Skip to main content

Observing Clouds and Their Optical Properties

  • Chapter
3D Radiative Transfer in Cloudy Atmospheres

Part of the book series: Physics of Earth and Space Environments ((EARTH))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ackerman, T.P. and G.M. Stokes (2003). The Atmospheric Radiation Measurement program. Phys. Today, 56, 38–44.

    Google Scholar 

  • AMS (2000). American Meteorological Society, Glossary of Meteorology, T.S. Glickman (ed.). Allen Press, Boston (MA), 2nd edition.

    Google Scholar 

  • Barker, H.W. and A. Marshak (2001). Inferring optical depth of broken clouds above green vegetation using surface solar radiometric measurements. J. Atmos. Sci., 58, 2989–3006.

    Article  Google Scholar 

  • Baumgardner, D., Gayet J.-F., H. Gerber, A. Korolev, and C. Twohy (2002). Clouds: Measurement techniques in situ. In Encyclopedia of Atmospheric Sciences. J.R. Holton, J.A. Curry and J. Pyle (eds.). Academic Press, London, UK, pp. 489–498.

    Google Scholar 

  • Bohren, C.F. and D.R. Huffman (1983). Absorption and Scattering of Light by Small Particles. John Wiley and Sons, New York (NY).

    Google Scholar 

  • Brenguier, J.-L. (1993). Observation of cloud microstructure at centimeter scale. J. Appl. Meteor., 32, 783–793.

    Article  Google Scholar 

  • Clothiaux, E.E., T.P. Ackerman, G.G. Mace, K.P. Moran, R.T. Marchand, M.A. Miller, and B.E. Martner (2000). Objective determination of cloud heights and radar reflectivities using a combination of active remote sensors at ARM CART sites. J. Appl. Meteor., 39, 645–665.

    Google Scholar 

  • Clough, S.A. and M.J. Iacono (1995). Line-by-line calculations of atmospheric fluxes and cooling rates II: Application to carbon dioxide, ozone, methane, nitrous oxide and the halocarbons. J. Geophys. Res., 100, 16,519–16,535.

    Google Scholar 

  • Clough, S.A., M.J. Iacono, and J.-L. Moncet (1992). Line-by-line calculation of atmospheric fluxes and cooling rates: Application to water vapor. J. Geophys. Res., 97, 15,761–15,785.

    Google Scholar 

  • Crewell, S. and U. Löhnert (2003). Accuracy of cloud liquid water path from ground-based microwave radiometry — 2. Sensor accuracy and synergy. Radio Science, 38, 10.1029/2002RS002634.

    Google Scholar 

  • Daniel, J.S., S. Solomon, R.W. Portmann, A.O. Langford, C.S. Eubank, and E.G. Dutton (2002). Cloud liquid water and ice measurements from spectrally resolved near-infrared observations: A new technique. J. Geophys. Res., 107, Art. No. 4599.

    Google Scholar 

  • Davis, A., A. Marshak, W.J. Wiscombe, and R.F. Cahalan (1994). Multifractal characterizations of nonstationarity and intermittency in geophysical fields: Observed, retrieved, or simulated. J. Geophys. Res., 99, 8055–8072.

    Article  Google Scholar 

  • Davis, A., A. Marshak, W.J. Wiscombe, and R.F. Cahalan (1996). Scale-invariance in liquid water distributions in marine stratocumulus, Part I, Spectral properties and stationarity issues. J. Atmos. Sci., 53, 1538–1558.

    Article  Google Scholar 

  • Davis, A.B., A. Marshak, H. Gerber, and W.J. Wiscombe (1999). Horizontal structure of marine boundary-layer clouds from cm-to km-scales. J. Geophys. Res., 104, 6123–6144.

    Article  Google Scholar 

  • Diner, D.J., J.C. Beckert, G.W. Bothwell, and J.I. Rodriguez (2002). Performance of the MISR instrument during its first 20 months in earth orbit. IEEE Trans. Geosci. and Remote Sens., 40, 1449–1466.

    Article  Google Scholar 

  • Feltz, W.F., W.L. Smith, H.B. Howell, R.O. Knuteson, H. Woolf, and H.E. Revercomb (2003). Near-continuous profiling of temperature, moisture and atmospheric stability using the atmospheric emitted radiance interferometer (AERI). J. Appl. Meteor., 42, 584–597.

    Article  Google Scholar 

  • Gerber, H., B.G. Arends, and A.S. Ackerman (1994). New microphysical sensor for aircraft use. Appl. Opt., 31, 235–252.

    Google Scholar 

  • Gerber, H., J.B. Jensen, A.B. Davis, A. Marshak, and W.J. Wiscombe (2001). Spectral density of cloud liquid water content at high frequencies. J. Atmos. Sci., 58, 497–503.

    Article  Google Scholar 

  • Jeffery, C.A. (2001). Investigating the small-scale structure of clouds using the delta-correlated closure: Effect of particle inertia, condensation/evaporation and intermittency. Atmos. Res., 59, 199–215.

    Article  Google Scholar 

  • Kaufman, Y.J., D.D. Herring, K.J. Ranson, and G.J. Collatz (1998). Earth Observing System AM1 mission to earth. IEEE Trans. Geosci. and Remote Sens., 36, 1045–1055.

    Article  Google Scholar 

  • King, M.D., W.P. Menzel, Y.J. Kaufman, D. Tanre, B.C. Gao, S. Platnick, S.A. Ackerman, L.A. Remer, R. Pincus, and P.A. Hubanks (2003). Cloud and aerosol properties, precipitable water and profiles of temperature and water vapor from MODIS. IEEE Trans. Geosci. and Remote Sens., 41, 442–458.

    Article  Google Scholar 

  • King, W.D., D.A. Parkin, and R.J. Handsworth (1978). A hot-wire water device having fully calculable response characteristics. J. Appl. Meteor., 17, 1809–1813.

    Article  Google Scholar 

  • Knollenberg, R.G. (1976). Three new instruments for clouds physics measurements: The 2D spectrometer, the forward scattering spectrometer probe and the active scattering aerosol spectrometer. In Proceedings of Int. Cloud Phys. Conf. held in Boulder, Colorado, Amer. Meteor. Soc., Boston (MA), 444–461.

    Google Scholar 

  • Korolev, A.V. and I.P. Mazin (1993). Zones of increased and decreased droplet concentrations in stratiform clouds. J. Appl. Meteor., 32, 760–773.

    Article  Google Scholar 

  • Korolev, A.V. and I.P. Mazin (2003). Supersaturation of water vapor in clouds. J. Atmos. Sci., 60, 2957–2974.

    Article  Google Scholar 

  • Korolev, A.V., J.W. Strapp, G.A. Isaac, and A.N. Nevzorov (1998). The Nevzorov airborne hot-wire LWC-TWC probe: Principle of operation and performance characteristics. J. Atmos. Oceanic Technol., 15, 1495–1510.

    Article  Google Scholar 

  • Korolev, A.V., G.A. Isaac, and J. Hallett (2000). Ice particle habits in stratiform clouds. Q. J. Roy. Meteor. Soc., 126, 2873–2902.

    Article  Google Scholar 

  • Korolev, A.V., G. Isaac, I. Mazin, and H. Barker (2001). Microphysical properties of continental stratiform clouds. Quart. J. Roy. Meteor. Soc., 127, 2117–2151.

    Article  Google Scholar 

  • Korolev, A.V., G.A. Isaac, S. Cober, and J.W. Strapp (2003). Microphysical characterization of mixed-phase clouds. Quart. J. Roy. Meteor. Soc., 129, 39–66.

    Article  Google Scholar 

  • Liljegren, J.C. (1994). Two-channel microwave radiometer for observations of total column precipitable water vapor and cloud liquid water path. In Proceedings of Fifth Symposium on Global Change Studies, Nashville, Tennessee, 262–269.

    Google Scholar 

  • Liljegren, J.C., E.E. Clothiaux, G.G. Mace, S. Kato, and X.Q. Dong (2001). A new retrieval for cloud liquid water path using a ground-based microwave radiometer and measurements of cloud temperature. J. Geophys. Res., 106, 14,485–14,500.

    Article  Google Scholar 

  • Loeb, N.G., T. Várnai, and D.M. Winker (1998). Influence of subpixel-scale cloud-top structure on reflectances from overcast stratiform cloud layers. J. Atmos. Sci., 55, 2960–2973.

    Article  Google Scholar 

  • Logar, A.M., D.E. Lloyd, E.M. Corwin, M.L. Penaloza, R.E. Feind, T.A. Berendes, K.-S. Kuo, and R.M. Welch (1998). The ASTER polar cloud mask. IEEE Trans. Geosci. and Remote Sens., 36, 1302–1312.

    Article  Google Scholar 

  • Löhnert, U. and S. Crewell (2003). Accuracy of cloud liquid water path from ground-based microwave radiometry — 1. Dependency on cloud model statistics. Radio Science, 38, 10.1029/2002RS002654.

    Google Scholar 

  • Long, C.N. and T.P. Ackerman (2000). Identification of clear skies from broadband pyranometer measurements and calculation of downwelling shortwave cloud effects. J. Geophys. Res., 105, 15,609–15,626.

    Article  Google Scholar 

  • Marchand, R., T.P. Ackerman, E.R. Westwater, S.A. Clough, K. Cady-Pereira, and J.C. Liljegren (2003). An assessment of microwave absorption models and retrievals of cloud liquid water using clear-sky data. J. Geophys. Res., 108, 4773, doi:10.1029/2003JD003843.

    Article  Google Scholar 

  • Marshak, A., Yu. Knyazikhin, A.B. Davis, W.J. Wiscombe, and P. Pilewskie (2000). Cloud — vegetation interaction: Use of normalized difference cloud index for estimation of cloud optical thickness. Geophys. Res. Lett., 27, 1695–1698.

    Article  Google Scholar 

  • Michalsky, J., E. Dutton, M. Rubes, D. Nelson, T. Stoffel, M. Wesley, M. Splitt, and J. DeLuisi (1999). Optimal measurement of surface shortwave irradiance using current instrumentation. J. Atmos. Oceanic Technol., 16, 55–69.

    Article  Google Scholar 

  • Min, Q.-L. and L.C. Harrison (1999). Joint statistics of photon pathlength and cloud optical depth. Geophys. Res. Lett., 26, 1425–1428.

    Article  Google Scholar 

  • Moran, K.P., B.E. Martner, M.J. Post, R.A. Kropfli, D.C. Welch, and K.B. Widener (1998). An unattended cloud-profiling radar for use in climate research. Bull. Amer. Meteor. Soc., 79, 443–455.

    Article  Google Scholar 

  • Philipona, R., E.G. Dutton, T. Stoffel, J. Michalsky, I. Reda, A. Stifter, P. Wendling, N. Wood, S.A. Clough, E.J. Mlawer, G. Anderson, H.E. Revercomb, and T.R. Shippert (2001). Atmospheric longwave irradiance uncertainty: Pyrgeometers compared to an absolute sky-scanning radiometer, atmospheric emitted radiance interferometer and radiative transfer model calculations. J. Geophys. Res., 106, 28,129–28,141.

    Article  Google Scholar 

  • Platnick, S., M.D. King, S.A. Ackerman, W.P. Menzel, B.A. Baum, J.C. Riedi, and R.A. Frey (2003). The MODIS cloud products: Algorithms and examples from Terra. IEEE Trans. Geosci. and Remote Sens., 41, 459–473.

    Article  Google Scholar 

  • Pruppacher, H.R. and J.D. Klett (1997). Microphysics of Clouds and Precipitation: Second Revised and Enlarged Edition with an Introduction to Cloud Chemistry and Cloud Electricity. Kluwer Academic Publishers, Dordrecht, The Netherlands.

    Google Scholar 

  • Savigny, C. von, A.B. Davis, O. Funk, and K. Pfeilsticker (2002). Time-series of zenith radiance and surface flux under cloudy skies: Radiative smoothing, optical thickness retrievals and large-scale stationarity. Geophys. Res. Lett., 29, 1825, doi:10.1029/2001GL014153.

    Article  Google Scholar 

  • Sengupta, M., E.E. Clothiaux, T.P. Ackerman, S. Kato, and Q.L. Min (2003). Importance of accurate liquid water path for estimation of solar radiation in warm boundary layer clouds: An observational study. J. Climate, 16, 2997–3009.

    Article  Google Scholar 

  • Spinhirne, J.D. (1993). Micropulse lidar. IEEE Trans. Geosci. and Remote Sens., 31, 48–55.

    Article  Google Scholar 

  • Stokes, G.M. and S.E. Schwartz (1994). The Atmospheric Radiation Measurement (ARM) program: Programmatic background and design of the cloud and radiation test bed. Bull. Amer. Meteor. Soc., 75, 1201–1221.

    Article  Google Scholar 

  • Toon, O.B. and T.P. Ackerman (1981). Algorithms for the calculation of scattering by stratified spheres. Appl. Optics, 20, 3657–3660.

    Article  Google Scholar 

  • Turner, D.D., S.A. Ackerman, B.A. Baum, H.E. Revercomb, and P. Yang (2003). Cloud phase determination using ground-based AERI observations at SHEBA. J. Appl. Meteor., 42, 701–715.

    Article  Google Scholar 

  • Uttal, T., J.A. Curry, M.G. McPhee, D.K. Perovich, R.E. Moritz, J.A. Maslanik P.S. Guest, H.L. Stern, J.A. Moore, R. Turenne, A. Heiberg, M.C. Serreze, D.P. Wylie O.G. Persson, C.A. Paulson, C. Halle, J.H. Morison, P.A. Wheeler, A. Makshtas, H. Welch M.D. Shupe, J.M. Intrieri, K. Stamnes, R.W. Lindsey, R. Pinkel, W.S. Pegau, T.P. Stanton, and T.C. Grenfeld (2002). Surface heat budget of the Arctic Ocean. Bull. Amer. Meteor. Soc., 83, 255–275.

    Article  Google Scholar 

  • Westwater, E.R., Y. Han, M.D. Shupe, and S.Y. Matrosov (2001). Analysis of integrated cloud liquid and precipitable water vapor retrievals from microwave radiometers during the Surface Heat Budget of the Arctic Ocean project (2001). J. Geophys. Res., 106, 32,019–32,030.

    Article  Google Scholar 

  • Wielicki, B.A., R.D. Cess, M.D. King, D.A. Randall, and E.F. Harrison (1995). Mission to Planet Earth — Role of clouds and radiation in climate. Bull. Amer. Meteor. Soc., 76, 2125–2153.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Clothiaux, E., Barker, H., Korolev, A. (2005). Observing Clouds and Their Optical Properties. In: Marshak, A., Davis, A. (eds) 3D Radiative Transfer in Cloudy Atmospheres. Physics of Earth and Space Environments. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-28519-9_2

Download citation

Publish with us

Policies and ethics