Advertisement

Smooth Transition Models of Structural Change

  • Bernhard Böhm
Part of the Lecture Notes in Economics and Mathematical Systems book series (LNE, volume 551)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anderson H. M. and F. Vahid (1998), Testing multiple equation systems for common nonlinear components, Journal of Econometrics, 84, 1–36.CrossRefMathSciNetGoogle Scholar
  2. 2.
    Andrews D.W.K. and W. Ploberger (1994), Optimal tests when a nuisance parameter is present only under the alternative, Econometrica, 62, 1383–1414.MathSciNetGoogle Scholar
  3. 3.
    Bacon D.W. and D.G. Watts (1971), Estimating the transition between two intersecting straight lines, Biometrika, 58, 525–534.Google Scholar
  4. 4.
    Böhm B. (2001), The Changing Nature of the Phillips Curve. Some Results in Smooth Transition Modelling, IDEE Working Paper, Vienna, April 2001Google Scholar
  5. 5.
    Böhm B. and L. F. Punzo (2001), Productivity-investment fluctuations and structural change, ch. 3 in L. F. Punzo (ed.) Cycles, Growth and Structural Change. Theories and emprirical evidence, Routledge, London and New York, 2001Google Scholar
  6. 6.
    Boswijk H. P. and P. H. Franses (1996), Common Persistence in Nonlinear Au-torgressive Models, Working paper, Econometric Institute, Erasmus University RotterdamGoogle Scholar
  7. 7.
    Chan K.S. and H. Tong (1986), On estimating thresholds in autoregressive models, Journal of Time Series Analysis, 7, 178–190.MathSciNetGoogle Scholar
  8. 8.
    Davies R.B. (1977), Hypothesis testing when a nuisance parameter is present only under the alternative, Biometrika, 64, 247–254.MATHMathSciNetGoogle Scholar
  9. 9.
    Davies R.B. (1987), Hypothesis testing when a nuisance parameter is present only under the alternative, Biometrika, 74, 33–43.MATHMathSciNetGoogle Scholar
  10. 10.
    Debelle G. and J. Vickerey (1998), Is the Phillips curve a curve? Some Evidence and Implications for Australia, Economic Record, 74,227, 384–98Google Scholar
  11. 11.
    Eliasson A.-C. (1999), Is the short-run Phillips curve nonlinear? Empirical Evidence for Australia, Sweden and the United States, Working Paper in Economics and Finance 330, Stockholm School of Economics, June 1999Google Scholar
  12. 12.
    Eitrheim O. and T. Teräsvirta (1996), Testing the adequacy of smooth transition autoregressive models, Journal of Econometrics, 75, 59–75.Google Scholar
  13. 13.
    Engle R.F. (1984), Wald, Likelihood Ratio, and Lagrange Multiplier Tests in Econometrics, in Griliches Z. and M.D. Intriligator, eds. Handbook of Econometrics, Vol. 2, 775–826, Amsterdam: Elsevier.Google Scholar
  14. 14.
    Franses, P. H., P. de Bruin, D. van Dijk (2000), Seasonal Smooth Transition Autoregression, Econometric Institute Report 2000-06/A, Erasmus University, RotterdamGoogle Scholar
  15. 15.
    Frisch H. (1983), Theories of inflation, Cambridge Surveys of Economic Literature, Cambridge University PressGoogle Scholar
  16. 16.
    Gali J. (1999), The Return of the Phillips Curve and other Recent Developments in Business Cycle Theory, Mimeo, Universitat Pompeu Fabra.Google Scholar
  17. 17.
    Goldfeld S.M. and R.E. Quandt (1972), Nonlinear methods in econometrics, Amsterdam: North-Holland.Google Scholar
  18. 18.
    Gordon, R. (1997), The time-varying NAIRU and its implications for economic policy, Journal of Economic Perspectives, 11(1), 11–32MATHGoogle Scholar
  19. 19.
    Granger C.W.J. and T. Teräsvirta (1993), Modelling nonlinear economic relationships, Oxford: Oxford University Press.Google Scholar
  20. 20.
    Haldane A. and D. Quah (1999), UK Phillips Curve and Monetary Policy, LSE Working Paper.Google Scholar
  21. 21.
    Hansen B.E. (1996), Inference when a nuisance parameter is not identified under the null, Econometrica, 64, 413–430.MATHMathSciNetGoogle Scholar
  22. 22.
    Heider M. (1999), La non-linéarité de la courbe de Phillips de court terme en France et en Allemagne, Research Paper, Université Montesquieu Bordeaux IVGoogle Scholar
  23. 23.
    Jansen E.S. and T. Teräsvirta (1996), Testing the parameter constancy and super exogeneity in econometric equations, Oxford Bulletin of Economics and Statistics, 58, 735–763.Google Scholar
  24. 24.
    Lin C.-F. and T. Teräsvirta (1994), Testing the constancy of regression parameters against continuous structural change, Journal of Econometrics, 62, 211–228.CrossRefGoogle Scholar
  25. 25.
    Lütkepohl H., T. Teräsvirta and Wolters J. (1997), Investigating Stability and Linearity of a German M1 Money Demand Function, Stockholm School of Economics, Working Paper Series in Economics and FinanceGoogle Scholar
  26. 26.
    Luukkonen R., P. Saikkonen and T. Teräsvirta (1988), Testing linearity against smooth transition autoregression, Biometrika, 75, 491–499.MathSciNetGoogle Scholar
  27. 27.
    Maddala D.S. (1977), Econometrics, New York: McGraw-Hall.Google Scholar
  28. 28.
    Mankiw N. G., (2000), The Inexorable and Mysterious Tradeoff Between Inflation and Unemployment, Working Paper 7884, NBER, Sep. 2000Google Scholar
  29. 29.
    Mills T. C. (1999), The Econometric Modelling of Financial Time Series, Cambridge, Cambridge University PressGoogle Scholar
  30. 30.
    Neftçi S. (1984), Are economic time series asymmetric over the business cycle, Journal of Political Economy, 92, 307–328.Google Scholar
  31. 31.
    Phillips A.W. (1958), The relation between unemployment and the rate of change of money wages in the United Kingdom, 1861–1957, Economica, 25, 283–299.Google Scholar
  32. 32.
    Roberts J. M. (1995), New Keynesian Economics and the Phillips Curve, Journal of Money, Credit, and Banking, 27(4), 975–984Google Scholar
  33. 33.
    Samuelson P.A. and R. M. Solow (1960), Analytical Aspects of Anti-Inflation Policy, American Economic Review 50 (Papers and Proceedings), 177–194Google Scholar
  34. 34.
    Sarantis N. (1999), Modeling non-linearities in real effective exchange rates, Journal of International Money and Finance, 18, 27–45CrossRefGoogle Scholar
  35. 35.
    Skalin J. and T. Teräsvirta (1998), Modelling asymmetries and moving equilibria in unemployment rates, Stockholm School of Economics, Working Paper Series in Economics and Finance, No. 262.Google Scholar
  36. 36.
    Taylor M. P., Peel D. A., Sarno L. (2001), Nonlinear mean-reversion in exchange rates: towards a solution to the purchasing power parity puzzles, International Economic Review, Vol. 42, 1015–42CrossRefGoogle Scholar
  37. 37.
    Teräsvirta T. (1994), Specification, estimation, and evaluation of smooth transition autoregressive models, Journal of the American Statistical Association, 89, 208–218.Google Scholar
  38. 38.
    Teräsvirta T. (1997), Smooth Transition Models, in Heij Ch., H. Schumacher, B. Hanzon and K. Praagman, eds. System Dynamics in Economic and Financial Models, 109–123, Chichester: John Wiley and Sons.Google Scholar
  39. 39.
    Teräsvirta T. (1998), Modelling economic relationships with smooth transition regression, in A. Ullah and D.E.A. Giles (eds.) Handbook of Applied Economic Statistics, 507–552, New York: Marcel Dekker.Google Scholar
  40. 40.
    Teräsvirta T. and H.M. Anderson (1992), Characterizing nonlinearities in business cycles using smooth transition autoregressive models, Journal of Applied Econometrics, 7, 119–136.Google Scholar
  41. 41.
    Teräsvirta T., D. Tjøstheim and C.W.J. Granger (1994), Aspects of modelling nonlinear time series, in Engle R.F. and D. McFadden, eds. Handbook of Econometrics, Vol. 4, 2919–2957, Amsterdam: Elsevier.Google Scholar
  42. 42.
    Tjøstheim D. (1994), Nonlinear time series analysis: A selective view, Scandinavian Journal of Statistics, 21, 97–130.MATHGoogle Scholar
  43. 43.
    Tong H. (1983), Threshold models in non-linear time series analysis, Lecture Notes in Statistics, No. 21, Springer, HeidelbergGoogle Scholar
  44. 44.
    Tong H. (1990), Non-linear time series. A dynamical systems approach, Oxford: Oxford University Press.Google Scholar
  45. 45.
    van Dijk D. (1999) Smooth Transition Models: Extensions and Outlier Robust Inference, Tinbergen Institute Research Series No. 200, RotterdamGoogle Scholar
  46. 46.
    Wyplosz C. (2000), Do we know how low should inflation be?, First Central Banking Conference on “Why Price Stability?”, European Central Bank, November 2000.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Bernhard Böhm
    • 1
  1. 1.Institute of Econometrics, Operations Research and Systems TheoryUniversity of TechnologyWienAustria

Personalised recommendations