Semi-Infinite Programming: Properties and Applications to Economics

  • Francisco Guerra Vázquez
  • Jan-J. Rückmann
Part of the Lecture Notes in Economics and Mathematical Systems book series (LNE, volume 551)

Summary

In recent years the semi-infinite programming became one of the most substantial research topics in the field of operations research. The goal of this paper is to make more familiar to a broader class of mathematicians, economists and engineers the idea of what is a semi-infinite programming problem and how it can be applied to the modelling and solution of real-life problems from economics, finance and engineering. Several examples illustrate the characteristic geometric features of this class of problems as well as their consequences for the use of solution methods. Then, the paper refers to applications which are modelled as semi-infinite programming problems: a control problem, a Stackelberg game, a portfolio problem, a robust optimization problem and a technical trading system for future contracts. Finally, conclusions and open questions are discussed and a special bibliography on applications of semi-infinite programming is presented.

Key words

(Generalized) semi-infinite programming feasible set topological properties optimal control Stackelberg games portfolio robust optimization trading system future contracts 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ben-Israel A, Charnes A, Kortanek KO (1971) Asymptotic duality in semi-infinite programming and the convex core topology. Rendiconti Di Matematica 4:751–761MathSciNetGoogle Scholar
  2. 2.
    Ben-Tal A, Nemirovski, A (1999) Robust solutions of uncertain linear programs. Operations Research Letters 25:1–13MathSciNetCrossRefGoogle Scholar
  3. 3.
    Bonnans JF, Cominetti R, Shapiro A (1999) Second order optimality conditions based on parabolic second order tangent sets. SIAM J. Optimization 9:466–492MathSciNetCrossRefGoogle Scholar
  4. 4.
    Bonnans JF, Shapiro A (1998) Optimization problems with perturbations, a guided tour. SIAM Review 40,2:228–264MathSciNetCrossRefGoogle Scholar
  5. 5.
    Bonnans JF, Shapiro A (2000) Perturbation Analysis of Optimization Problems. Springer, New YorkGoogle Scholar
  6. 6.
    de Klerk E (2002) Aspects of Semidefinite Programming. Interior Point Algorithms and Selected Applications. Kluwer, BostonGoogle Scholar
  7. 7.
    Fahl M, Sachs EW (1997) Modern optimization methods for structural design under flutter constraints. Technical report, University of Trier, GermanyGoogle Scholar
  8. 8.
    Goberna MA, Lopez MA (1998) Linear Semi-infinite Optimization. Wiley, ChichesterGoogle Scholar
  9. 9.
    Goberna MA, Lopez MA (eds) (2001) Semi-infinite Programming — Recent Advances. Kluwer, BostonGoogle Scholar
  10. 10.
    Graettinger TJ, Krogh BH (1988) The acceleration radius: a global performance measure for robotic manipulators. IEEE J. of Robotics and Automation 4:60–69CrossRefGoogle Scholar
  11. 11.
    Haaren-Retagne E (1992) Semi-Infinite Programming Algorithms for Robot Trajectory Planning. PhD Thesis, University of Trier, GermanyGoogle Scholar
  12. 12.
    Hettich R, Kortanek KO (1993) Semi-infinite programming: theory, methods and applications. SIAM Review 35,3:380–429MathSciNetCrossRefGoogle Scholar
  13. 13.
    Hettich R, Still G (1991) Semi-infinite programming models in robotics. In: Guddat J et al. (eds) Parametric Optimization and Related Topics II, Math. Res. 62, Akademie-Verlag, Berlin, 112–118Google Scholar
  14. 14.
    Hettich R, Still G (1995) Second order optimality conditions for generalized semi-infinite programming problems. Optimization 34:195–211MathSciNetGoogle Scholar
  15. 15.
    Jongen HTh, Rückmann J-J, Stein O (1998) Generalized semi-infinite optimization: a first order optimality condition and examples. Math. Programming 83:145–158MathSciNetCrossRefGoogle Scholar
  16. 16.
    Kaplan A, Tichatschke R (1997) On a class of terminal variational problems. In: Guddat J, Jongen HTh, Nožička F, Still G, Twilt F (eds) Parametric Optimization and Related Topics IV, Peter Lang Verlag, Frankfurt a.M., 185–199Google Scholar
  17. 17.
    Klatte D (1994) Stable local minimizers in semi-infinite optimization: regularity and second-order conditions. J. Comp. Appl. Math. 56:137–157MATHMathSciNetCrossRefGoogle Scholar
  18. 18.
    Kortanek KO, Medvedev G (1999) Models for estimating the structure of interest rates from observations of yield curves. In: Avellaneda M (ed) Quantitative Analysis in Financial Markets, World Sci., 53–120Google Scholar
  19. 19.
    Kortanek KO, Moulin P (1998) Semi-infinite programming in orthogonal wavelet filter design. In Rückmann J-J (eds) Semi-Infinite Programming. Kluwer, Boston [24], 323–360Google Scholar
  20. 20.
    Krabs W (1987) On time-minimal heating or cooling of a ball. In: International Series of Numerical Mathematics 81, Birkhäuser, Basel, 121–131Google Scholar
  21. 21.
    Polak E (1987) On the mathematical foundations of nondifferentiable optimization in engineering design. SIAM Review 29:21–89MathSciNetCrossRefGoogle Scholar
  22. 22.
    Polak E (1997) Optimization. Algorithms and Consistent Approximations. Springer, New YorkGoogle Scholar
  23. 23.
    Reemtsen R, Görner S (1998) Numerical methods for semi-infinite programming: a survey. In Rückmann J-J (eds) Semi-Infinite Programming. Kluwer, Boston [24], 195–275Google Scholar
  24. 24.
    Reemtsen R, Rückmann J-J (eds) (1998): Semi-Infinite Programming. Kluwer, BostonGoogle Scholar
  25. 25.
    Riickmann J-J, Shapiro A (1999) First-order optimality conditions in generalized semi-infinite programming. J. Optim. Theory Appl. 101:677–691MathSciNetGoogle Scholar
  26. 26.
    Riickmann J-J, Shapiro A (2001) Second-order optimality conditions in generalized semi-infinite programming. Set-Valued Analysis 9,1–2:169–186MathSciNetGoogle Scholar
  27. 27.
    Sachs EW (1998) Semi-infinite programming in control. In Rückmann J-J (eds) Semi-Infinite Programming. Kluwer, Boston [24], 389–411Google Scholar
  28. 28.
    Shimizu K, Ishizuka Y, Bard JF (1997) Nondifferentiable and Two-Level Mathematical Programming. Kluwer, BostonGoogle Scholar
  29. 29.
    Silva CLM, Oliveira FAR, Hendrickx M (1993) Modelling optimum processing conditions for the sterilization of prepackaged foods. Food Control 4,2:67–78CrossRefGoogle Scholar
  30. 30.
    Stein O (to appear) Bi-level Strategies in Semi-infinite Programming. Kluwer, BostonGoogle Scholar
  31. 31.
    Stein O, Still G (2000) On optimality conditions for generalized semi-infinite programming problems. J. Optim. Theory Appl. 104:443–458MathSciNetCrossRefGoogle Scholar
  32. 32.
    Stein O, Still G (submitted) Solving semi-infinite optimization problems with interior point techniquesGoogle Scholar
  33. 33.
    Tichatschke R, Kaplan A, Voetmann T, Böhm M (2002) Numerical treatment of an asset price model with non-stochastic uncertainty. TOP 10,1:1–30MathSciNetGoogle Scholar
  34. 34.
    Vandenberghe L, Boyd S (1998) Connections between semi-infinite and semi-definite programming. In Rückmann J-J (eds) Semi-Infinite Programming. Kluwer, Boston [24], 277–294Google Scholar
  35. 35.
    Vasicek O (1977) An equilibrium characterization of the term structure. J. of Financial Economics 5:177–188CrossRefGoogle Scholar
  36. 36.
    Vicente LN, Calamai PH (1994) Bilevel and multilevel programming: a bibliography review. J. of Global Optimization 5:291–306MathSciNetCrossRefGoogle Scholar
  37. 37.
    Weber G-W (1999) Generalized Semi-infinite Optimization and Related Topics. Habilitation thesis, Darmstadt University of TechnologyGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Francisco Guerra Vázquez
    • 1
  • Jan-J. Rückmann
    • 2
  1. 1.Escuela de CienciasUniversidad de las AméricasPueblaMexico
  2. 2.Departamento de Física y MatemáticasUniversidad de las AmericasPueblaMexico

Personalised recommendations