Advertisement

Horizontal Fluxes and Radiative Smoothing

  • A. Marshak
  • A.B. Davis
Part of the Physics of Earth and Space Environments book series (EARTH)

Keywords

Monte Carlo Radiative Transfer Optical Depth Solar Zenith Angle Cloud Liquid Water 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barker, H.W., B.A. Wielicki, and L. Parker (1996). A parameterization for computing grid-averaged solar fluxes for inhomogeneous marine boundary layer clouds-Part 2, Validation using satellite data. J. Atmos. Sci., 53, 2304–2316.CrossRefGoogle Scholar
  2. Cahalan, R.F. and J.B. Snider (1989). Marine stratocumulus structure during FIRE. Remote Sens. Environ., 28, 95–107.CrossRefGoogle Scholar
  3. Cahalan, R.F., W. Ridgway, W.J. Wiscombe, T.L. Bell, and J.B. Snider (1994). The albedo of fractal stratocumulus clouds. J. Atmos. Sci., 51, 2434–2455.CrossRefGoogle Scholar
  4. Case, K.M. and P.F. Zweifel (1967). Linear Transport Theory. Addison-Wesley, Reading (MA).Google Scholar
  5. Davis, A.B. and A. Marshak (2001). Multiple scattering in clouds: Insights from three-dimensional diffusion/P1 theory. Nuclear Sci. and Engin., 137, 251–280.Google Scholar
  6. Davis, A.B. and A. Marshak (2002). Space-time characteristics of light transmitted through dense clouds: A Green function analysis. J. Atmos. Sci., 59, 2714–2728.CrossRefGoogle Scholar
  7. Davis, A., A. Marshak, R.F. Cahalan, and W.J. Wiscombe (1997). The LANDSAT scale-break in stratocumulus as a three-dimensional radiative transfer effect, Implications for cloud remote sensing. J. Atmos. Sci., 54, 241–260.CrossRefGoogle Scholar
  8. Davis, A.B., R.F. Cahalan, J.D. Spinhirne, M.J. McGill, and S.P. Love (1999). Off-beam lidar: An emerging technique in cloud remote sensing based on radiative Green-function theory in the diffusion domain. Phys. Chem. Earth (B), 24, 757–765.Google Scholar
  9. Faure, T., H. Isaka, and B. Guillemet (2001a). Neural network analysis of the radiative interaction between neighboring pixels in inhomogeneous clouds. J. Geophys. Res., 106, 14,465–14,484.Google Scholar
  10. Faure, T., H. Isaka, and B. Guillemet (2001b). Neural network retrieval of cloud parameters of inhomogeneous clouds. Feasibility test. Remote Sens. Environ., 77, 123–138.CrossRefGoogle Scholar
  11. Gradshteyn, I.S. and I.M. Ryzhik (1980). Table of Integrals, Series and Products. Academic Press, San Diego.Google Scholar
  12. Kamke, E. (1959). Differentialgleichungen, Losungsmethoden und Losungen, Vol. 1. Chelsea Publishing Company, New York.Google Scholar
  13. Kokhanovsky, A.A. (2002). Simple approximate formula for the reflection function of a homogeneous semi-infinite medium. J. Opt. Soc. Am. A, 19, 957–960.Google Scholar
  14. Korn, G.A. and T.A. Korn (1968). Mathematical Handbook. McGraw-Hill Book Company, New York (NY).Google Scholar
  15. Marshak, A., A. Davis, W.J. Wiscombe, and R.F. Cahalan (1995). Radiative smoothing in fractal clouds. J. Geophys. Res., 100, 26,247–26,261.CrossRefGoogle Scholar
  16. Marshak, A., A. Davis, W.J. Wiscombe, and R.F. Cahalan (1997). Inhomogeneity effects on cloud shortwave absorption measurements: Two-aircraft simulations. J. Geophys. Res., 102, 16,619–16,637.CrossRefGoogle Scholar
  17. Marshak, A., A. Davis, R.F. Cahalan, and W.J. Wiscombe (1998). Nonlocal Independent Pixel Approximation: Direct and Inverse Problems. IEEE Trans. Geosc. and Remote Sens., 36, 192–205.CrossRefGoogle Scholar
  18. Marshak, A., L. Oreopoulos, A.B. Davis, W.J. Wiscombe, and R.F. Cahalan (1999). Horizontal radiative fluxes in clouds and accuracy of the Independent Pixel Approximation at absorbing wavelengths. Geophys. Res. Lett., 11, 1585–1588.CrossRefGoogle Scholar
  19. Meador, W.E. and W.R. Weaver (1980). Two-stream approximations to radiative transfer in planetary atmospheres: A unified description of existing methods and a new improvement. J. Atmos. Sci., 37, 630–643.CrossRefGoogle Scholar
  20. Morse, P.M. and H. Feshbach (1953). Methods of Theoretical Physics, 2 vols. McGraw-Hill, New York (NY).Google Scholar
  21. Oreopoulos, L., A. Marshak, R.F. Cahalan, and G. Wen (2000). Cloud three-dimensional effects evidenced in Landsat spatial power spectra and autocorrelation function. J. Geophys. Res., 105, 14,777–14,788.CrossRefGoogle Scholar
  22. Polonsky, I.N. and A.B. Davis (2004). Lateral photon transport in dense scattering and weakly-absorbing media of finite thickness: Asymptotic analysis of the Green functions. J. Opt. Soc. Amer. A, 21, 1018–1025.CrossRefGoogle Scholar
  23. Savigny, C. von, O. Funk, U. Platt, and K. Pfeilsticker (1999). Radiative smoothing in zenith-scattered sky light transmitted through clouds to the ground. Geophys. Res. Lett., 26, 2949–2952.CrossRefGoogle Scholar
  24. Savigny, C. von, A.B. Davis, O. Funk, and K. Pfeilsticker (2002). Time-series of zenith radiance and surface flux under cloudy skies: Radiative smoothing, optical thickness retrievals and large-scale stationarity. Geophys. Res. Lett., 29, 1825, doi:10.1029/2001GL014153.CrossRefGoogle Scholar
  25. Stamnes, K., S.-C. Tsay, W.J. Wiscombe, and K. Jayaweera (1988). Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media. Appl. Opt., 27, 2502–2509.CrossRefGoogle Scholar
  26. Stephens, G.L. (1988). Radiative transfer through arbitrary shaped optical media, I: A general method of solution. J. Atmos. Sci., 45, 1818–1836.CrossRefGoogle Scholar
  27. Titov, G.A. (1998). Radiative horizontal transport and absorption in stratocumulus clouds. J. Atmos. Sci., 55, 2549–2560.CrossRefGoogle Scholar
  28. Uesugi, A. and W.M. Irvine (1970). Multiple scattering in a plane-parallel atmosphere 1. Successive scattering in a semi-infinite medium. Astrophys. J., 159, 127–135.CrossRefGoogle Scholar
  29. Várnai, T. (2000). Influence of three-dimensional radiative effects on the spatial distribution of shortwave cloud reflection. J. Atmos. Sci., 57, 216–229.CrossRefGoogle Scholar
  30. Zuidema, P. and K.F. Evans (1998). On the validity of the Independent Pixel Approximation for the boundary layer clouds observed during ASTEX. J. Geophys. Res., 103, 6059–6074.CrossRefGoogle Scholar

Suggestions for Further Reading

  1. Ackerman, S.A. and S.K. Cox (1981). Aircraft observations of the shortwave fractional absorptance of non-homogeneous clouds. J. Appl. Meteor., 20, 1510–1515.CrossRefGoogle Scholar
  2. Antyufeev, V.S. (1996). Solution of the generalized transport equation with a peakshaped indicatrix by the Monte Carlo method. Russ. J. Numer. Anal. Mth. Modeling, 11, 113–137.CrossRefGoogle Scholar
  3. Barker, H.W. and J.A. Davies (1992). Cumulus cloud radiative properties and the characteristics of satellite radiance wavenumber spectra. Remote Sens. Environ., 42, 51–64.CrossRefGoogle Scholar
  4. Barker, H.W. (1995). A spectral analysis of albedo and bidirectional reflectances for inhomogeneous clouds. Remote Sens. Environ., 54, 113–120.CrossRefGoogle Scholar
  5. Barker, H. and D. Liu (1995). Inferring cloud optical depths from LANDSAT data. J. Climate, 8, 2620–2630.CrossRefGoogle Scholar
  6. Boers, R., A. van Lammeren and A. Feijt (2000). Accuracy of optical depth retrieval from ground-based pyranometers. J. Atmos. Ocean. Tech., 17, 916–927.CrossRefGoogle Scholar
  7. Cahalan, R.F., W. Ridgway, W.J. Wiscombe, S. Gollmer and Harshvardhan (1994). Independent pixel and Monte Carlo estimates of stratocumulus albedo. J. Atmos. Sci., 51, 3776–3790.CrossRefGoogle Scholar
  8. Cahalan, R.F. (1994). Bounded cascade clouds: Albedo and effective thickness. Nonlinear Proc. Geophys., 1, 156–167.CrossRefGoogle Scholar
  9. Chambers, L., B. Wielicki and K.F. Evans (1997). On the accuracy of the independent pixel approximation for satellite estimates of oceanic boundary layer cloud optical depth. J. Geophys. Res., 102, 1779–1794.CrossRefGoogle Scholar
  10. Chambers, L., B. Wielicki and K.F. Evans (1997). Independent pixel and two-dimensional estimates of Landsat-derived cloud field albedo. J. Atmos. Sci., 54, 1525–1532.CrossRefGoogle Scholar
  11. Davis, A., A. Marshak, R.F. Cahalan and W.J. Wiscombe (1997). Interactions: Solar and laser beams in stratus clouds, fractals & multifractals in climate & remotesensing studies. Fractals, 5suppl., 129–166.Google Scholar
  12. Ivanov, V.V. and S.D. Gutshabash (1974). Propagation of brightness wave in an optically thick atmosphere. Physika atmosphery i okeana, 10, 851–863.Google Scholar
  13. Loeb, N.G. and J.A. Coakley (1998). Inference of marine stratus cloud optical depths from satellite measurements: Does 1D theory apply? J. Climate, 11, 215–233.CrossRefGoogle Scholar
  14. Marshak, A., A. Davis, W.J Wiscombe and G. Titov (1995). The verisimilitude of the independent pixel approximation used in cloud remote sensing. Remote Sens. Environ., 52, 72–78.CrossRefGoogle Scholar
  15. Marshak, A., A. Davis, W.J. Wiscombe and R.F. Cahalan (1998). Radiative effects of sub-mean free path liquid water variability observed in stratiform clouds. J. Geophys. Res., 103, 19557–19567.CrossRefGoogle Scholar
  16. Marshak, A., W.J. Wiscombe, A. Davis, L. Oreopoulos and R.F. Cahalan (1999). On the removal of the effect of horizontal fluxes in two-aircraft measurements of cloud absorption. Quart. J. Roy. Meteor. Soc., 558, 2153–2170.CrossRefGoogle Scholar
  17. O’Hirok, W. and C. Gautier (1998). A three-dimensional radiative transfer model to investigate the solar radiation within a cloudy atmosphere. Part I: Spatial effects. J. Atmos. Sci., 55, 2162–2179.CrossRefGoogle Scholar
  18. Oreopoulos, L. and R. Davies (1998). Plane parallel albedo biases from satellite observations. Part I: Dependence on resolution and other factors. J. Climate, 11, 919–932.CrossRefGoogle Scholar
  19. Oreopoulos, L., R.F. Cahalan, A. Marshak and G. Wen (2000). A new normalized difference cloud retrieval technique applied to Landsat radiances over the Oklahoma ARM site. J. Appl. Meteor., 39, 2305–2321.CrossRefGoogle Scholar
  20. Platnick, S. (2001). Superposition technique for deriving photon scattering statistitics in plane-parallel cloudy atmospheres. J. Quant. Spectrosc. Radiat. Transfer, 68, 57–73.CrossRefGoogle Scholar
  21. Platnick, S. (2001). Approximations for horizontal transport in cloud remote sensing problems. J. Quant. Spectrosc. Radiat. Transfer, 68, 75–99.CrossRefGoogle Scholar
  22. Romanova, L.M. (2001). Narrow light beam propagation in a stratified cloud: Higher transverse moments. Izv. Atmos. Oceanic Phys., 37, 748–756.Google Scholar
  23. Várnai, T. (1999). Effects of cloud heterogeneities on shortwave radiation: comparison of cloud-top variability and internal heterogeneity. J. Atmos. Sci., 56, 4206–4224.CrossRefGoogle Scholar
  24. Várnai, T. and A. Marshak (2001). Statistical analysis of the uncertainties in cloud optical depth retrievals caused by three-dimensional radiative effects. J. Atmos. Sci., 58, 1540–1548.CrossRefGoogle Scholar
  25. Várnai, T. and A. Marshak (2002). Observations and analysis of three-dimensional radiative effects that influence MODIS cloud optical thickness retrievals. J. Atmos. Sci., 59, 1607–1618.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • A. Marshak
  • A.B. Davis

There are no affiliations available

Personalised recommendations