl, S.A. and A. Zardecki (1985). Discrete-ordinate finite-element method for atmospheric radiative transfer and remote sensing. Appl. Optics, 24, 81–93.CrossRefGoogle Scholar
  4. Lewis, E.E. and W.F. Miller, Jr. (1993). Computational Methods of Neutron Transport. xvi+401 pp., American Nuclear Society, La Grange Park (IL).Google Scholar
  5. Modest, M.F. (1993). Radiative Heat Transfer. McGraw-Hill, Inc., New York (NY).Google Scholar
  6. Thomas G. and K. Stamnes (1999). Radiative Transfer in the Atmosphere and Ocean. Cambridge University Press, New York (NY).Google Scholar

• for Monte Carlo Methods

  1. Barker, H.W., J.-J. Morcrette and G.D. Alexander (1998). Broadband solar fluxes and heating rates for atmospheres with 3D broken clouds. Quart. J. Roy. Meteor. Soc., 124, 1245–1271.CrossRefGoogle Scholar
  2. Cahalan, R.F., W. Ridgway, W.J. Wiscombe, S. Gollmer and Harshvardhan (1994). Independent pixel and Monte Carlo estimates of stratocumulus albedo. J. Atmos. Sci., 51, 3776–3790.CrossRefGoogle Scholar
  3. Davies, R. (1978). The effect of finite geometry on the three-dimensional transfer of solar irradiance in clouds. J. Atmos. Sci., 35, 1712–1725.CrossRefGoogle Scholar
  4. Marchuk, G., G. Mikhailov, M. Nazaraliev, R. Darbinjan, B. Kargin and B. Elepov (1980). The Monte Carlo Methods in Atmospheric Optics. 208 pp., Springer-Verlag, New-York (NY).Google Scholar
  5. McKee, T.B. and S.K. Cox (1974). Scattering of visible radiation by finite clouds. J. Atmos. Sci., 31, 1885–1892.CrossRefGoogle Scholar
  6. O’Brien, D.M. (1992). Accelerated quasi-Monte Carlo integration of the radiative transfer equation. J. Quant. Spectrosc. Radiat. Transfer, 48, 41–59.CrossRefGoogle Scholar
  7. O’Hirok, W. and C. Gautier (1998). A three-dimensional radiative transfer model to investigate the solar radiation within a cloudy atmosphere. Part I: Spatial effects. J. Atmos. Sci., 55, 2162–2179.CrossRefGoogle Scholar
  8. Takara, E.E. and R.G. Ellingson (1996). Scattering effects on longwave fluxes in broken cloud fields. J. Atmos. Sci., 53, 1464–1476.CrossRefGoogle Scholar
  9. Titov, G.A., T.B. Zhuravleva, and V.E. Zuev (1997). Mean radiation fluxes in the near-IR spectral range: Algorithms for calculation. J. Geophys. Res., 102(D2), 1819–1832.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • K.F. Evans
  • A. Marshak

There are no affiliations available

Personalised recommendations