Advertisement

Keywords

Radiative Transfer Optical Depth Liquid Water Content Microwave Radiometer International Satellite Cloud Climatology Project 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abbott, E. (1884). Flatland: A Romance of Many Dimensions, Revised 1952 edition. Dover, New York (NY).Google Scholar
  2. Ackerman, T.P. and G.M. Stokes (2003). The Atmospheric Radiation Measurement program. Phys. Today, 56, 38–44.Google Scholar
  3. Appleby, J.F. and D. van Blerkom (1975). Absorption line studies of reflection from horizontally inhomogeneous layers. Icarus, 24, 51–69.CrossRefGoogle Scholar
  4. Arking, A. (1991). The radiative effects of clouds and their impact on climate. Bull. Amer. Meteor. Soc., 71, 795–813.CrossRefGoogle Scholar
  5. Baker, B. (1992). Turbulent entrainment and mixing in clouds: A new observational approach. J. Atmos. Sci., 49, 387–404.CrossRefGoogle Scholar
  6. Barker, H.W. and J.A. Davies (1989). Multiple reflections across a linear discontinuity in surface albedo. Internat. J. Climatology, 9, 203–214.Google Scholar
  7. Barker, H.W., G.L. Stephens, and Q. Fu (1999). The sensitivity of domain-averaged solar fluxes to assumptions about cloud geometry. Quart. J. Roy. Meteor. Soc., 125, 2127–2152.CrossRefGoogle Scholar
  8. Barker, H.W., A. Marshak, W. Szyrmer, A. Trishchenko, J.-P. Blanchet, and Z. Li (2002a). Inference of cloud optical properties from aircraft-based solar radiometric measurements. J. Atmos. Sci., 59, 2093–2111.CrossRefGoogle Scholar
  9. Barker, H.W., R. Pincus, and J.-J. Morcrette (2002b). The Monte Carlo independent column approximation: Application within large-scale models. In Proceedings from the GCSS Workshop. Kananaskis, Alberta, Canada.Google Scholar
  10. Barker, H.W., G.L. Stephens, P.T. Partain, J.W. Bergman, B. Bonnel, K. Campana, E.E. Clothiaux, S. Clough, S. Cusack, J. Delamere, J. Edwards, K.F. Evans, Y. Fouquart, S. Freidenreich, V. Galin, Y. Hou, S. Kato, J. Li, E. Mlawer, J.-J. Morcrette, W. O’Hirok, P. Räisänen, V. Ramaswamy, B. Ritter, E. Rozanov, M. Schlesinger, K. Shibata, P. Sporyshev, Z. Sun, M. Wendisch, N. Wood, and F. Yang (2003). Assessing 1D atmospheric solar radiative transfer models: Interpretation and handling of unresolved clouds. J. Climate, 16, 2676–2699.CrossRefGoogle Scholar
  11. Baumgardner, D., B. Baker, and K. Weaver (1993). A technique for the measurement of cloud structure on centimeter scales. J. Atmos. Oceanic Technol., 10, 557–565.CrossRefGoogle Scholar
  12. Bohren, C.F., J.R. Linskens, and M.E. Churma (1995). At what optical thickness does a cloud completely obscure the sun? J. Atmos. Sci., 52, 1257–1259.CrossRefGoogle Scholar
  13. Bretherton, C., T. Uttal, C. Fairall, S. Yuter, R. Weller, D. Baumgardner, K. Comstock, R. Wood, and G. Raga (2004). The EPIC stratocumulus study. Bull. Amer. Meteor. Soc., DOI: 10.1175/BAMS-85-7-967.Google Scholar
  14. Cahalan, R.F. (1991). Landsat observations of fractal cloud structure. In Nonlinear Variability in Geophysics. Kluwer, Inc., D. Schertzer and S. Lovejoy (eds.). pp. 281–295.Google Scholar
  15. Cahalan, R.F. and J.H. Joseph (1989). Fractal statistics of cloud fields. Mon. Wea. Rev., 117, 261–272.CrossRefGoogle Scholar
  16. Cahalan, R.F., M. McGill, J. Kolasinski, T. Várnai, and K. Yetzer (2005). THOR-cloud THickness from Offbeam lidar Returns. J. Atmos. Ocean. Tech., 22, 605–627.CrossRefGoogle Scholar
  17. Cess, R.D., G.L. Potter, J.-P. Blanchet, G.J. Boer, S.J. Ghan, J.T. Kiehl, S.B.A. Liang, J.F.B. Mitchell, D.A. Randall, M.R. Riches, E. Roeckner, U. Schlese, A. Slingo, K.E. Taylor, W.M. Washington, R.T. Wetherald, and I. Yagai (1989). Interpretation of cloud-climate feedback as produced by 14 atmospheric general circulation models. Science, 245, 513–516.Google Scholar
  18. Cess, R.D., M.-H. Zhang, P. Minnis, L. Corsetti, E.G. Dutton, B.W. Forgan, D.P. Garber, W.L. Gates, J.J. Hack, E.F. Harrison, X. Jing, J.T. Kiehl, C.N. Long, J.-J Morcrette, G.L. Potter, V. Ramanathan, B. Subasilar, C.H. Whitlock, D.F. Young, and Y. Zhou (1995). Absorption of solar radiation by clouds: Observations versus models. Science, 267, 496–499.Google Scholar
  19. Chiu, J.-Y., A. Marshak, and W.J. Wiscombe (2004). The effect of surface heterogeneity on cloud absorption estimate. Geophys. Res. Lett., 31, L15105.CrossRefGoogle Scholar
  20. Coakley, J.A., M. Friedman, and W. Tahnk (2005). Retrieval of cloud properties for partly cloudy imager pixels. J. Atmos. Ocean. Tech., 22, 3–17.CrossRefGoogle Scholar
  21. Davies, R. (1984). Reflected solar radiances from broken cloud scenes and the interpretation of scanner measurements. J. Geophys. Res., 89, 1259–1266.Google Scholar
  22. Davis, A.B. (2002). Cloud remote sensing with sideways-looks: Theory and first results using Multispectral Thermal Imager (MTI) data. In SPIE Proceedings: Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery VIII. S.S. Shen and P.E. Lewis (eds.). S.P.I.E. Publications, Bellingham, WA, pp. 397–405.Google Scholar
  23. Davis, A.B. and A. Marshak (2002). Space-time characteristics of light transmitted through dense clouds: A Green function analysis. J. Atmos. Sci., 59, 2714–2728.CrossRefGoogle Scholar
  24. Davis, A.B. and A. Marshak (2004). Photon propagation in heterogeneous optical media with spatial correlations: Enhanced mean-free-paths and wider-than-exponential free-path distributions. J. Quant. Spectrosc. Radiat. Transfer, 84, 3–34.CrossRefGoogle Scholar
  25. Davis, A., A. Marshak, W.J. Wiscombe, and R.F. Cahalan (1994). Multifractal characterizations of nonstationarity and intermittency in geophysical fields: Observed, retrieved, or simulated. J. Geophys. Res., 99, 8055–8072.CrossRefGoogle Scholar
  26. Davis, A., A. Marshak, R.F. Cahalan, and W.J. Wiscombe (1997). The LANDSAT scale-break in stratocumulus as a three-dimensional radiative transfer effect, Implications for cloud remote sensing. J. Atmos. Sci., 54, 241–260.CrossRefGoogle Scholar
  27. Davis, A.B., R.F. Cahalan, J.D. Spinhirne, M.J. McGill, and S.P. Love (1999). Offbeam lidar: An emerging technique in cloud remote sensing based on radiative Green-function theory in the diffusion domain. Phys. Chem. Earth (B), 24, 757–765.Google Scholar
  28. Davis, P.J. and P. Rabinowitz (1984). Methods of numerical integration. Academic Press, New York (NY), 2nd edition.Google Scholar
  29. Deirmendjian, D. (1969). Electromagnetic Scattering on Spherical Polydispersions. Elsevier, New York (NY).Google Scholar
  30. Deirmendjian, D. (1975). Far-infrared and submillimeter wave attenuation by clouds and rain. J. Appl. Meteor., 14, 1584–1593.CrossRefGoogle Scholar
  31. Diner, D.J., J.C. Beckert, T.H. Reilly, C.J. Bruegge, J.E. Conel, R.A. Kahn, J.V. Martonchik, T.P. Ackerman, R. Davies, S.A.W. Gerstl, H.R. Gordon, J.-P. Muller, R.B. Myneni, P.J. Sellers, B. Pinty, and M.M. Verstraete (1998). Multiangle Imaging Spectroradiometer MISR: Description and experiment overview. IEEE Trans. Geosci. and Remote Sens., 36, 1072–1087.CrossRefGoogle Scholar
  32. Dutton, E.G. (1993). An extended comparison between LOWTRAN7 computed and observed broadband thermal fluxes. J. Atmos. Oceanic Tech., 10, 326–336.CrossRefGoogle Scholar
  33. Dyson, F. (1999). The Sun, the Genome, & the Internet: Tools of Scientific Revolutions. Oxford Press, New York (NY).Google Scholar
  34. Ellingson, R.G. (1982). On the effects of cumulus dimensions on longwave irradiance and heating rate calculations. J. Atmos. Sci., 39, 886–896.CrossRefGoogle Scholar
  35. Ellingson, R.G. and Y. Fouquart (1991). The intercomparison of radiation codes in climate models (ICRCCM): An overview. J. Geophys. Res., 96, 8925–8927.Google Scholar
  36. Ellingson, R.G. and W.J. Wiscombe (1996). The Spectral Radiance Experiment (SPECTRE): Project description and sample results. Bull. Amer. Meteor. Soc., 77, 1967–1985.CrossRefGoogle Scholar
  37. Evans, K.F. (1998). The spherical harmonics discrete ordinate method for three-dimensional atmospheric radiative transfer. J. Atmos. Sci., 55, 429–446.CrossRefGoogle Scholar
  38. Evans, K.F. and W.J. Wiscombe (2004). An algorithm for generating stochastic cloud fields from radar profile statistics. Atmos. Res., 72, 263–289.CrossRefGoogle Scholar
  39. Evans, K.F., R.P. Lawson, P. Zmarzly, D. O’Connor, and W.J. Wiscombe (2003). In situ cloud sensing with multiple scattering lidar: Simulations and demonstration. J. Atmos. and Oceanic Tech., 20, 1505–1522.CrossRefGoogle Scholar
  40. Gilgen, H. and A. Ohmura (1999). The Global Energy Balance Archive (GEBA). Bull. Amer. Meteor. Soc., 80, 831–850.CrossRefGoogle Scholar
  41. Goodstein, R. (2004). Out of Gas: The End of the Age of Oil. Norton & Co., New York (NY).Google Scholar
  42. Greenwald, T., G. Stephens, T. Vonder Haar, and D. Jackson (1993). A physical retrieval of cloud liquid water over the global oceans using Special Sensor Microwave/Imager (SSM/I) observations. J. Geophys. Res., 98, 18,471–18,488.Google Scholar
  43. Gu, Y. and K.-N. Liou (2001). Radiation parameterization for three-dimensional inhomogeneous cirrus clouds: Application to climate models. J. Climate, 14, 2443–2457.CrossRefGoogle Scholar
  44. Hamblyn, R. (2001). The Invention of Clouds: How an Amateur Meteorologist Forged the Language of the Skies. Farrar, Straus and Giroux, New York (NY).Google Scholar
  45. Hansen, J.E. and L.D. Travis (1974). Light scattering in planetary atmospheres. Space Sci. Rev., 16, 527–610.CrossRefGoogle Scholar
  46. Harshvardhan and R. Thomas (1984). Solar reflection from interacting and shadowing cloud elements. J. Geophys. Res., 89, 7179–7185.Google Scholar
  47. Hartmann, D. and K. Larson (2002). An important constraint on tropical cloud-climate feedback. Geophys. Res. Lett., 29, 1951, 12-1–4.Google Scholar
  48. Hartmann, D., L. Moy, and Q. Fu (2001). Tropical convective clouds and the radiation balance at the top of the atmosphere. J. Climate, 14, 4495–4511.CrossRefGoogle Scholar
  49. Harwit, M. (2003). The growth of astrophysical understanding. Physics Today, 56, 38–43.Google Scholar
  50. Hasselmann, K. (1976). Stochastic climate models, Part 1: Theory. Tellus, 28, 473–485.CrossRefGoogle Scholar
  51. Heidinger, A. and G.L. Stephens (2000). Molecular line absorption in a scattering atmosphere. II: Application to remote sensing in the O2 A-band. J. Atmos. Sci., 57, 1615–1634.CrossRefGoogle Scholar
  52. Hobbs, P. (1991). Research on clouds and precipitation: Past, present and future, Part II. Bull. Amer. Meteor. Soc., 72, 184–191.CrossRefGoogle Scholar
  53. Holland, G., P. Webster, J. Curry, G. Tyrell, D. Gauntlett, G. Brett, J. Becker, R. Hoag, and W. Vaglienti (2001). The aerosonde robotic aircraft: A new paradigm for environmental observations. Bull. Amer. Meteor. Soc., 82, 889–902.CrossRefGoogle Scholar
  54. Horgan, J. (1996). The End of Science. Addison-Wesley, Reading (MA).Google Scholar
  55. Hunt, G.E. and I.P Grant (1969). Discrete space theory of radiative transfer and its application to problems in planetary atmospheres. J. Atmos. Sci., 26, 963–972.CrossRefGoogle Scholar
  56. Jakob, C. (2003). An improved strategy for the evaluation of cloud parameterizations in GCMs. Bull. Amer. Meteor. Soc., 84, 1387–1401.CrossRefGoogle Scholar
  57. Klose, A., U. Netz, J. Beuthan, and A. Hielscher (2002). Optical tomography using the time-independent equation of radiative transfer. Part I: Forward model. J. Quant. Spectrosc. Radiat. Transfer, 72, 691–713.CrossRefGoogle Scholar
  58. Knyazikhin, Yu., A. Marshak, W.J. Wiscombe, J. Martonchik, and R.B. Myneni (2002). A missing solution to the transport equation and its effect on estimation of cloud absorptive properties. J. Atmos. Sci., 59, 3572–3585.CrossRefGoogle Scholar
  59. Knyazikhin, Yu., A. Marshak, M.I. Larsen, W.J. Wiscombe, J. Martonchik, and R.B. Myneni (2005). Small-scale drop size variability: Impact on estimation of cloud optical properties. J. Atmos. Sci., in press.Google Scholar
  60. Kostinski, A. (2002). On the extinction of radiation by a homogeneous but spatially correlated random medium: Review and response to comments. J. Opt. Soc. Amer. A, 19, 2521–2525.Google Scholar
  61. Kostinski, A. and A. Jameson (2000). On the spatial distribution of cloud particles. J. Atmos. Sci., 57, 901–915.CrossRefGoogle Scholar
  62. Kostinski, A. and R.A. Shaw (2001). Scale-dependent droplet clustering in turbulent clouds. J. Fluid Mech., 434, 389–398.CrossRefGoogle Scholar
  63. Kustas, W., T. Jackson, J. Prueger, J. Hatfield, and M. Anderson (2003). Remote sensing field experiments evaluate retrieval algorithms and land-atmosphere modeling. EOS Trans. AGU, 84, 485 and 492–493.Google Scholar
  64. Liepert, B. (2002). Observed reductions of surface solar radiation at sites in the United States and worldwide from 1961 to 1990. Geophys. Res. Lett., 29, 1421, doi:10.1029/2002GL014910.CrossRefGoogle Scholar
  65. Liepert, B., A. Anderson, and N. Ewart (2003). Spatial variability of atmospheric transparency in the New York metropolitan area in summer. AGU Fall Meeting.Google Scholar
  66. Lin, B., B. Wielicki, L. Chambers, Y.-X. Hu, and K. Xu (2002). The Iris Hypothesis: A negative or positive cloud feedback? J. Climate, 15, 3–7.CrossRefGoogle Scholar
  67. Love, S.P., A.B. Davis, C. Ho, and C.A. Rohde (2001). Remote sensing of cloud thickness and liquid water content with Wide-Angle Imaging Lidar (WAIL). Atmos. Res., 59–60, 295–312.CrossRefGoogle Scholar
  68. Lovejoy, S. (1982). The area-parameter relation for rain and clouds. Science, 216, 185–187.Google Scholar
  69. Manabe, S. and R.T.Wetherald (1967). Thermal equilibrium of the atmosphere with a given distribution of relative humidity. J. Atmos. Sci., 24, 241–259.CrossRefGoogle Scholar
  70. Mandelbrot, B.B. (1982). The Fractal Geometry of Nature. W. H. Freeman, New York (NY).Google Scholar
  71. Marchuk, G., G. Mikhailov, M. Nazaraliev, R. Darbinjan, B. Kargin, and B. Elepov (1980). The Monte Carlo Methods in Atmospheric Optics. Springer-Verlag, New York (NY).Google Scholar
  72. Marshak, A., A. Davis, W.J. Wiscombe, and R.F. Cahalan (1995). Radiative smoothing in fractal clouds. J. Geophys. Res., 100, 26,247–26,261.CrossRefGoogle Scholar
  73. Marshak, A., A. Davis, W.J. Wiscombe, and R.F. Cahalan (1997). Inhomogeneity effects on cloud shortwave absorption measurements: Two-aircraft simulations. J. Geophys. Res., 102, 16,619–16,637.CrossRefGoogle Scholar
  74. Marshak, A., Yu. Knyazikhin, A.B. Davis, W.J. Wiscombe, and P. Pilewskie (2000). Cloud-vegetation interaction: Use of normalized difference cloud index for estimation of cloud optical thickness. Geophys. Res. Lett., 27, 1695–1698.CrossRefGoogle Scholar
  75. Marshak, A., Yu. Knyazikhin, K.D. Evans, and W.J. Wiscombe (2004). The “RED versus NIR” plane to retrieve broken-cloud optical depth from ground-based measurements. J. Atmos. Sci., 61, 1911–1925.CrossRefGoogle Scholar
  76. Marshak, A., Yu. Knyazikhin, M.L. Larsen, and W.J. Wiscombe (2005). Small-scale drop size variability: Empirical models for drop-size-dependent clustering in clouds. J. Atmos. Sci., 62, 551–558.CrossRefGoogle Scholar
  77. McKee, T.B. and S.K. Cox (1974). Scattering of visible radiation by finite clouds. J. Atmos. Sci., 31, 1885–1892.CrossRefGoogle Scholar
  78. Meerkotter, R. and M. Degunther (2001). A radiative transfer case study for 3-D cloud effects in the UV. Geophys. Res. Lett., 28, doi: 10.1029/2000GL011932.Google Scholar
  79. Min, Q.-L. and L.C. Harrison (1999). Joint statistics of photon pathlength and cloud optical depth. Geophys. Res. Lett., 26, 1425–1428.CrossRefGoogle Scholar
  80. Mishchenko, M.I., J.W. Hovenier, and D. Mackowski (2004). Single scattering by a small volume element. J. Opt. Soc. Am. A, 21, 71–87.CrossRefGoogle Scholar
  81. Nakajima, T. and M.D. King (1990). Determination of optical thickness and effective radius of clouds from reflected solar radiation measurements: Part I: Theory. J. Atmos. Sci., 47, 1878–1893.CrossRefGoogle Scholar
  82. Nunez, M., K. Fienberg, and C. Kuchinke (2005). Temporal structure of the solar radaition field in cloudy conditions: Are retrievals of hourly averages from space possible? J. Appl. Meteor., 44, 167–178.CrossRefGoogle Scholar
  83. O’Brien, D.M. (1992). Accelerated quasi Monte Carlo integration of the radiative transfer equation. J. Quant. Spect. Radiat. Transfer, 48, 41–59.CrossRefGoogle Scholar
  84. Ockert-Bell, M.E. and D.L. Hartmann (1992). The effect of cloud type on Earth’s energy balance: Results for selected regions. J. Climate, 5, 1157–1171.CrossRefGoogle Scholar
  85. Ohmura, A., E. Dutton, B. Forgan, C. Froelich, H. Gilgen, H. Hegner, A. Heimo, G. Konig-Langlo, B. McArthur, G. Muller, R. Philipona, R. Pinker, C. Whitlock, K. Dehne, and M. Wild (1998). Baseline Surface Radiation Network (BSRN/WCRP): New precision radiometry for climate research. Bull. Amer. Meteor. Sci., 79, 2115–2136.CrossRefGoogle Scholar
  86. Palle, E., P.R. Goode, V. Yurchyshyn, J. Qiu, J. Hickey, P. Rodriguez, M.-C. Chu, E. Kolbe, C.T. Brown, and S.E. Koonin (2003). Earthshine and the Earth’s albedo: 2. Observations and simulations over three years. J. Geophys. Res., 108, 4710, doi:10.1029/2003JD003611.CrossRefGoogle Scholar
  87. Paltridge, G.W. (1975). Global dynamics and climate — a system of minimum entropy exchange. Quart. J. Roy. Meteor. Soc., 101, 475–484.CrossRefGoogle Scholar
  88. Petty, G.W. (2002). Area-average solar radiative transfer in three-dimensionally inhomogeneous clouds: The independently scattering cloudlets model. J. Atmos. Sci., 59, 2910–2929.CrossRefGoogle Scholar
  89. Pierluissi, J., K. Tomimaya, and R.B. Gomez (1987). Analysis of the LOWTRAN transmission functions. Appl. Opt., 18, 1607–1612.Google Scholar
  90. Pincus, R., C. Hannay, and K.F. Evans (2005). The accuracy of determining three-dimensional radiative transfer effects in cumulus clouds using ground-based profiling instruments. J. Atmos. Sci., in press.Google Scholar
  91. Pinsky, M. and A. Khain (2003). Fine structure of cloud droplet concentration as seen from the Fast-FSSP measurements. Part II: Results of in situ observations. J. Appl. Meteor., 42, 65–73.CrossRefGoogle Scholar
  92. Plass, G. and G. Kattawar (1968). Monte Carlo calculations of light scattering from clouds. Appl. Opt., 7, 415–419.CrossRefGoogle Scholar
  93. Polonsky, I.N., S.P. Love, and A.B. Davis (2005). Wide-Angle Imaging Lidar (WAIL) deployment at the ARM Southern Great Plains site: Intercomparison of cloud property retreivals. J. Atmos. Ocean. Tech., 22, 628–648.CrossRefGoogle Scholar
  94. Portmann, R.W., S. Solomon, R.W. Sanders, J.S. Daniel, and E. Dutton (2001). Cloud modulation of zenith sky oxygen path lengths over Boulder, Colorado: Measurement versus model. J. Geophys. Res., 106, 1139–1155.CrossRefGoogle Scholar
  95. Potter, G. and R.D. Cess (2004). Testing the impact of clouds on the radiation budgets of 19 atmospheric general circulation models. J. Geophys. Res., 109, 1139–1155, doi:10.1029/2003JD004018.CrossRefGoogle Scholar
  96. Prata, A.J. and P.J. Turner (1997). Cloud-top height determination using ATSR data. Remote Sens. Envir., 59, 1–13.CrossRefGoogle Scholar
  97. Press, W., S. Teukolsky, W. Vettering, and B. Flannery (2000). Numerical Recipes in Fortran: The Art of Scientific Computing. Cambridge University Press, Cambridge (UK), 2nd edition.Google Scholar
  98. Ramanathan, V., R.D. Cess, E.F. Harrison, P. Minnis, B.R. Barkstrom, E. Ahmad, and D. Hartmann (1989). Cloud-radiative forcing and climate: Results from the Earth-radiation Budget Experiment. Science, 243, 57–63.Google Scholar
  99. Randall, D., M. Khairoutdinov, A. Arakawa, and W. Grabowski (2003). Breaking the cloud parameterization deadlock. Bull. Amer. Meteor. Soc., 84, 1547–1564.CrossRefGoogle Scholar
  100. Randall, D., S. Krueger, C. Bretherton, J. Curry, P. Duynkerke, M. Moncrieff, B. Ryan, D. Starr, M. Miller, W. Rossow, G. Tselioudis, and B. Wielicki (2004). Confronting models with data: The GEWEX cloud systems study. Bull. Amer. Meteor. Soc., 84, 455–469.CrossRefGoogle Scholar
  101. Rossow, W.B. and E. Duenas (2004). The International Satellite Cloud Climatology Project (ISCCP) web site. Bull. Amer. Meteor. Soc., 85, 167–172.CrossRefGoogle Scholar
  102. Rossow, W.B. and R.A. Schiffer (1999). Advances in understanding clouds from ISCCP. Bull. Amer. Meteor. Soc., 11, 2261–2287.CrossRefGoogle Scholar
  103. Schneider, S. (1972). Cloudiness as a global climatic feedback mechanism. J. Atmos. Sci., 29, 1413–1422.CrossRefGoogle Scholar
  104. Senior, C.A. and J.F.B. Mitchell (1993). CO2 and climate: The impact of cloud parametrizations. J. Climate, 6, 393–418.CrossRefGoogle Scholar
  105. Shaw, R.A. (2003). Particle-turbulence interactions in atmospheric clouds. Annu. Rev. Fluid Mech., 35, 183–227.CrossRefGoogle Scholar
  106. Shaw, R.A., A. Kostinski, and D. Lanterman (2002). Super-exponential extinction of radiation in a negatively-correlated random medium. J. Quant. Spect. Radiat. Transfer, 75, 13–20.CrossRefGoogle Scholar
  107. Sigl, G. (2001). Ultrahigh-energy cosmic rays: Physics and astrophysics at extreme energies. Science, 291, 73–79, doi:10.1126/science.291.5501.73.CrossRefGoogle Scholar
  108. Stamnes, K., S.-C. Tsay, W.J. Wiscombe, and K. Jayaweera (1988). Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media. Appl. Opt., 27, 2502–2509.CrossRefGoogle Scholar
  109. Stephens, G.L. (1988a). Radiative transfer through arbitrary shaped optical media, I: A general method of solution. J. Atmos. Sci., 45, 1818–1836.CrossRefGoogle Scholar
  110. Stephens, G.L. (1988b). Radiative transfer through arbitrary shaped optical media, II: Group theory and simple closures. J. Atmos. Sci., 45, 1837–1848.CrossRefGoogle Scholar
  111. Stephens, G.L. (2003). The useful pursuit of shadows. American Scientist, 91, 442–449.CrossRefGoogle Scholar
  112. Stephens, G.L., D. Vane, R. Boain, G. Mace, K. Sassen, Z. Wang, A. Illingworth, E. O’Connor, W. Rossow, S. Durden, S. Miller, R. Austin, A. Benedetti, C. Mitrescu, and CloudSat Science Team (2002). The CloudSat mission and the A-Train: A new dimension of space-based observations of clouds and precipitation. Bull. Amer. Metereol. Soc., 83, 1771–1790.CrossRefGoogle Scholar
  113. Stevens, B., C.-H. Moeng, and P.P. Sullivan (1999). Large-Eddy simulations of radiatively driven convection: Sensitivities to the representation of small scales. J. Atmos. Sci., 56, 3963–3984.CrossRefGoogle Scholar
  114. Stevens, B., D.H. Lenschow, G. Vali, H. Gerber, A. Bandy, B. Blomquist, J.-L. Brenguier, C.S. Bretherton, F. Burnet, T. Campos, S. Chai, I. Faloona, D. Friesen, S. Haimov, K. Laursen, D.K. Lilly, S.M. Loehrer, S.P. Malinowski, B. Morley, M.D. Petters, D.C. Rogers, L. Russell, V. Savic-Jovcic, J.R. Snider, D. Straub, M.J. Szumowski, H. Takagi, D.C. Thornton, M. Tschudi, C. Twohy, M. Wetzel, and M.C. van Zanten (2003). Dynamics and chemistry of marine stratocumulus: DYCOMS-II. Bull. Amer. Meteor. Soc., 84, 579–593.CrossRefGoogle Scholar
  115. Sundqvist, H. (1978). A parameterization scheme for non-convective condensation including prediction of cloud water content. Q. J. Roy. Meteor. Soc., 104, 677–690.CrossRefGoogle Scholar
  116. Sundqvist, H., E. Berge, and J. E. Kristjansson (1989). Condensation and cloud parameterization studies with a mesoscale Numerical Weather Prediction model. Mon. Wea. Rev., 117, 1641–1657.CrossRefGoogle Scholar
  117. Takara, E.E. and R.G. Ellingson (2000). Broken cloud field longwave scattering effects. J. Atmos. Sci., 57, 1298–1310.CrossRefGoogle Scholar
  118. Twomey, S. (1987). Iterative nonlinear inversion methods for tomographic problems. J. Atmos. Sci., 44, 3544–3551.CrossRefGoogle Scholar
  119. Vonder Haar, T. and V. Suomi (1971). Measurements of Earth’s radiation budget from satellites for a five-year period. J. Atmos. Sci., 28, 305–314.CrossRefGoogle Scholar
  120. Warner, J., J. Drake, and P. Krehbiel (1985). Determination of cloud liquid water distribution by inversion of radiometric data. J. Atmos. Oceanic Technol., 2, 293–303.CrossRefGoogle Scholar
  121. Warner, J., J. Drake, and J. Snider (1986). Liquid water distribution obtained from coplanar scanning radiometers. J. Atmos. Oceanic Technol., 3, 542–546.CrossRefGoogle Scholar
  122. Weinman, J.A. and P.N. Swartztrauber (1968). Albedo of a striated medium of isotropically scattering particles. J. Atmos. Sci., 34, 642–650.Google Scholar
  123. Wielicki, B.A., R.D. Cess, M.D. King, D.A. Randall, and E.F. Harrison (1995). Mission to Planet Earth-Role of clouds and radiation in climate. Bull. Amer. Meteor. Soc., 76, 2125–2153.CrossRefGoogle Scholar
  124. Winker, D., R. Couch, and M.P. McCormick (1996). An overview of LITE: NASA’s Lidar In-space Technology Experiment. Proc. IEEE, 84, 164–180.CrossRefGoogle Scholar
  125. Wiscombe, W.J. (1975). Solar radiation calculations for Arctic summer stratus conditions. In Climate of the Arctic. G. Weller and S. Bowling (eds.). University of Alaska Press, Fairbanks (AK).Google Scholar
  126. Wiscombe, W.J. (1983). Atmospheric radiation: 1975–1983. Rev. Geophys. Space Phys., 21, 997–1021.Google Scholar
  127. Wiscombe, W.J. and V. Ramanathan (1985). The role of radiation and other renascent subfields in atmospheric science. Bull. Amer. Meteor. Soc., 66, 1278–1287.CrossRefGoogle Scholar
  128. Wiscombe, W.J. and R. Welch (1986). Reply. J. Atmos. Sci., 43, 401–407.CrossRefGoogle Scholar
  129. Wiscombe, W.J., R. Welch, and W. Hall (1984). The effect of very large drops on cloud absorption I. Parcel models. J. Atmos. Sci., 41, 1336–1355.CrossRefGoogle Scholar
  130. Yodh, A. and B. Chance (1995). Spectroscopy and imaging with diffusing light. Phys. Today, 48, 34–40.Google Scholar
  131. Zmarzly, P.M. and R.P. Lawson (2000). An optical extinctometer for cloud radiation measurements and planetary exploration. Technical Report Fulfillment of Contract NAS5-98032, NASA GSFC.Google Scholar

Suggested Further Reading

  1. Davies, R. (1978). The effect of finite cloud geometry on the 3D transfer of solar irradiance in clouds. J. Atmos. Sci., 35, 1712–1725.CrossRefGoogle Scholar
  2. Hasler, A. (1981). Stereoscopic observations from geosynchronous satellites. Bull. Amer. Meteor. Soc., 62, 194–212.CrossRefGoogle Scholar
  3. Kummerow, C. and J.A. Weinman (1988). Determining microwave brightness temperatures from precipitating horizontally finite and vertically structured clouds. J. Geophys. Res., 93, 3720–3728.Google Scholar
  4. Li, Z., M. Cribb and A. Trishchenko (2002). Impact of surface inhomogeneity on solar radiative transfer under overcast conditions. J. Geophys. Res., 107(D16), 10.1029/2001JD00976.Google Scholar
  5. Oreskes, N., K. Schrader-Frechette and K. Belitz (1994). Verification, validation and confirmation of numerical models in the Earth sciences. Science, 263, 641–646 (and Letters to Science, 264, 329–331).Google Scholar
  6. Pinnick, R., S. Jennings, P. Chylek, C. Ham and W. Grandy (1983). Backscatter and extinction in water clouds. J. Geophys. Res., 88, 6787–6796.CrossRefGoogle Scholar
  7. Plank, V. (1969). The size distribution of cumulus clouds in representative Florida populations. J. Appl. Meteor., 8, 46–67.CrossRefGoogle Scholar
  8. Twomey, S. (1976): The effects of fluctuations in liquid water content on the evolution of large drops by coalescence. J. Atmos. Sci., 33, 720–723.CrossRefGoogle Scholar
  9. Venema, V., S. Crewell and C. Simmer (2003): Surrogate cloud fields with measured cloud properties. In Proceedings of Inter. Symp. on Tropos. Profiling, 14–20 September 2003, Leipzig (Germany), 303–305.Google Scholar
  10. Weckwerth, T., D.B. Parsons, S.E. Koch, J.A. Moore, M.A. Le Mone, B.B. Demoz, C. Flamant, B. Geerts, J. Wang and W.F. Feltz (2004): An overview of the International H2O Project (IHOP_2002) and some preliminary highlights. Bull. Amer. Meteor. Soc., 85, 253–277.CrossRefGoogle Scholar
  11. Welch, R. and W. Zdunkowski, 1981: The radiative characteristics of noninteracting cumulus cloud fields, Part I: Parameterization for finite clouds. Contrib. Atmos. Phys., 54, 258–272.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • W.J. Wiscombe

There are no affiliations available

Personalised recommendations