Skip to main content

Structural and Functional Modulation of Ion Channels by Specific Lipids: from Model Systems to Cell Membranes

  • Chapter
Book cover Protein-Lipid Interactions

Part of the book series: Springer Series in Biophysics ((BIOPHYSICS,volume 9))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akabas MH, Kaufmann C, Archdeacon P, Karlin A (1994) Identification of acetylcholine receptor channel-lining residues in the entire M2 segment of the alpha subunit. Neuron 13:919–927

    Article  Google Scholar 

  • Aleu J, Ivorra I, Lejarreta M, González-Ros JM, Morales A, Ferragut JA (1997) Functional incorporation of P-glycoprotein into Xenopus oocyte plasma membrane fails to elicit a swelling-evoked conductance. Biochem Biophys Res Com 237:407–412

    Google Scholar 

  • Andreasen TJ, McNamee MG (1980) Inhibition of ion permeability control properties of acetylcholine receptor from Torpedo californica by long-chain fatty acids. Biochemistry 19:4719–4726

    Article  Google Scholar 

  • Antollini SS, Soto MA, Bonini de Romanelli I, Gutierrez-Merino C, Sotomayor P, Barrantes FJ (1996) Physical state of bulk and protein-associated lipid in nicotinic acetylcholine receptor-rich membrane studied by laurdan generalized polarization and fluorescence energy transfer. Biophys J 70(3):1275–84

    Google Scholar 

  • Anzai K, Takano C, Tanaka K, Kirino Y (1994) Asymmetrical lipid charge changes the subconducting state of the potassium channel from sarcoplasmic reticulum. Biochem Biophys Res Com 199:1081–1087

    Google Scholar 

  • Arias HR (1998) Noncompetitive inhibition of nicotinic acetylcholine receptors by endogenous molecules. J Neurosci Res 52:369–379

    Article  Google Scholar 

  • Arshava B, Taran I, Xie H, Becker JM, Naider F (2002) High resolution NMR analysis of the seven transmembrane domains of a heptahelical receptor in organic-aqueous medium. Biopolymers 64:161–76

    Article  Google Scholar 

  • Baenziger JE, Chew JP (1997) Desensitization of the nicotinic acetylcholine receptor mainly involves a structural change in solvent-accessible regions of the polypeptide backbone. Biochemistry 36:3617–3624

    Article  Google Scholar 

  • Baenziger JE, Darsaut TE, Morris ML (1999) Internal dynamics of the nicotinic acetylcholine receptor in reconstituted membranes. Biochemistry 38:4905–11

    Article  Google Scholar 

  • Baezinger JE, Morris ML, Darsaut TE (2000) Effect of membrane lipid composition on the conformational equilibria of the nicotinic acetylcholine receptor. J Biol Chem 275:777–784

    Google Scholar 

  • Barrantes FJ (1993) The lipid annulus of the nicotinic acetylcholine receptor as a locus of structural-functional interactions. In: Walts A (ed) Protein-lipid interactions. Elsevier, Amsterdam, pp 231–256

    Google Scholar 

  • Barrantes FJ (2003) Modulation of nicotinic acetylcholine receptor function through the outer and middle rings of transmembrane domains. Curr Opin Drug Discov Develop 6:620–632

    Google Scholar 

  • Barrantes FJ, Antollini SS, Blanton MP, Prieto M (2000) Topography of nicotinic acetylcholine receptor membrane-embedded domains. J Biol Chem 275:37333–37339

    Article  Google Scholar 

  • Bhushan A, McNamee MG (1993) Correlation of phospholipid structure with functional effects on the nicotinic acetylcholine receptor. A modulatory role for phosphatidic acid. Biophys J 64:716–723

    Google Scholar 

  • Billah MM, Anthes JC (1990) The regulation and cellular functions of phosphatidylcholine hydrolysis. Biochem J 269:281–291

    Google Scholar 

  • Blanton MP, Wang HH (1991) Localization of regions of the Torpedo californica nicotinic acetylcholine receptor labeled with an aryl azide derivative of phosphatidylserine. Biochim Biophys Acta 5:1067:1–8

    Google Scholar 

  • Blanton MP, Cohen JB (1994) Identifying the lipid-protein interface of the Torpedo nicotinic acetylcholine receptor: secondary structure implications. Biochemistry 33:2859–2872

    Article  Google Scholar 

  • Blanton MP, McCardy EA, Huggins A, Parikh D (1998) Probing the structure of the nicotinic acetylcholine receptor with the hydrophobic photoreactive probes [125I]TID-BE and [125I]TIDPC/16. Biochemistry 37:14545–4555

    Article  Google Scholar 

  • Blanton MP, Cohen JB (1992) Mapping the lipid-exposed regions in the Torpedo californica nicotinic acetylcholine receptor. Biochemistry 31:3738–3750

    Google Scholar 

  • Blanton MP, Wang HH (1990) Photoaffinity labeling of the Torpedo californica nicotinic acetylcholine receptor with an aryl azide derivative of phosphatidylserine Biochemistry 29:1186–1194

    Article  Google Scholar 

  • Bouzat C, Barrantes FJ (1996) Modulation of muscle nicotinic aceylcholine receptors by the glucocorticoid hydrocortisone: possible allosteric mechanism of channel blockade. J Biol Chem 271:25835–25841

    Google Scholar 

  • Bouzat C, Roccamo AM, Garbus I, Barrantes FJ (1998) Mutations at lipid-exposed residues of the acetylcholine receptor affect its gating kinetics. Molec Pharmacol 54:146–153

    Google Scholar 

  • Brown DA, London E (1997) Structure of detergent-resistant membrane domains: does phase separation occur in biological membranes? Biochem Biophys Res Commun 240:1–7

    Article  Google Scholar 

  • Brown DA, London E (1998) Functions of lipid rafts in biological membranes. Ann Rev Cell Dev Biol 14:111–136

    Google Scholar 

  • Brown DA, London E (2000) Structure and function of sphingolipid-and cholesterol-rich membrane rafts. J Biol Chem 275:17221–17224

    Google Scholar 

  • Bruses JL, Chauvet N, Rutishauser U (2001) Membrane lipid rafts are necessary for the maintenance of the (alpha)7 nicotinic acetylcholine receptor in somatic spines of ciliary neurons. J Neurosci 21:504–512

    Google Scholar 

  • Buller AL, White M (1990) Altered patterns of N-linked glycosylation of the Torpedo acetylcholine receptor expressed in Xenopus oocytes. J Membrane Biol 115:179–189

    Article  Google Scholar 

  • Butler DH, McNamee MG (1993) FTIR analysis of nicotinic acetylcholine receptor secondary structure in reconstituted membranes. Biochim Biophys Acta 1150:17–24

    Google Scholar 

  • Caldironi HA, ALonso TS (1996) Lipidic characterization of full-grown amphibian oocytes and their plasma membrane-enriched fractions. Lipids 31:651–656

    Google Scholar 

  • Canti C, Bodas E, Marsal J, Solsona C (1998) Tacrine and physostigmine block nicotinic receptors in Xenopus oocytes injected with Torpedo electroplaque membranes. Eur J Pharmacol 363:197–202

    Google Scholar 

  • Cantor, RS (1997) Lateral pressures in cell membranes: a mechanism for modulation of protein function. J Phys Chem 101:1323–1325

    Google Scholar 

  • Castresana J, Fernandez-Ballester G, Fernandez AM, Laynez JL, Arrondo JL, Ferragut JA, JM Gonzalez-Ros (1992) Protein structural effects of agonist binding to the nicotinic acetylcholine receptor. FEBS Lett 314:171–175

    Article  Google Scholar 

  • Chang G, Spencer RH, Lee AT, Barclay MT, Rees DC (1998) Structure of the MscL homolog from Mycobacterium tuberculosis: a gated mechanosensitive ion channel. Science 282:2220–2226

    Article  ADS  Google Scholar 

  • Changeux JP (1990) The nicotinic acetylcholine receptor: an allosteric protein prototype of ligand-gated ion channels. Trends Pharmacol Sci 11:485–492

    Article  Google Scholar 

  • Chiara DC, Dangott LJ, Eckenhoff RG, Cohen JB (2003) Idendtification of nicotinic aceylcholine receptor amino acids photolabeled by the volatile anesthetic halothane. Biochemistry 42:13457–13467

    Google Scholar 

  • Corbin J, Methot N, Wang HH, Baenziger JE, Blanton MP (1998) Secondary structure analysis of individual transmembrane segments of the nicotinic acetylcholine receptor by circular dichroism and Fourier transform infrared spectroscopy. J Biol Chem 273:771–7

    Article  Google Scholar 

  • Corbin J, Wang HH, Blanton MP (1998) Identifying the cholesterol binding domain in the nicotinic acetylcholine receptor with [125I]azido-cholesterol. Biochim Biophys Acta 1414:65–74

    Google Scholar 

  • Cordes FS, Bright JN, Sansom MS (2002) Proline-induced distortions of transmembrane helices. J Mol Biol 323:951–960

    Article  Google Scholar 

  • Criado, M, Eib H, Barrantes FJ (1984) Functional properties of the acetylcholine receptor incorporated in model lipid membranes Differential effects of chain length and head group of phospholipids on receptor affinity states and receptor-mediated ion translocation. J Biol Chem 259:9188–9198

    Google Scholar 

  • Cruz-Martin A, Mercado JL, Rojas LV, McNamee MG, Lasalde-Dominicci JA (2001) Tryptophan substitutions at lipid-exposed positions of the gamma M3 transmembrane domain increase the macroscopic ionic current response of the Torpedo californica nicotinic acetylcholine receptor. J Membr Biol 183:61–70

    Google Scholar 

  • Curtis L, Buisson B, Bertrand S, Bertrand D (2002) Potentiation of human 4 2 neuronal nicotinic acetylcholine receptor by estradiol. Molec Pharmacol 61:127–135

    Google Scholar 

  • daCosta CJ, Ogrel AA, McCardy EA, Blanton MP, Baenziger JE (2002) Lipid-protein interactions at the nicotinic acetylcholine receptor A functional coupling between nicotinic receptors and phosphatidic acid-containing lipid bilayers. J Biol Chem 277:201–208

    Google Scholar 

  • daCosta CJ, Wagg ID, McKay ME, Baenziger JE (2004) Phosphatidic acid and phosphatidylserine have distinct structural and functional interactions with the nicotinic acetylcholine receptor. J Biol Chem 279:14967–14974

    Article  Google Scholar 

  • de Kruijff B (1997) Lipid polymorphism and biomembrane function. Curr Opin Chem Biol 1:564–9

    Article  Google Scholar 

  • de Planque MR, Bonev BB, Demmers JA, Greathouse DV, Koeppe RE 2nd, Separovic F, Watts A, Killian JA (2003) Interfacial anchor properties of tryptophan residues in transmembrane peptides can dominate over hydrophobic matching effects in peptide-lipid interactions. Biochemistry 42:5341–5348

    Google Scholar 

  • de Planque MR, Goormaghtigh E, Greathouse DV, Koeppe RE 2nd, Kruijtzer JA, Liskamp RM, de Kruijff B, Killian JA (2001) Sensitivity of single membrane-spanning alpha-helical peptides to hydrophobic mismatch with a lipid bilayer: effects on backbone structure, orientation, and extent of membrane incorporation. Biochemistry 40:5000–5010

    Google Scholar 

  • Denisov G, Wanaski S, Luan P, Glaser M, McLaughlin S (1998) Binding of basic peptides to membranes produces lateral domains enriched in the acidic lipids phosphatidylserine and phosphatidylinositol 4,5-bisphosphate: an electrostatic model and experimental results. Biophys J 74:731–744

    Google Scholar 

  • Dowhan W (1997) Molecular basis for membrane phospholipid diversity: why are there so many lipids? Annu Rev Biochem 66:199–232

    Article  Google Scholar 

  • Doyle DA (2004) Structural changes during ion channel gating. Trends Neurosci (6):298–302

    Google Scholar 

  • Doyle DA, Morais Cabral J, Pfuetzner RA, Kuo A, Gulbis JM, Cohen SL, Chait BT, MacKinnon R (1998) The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 280:69–77

    Article  ADS  Google Scholar 

  • Dreger M, Krauss M, Herrmann A, Hucho F (1997) Interactions of the nicotinic acetylcholine receptor transmembrane segments with the lipid bilayer in native receptor-rich membranes. Biochemistry 36:839–847

    Article  Google Scholar 

  • East JM, Melville D, Lee AG (1985) Exchange rates and numbers of annular lipids for the calcium and magnesium ion dependent adenosinetriphosphatase. Biochemistry 24:2615–2623

    Article  Google Scholar 

  • Ellena JF, Blazing MA, McNamee MG (1983) Lipid-protein interactions in reconstituted membranes containing acetylcholine receptor. Biochemistry 22:5523–3555

    Article  Google Scholar 

  • Esmann M, Marsh D (1985) Spin-label studies on the origin of the specificity of lipid-protein interactions in Na+,K+-ATPase membranes from Squalus acanthias. Biochemistry 24:3572–3578

    Google Scholar 

  • Exton JH (1990) Signalling through phosphatidylcholine breakdown. J Biol Chem 265:1–4

    Google Scholar 

  • Fernandez AM, Fernandez-Ballester G, Ferragut JA, Gonzalez-Ros JM (1993) Labeling of the nicotinic acetylcholine receptor by a photoactivatable steroid probe: effects of cholesterol and cholinergic ligands. Biochim Biophys Acta 1149:135–144

    Google Scholar 

  • Fernandez-Ballester G, Castresana J, Fernandez AM, Arrondo JL, Ferragut JA, Gonzalez-Ros JM (1994) A role for cholesterol as a structural effector of the nicotinic acetylcholine receptor. Biochemistry 33:4065–4071

    Article  Google Scholar 

  • Finer-Moore J, Strooud RM (1984) Amphipathic analysis and possible formation of the ion channel in an acetylcholine receptor. Proc Natl Acad Sci USA 81:155–9

    ADS  Google Scholar 

  • Fong TM, McNamee MG (1986) Correlation between acetylcholine receptor function and structural properties of membranes. Biochemistry 25:830–40

    Article  Google Scholar 

  • Fong TM, McNamee MG (1987) Stabilization of acetylcholine receptor secondary structure by cholesterol and negatively charged phospholipids in membranes. Biochemistry 26:3871–80

    Google Scholar 

  • Forman SA (1999) A hydrophobic photolabel inhibits nicotinic acetylcholine receptors via open-channel block following a slow step. Biochemistry 38:14559–14564

    Article  MathSciNet  Google Scholar 

  • Galzi JL, Edelstein SJ, Changeux JP (1996) The multiple phenotypes of allosteric receptor mutants. Proc Natl Acad Sci USA 93:1853–1858

    Article  ADS  Google Scholar 

  • Garbus I, Bouzat C, Barrantes FJ (2001) Steroids differentially inhibit the nicotinic aceylcholine receptor. Neuro Report 12:227–231

    Google Scholar 

  • Garidel P, Johann C, Blume A (1997) Nonideal mixing and phase separation in phosphatidylcholine-phosphatidic acid mixtures as a function of acyl chain length and pH. Biophys J 72:2196–2210

    Google Scholar 

  • Gentry CL, Lukas R (2001) Local anesthetics noncompetitively inhibit function of four distinct nicotinic acetylcholine receptor subtypes. J Pharmacol Exp Ther 299:1038–1048

    Google Scholar 

  • Gonzalez-Ros JM, Llanillo M, Paraschos A, Martinez-Carrion M (1982) Lipid environment of acetylcholine receptor from Torpedo californica. Biochemistry 21:3467–74

    Article  Google Scholar 

  • Gonzalez-Ros JM, Paraschos A, Martinez-Carrion M (1980) Reconstitution of functional membrane-bound acetylcholine receptor from isolated Torpedo californica receptor protein and electroplax lipids. Proc Natl Acad Sci USA 198077:1796–1800

    ADS  Google Scholar 

  • Guzman GR, Santiago J, Ricardo A, Marti-Arbona R, Rojas LV, Lasalde-Dominicci JA (2003) Tryptophan scanning mutagenesis in the alphaM3 transmembrane domain of the Torpedo californica acetylcholine receptor: functional and structural implications. Biochemistry 42:12243–50

    Article  Google Scholar 

  • Harder T, Scheiffele P, Verkade P, Simons K (1998) Lipid domain structure of the plasma membrane revealed by patching of membrane components. J Cell Biol 141:929–942

    Article  Google Scholar 

  • Harder T, Simons K (1997) Caveolae, DIGs, and the dynamics of sphingolipid-cholesterol microdomains. Curr Opin Cell Biol 9:534–542

    Article  Google Scholar 

  • Heginbotham L, Kolmakova-Partensky L, Miller C (1998) Functional reconstitution of a prokaryotic K+ channel. J Gen Physiol 111:741–749

    Article  Google Scholar 

  • Hogg RC, Raggenbass M, Bertand D (2003) Nicotinic acetylcholine receptors: from structure to brain function. Rev Physiol Biochem Pharmacol 147:1–46

    Google Scholar 

  • Hol WG, van Duijnen PT, Berendsen HJ (1978) The alpha-helix dipole and the properties of proteins. Nature 273:443–446

    Article  ADS  Google Scholar 

  • Hvidt A, Nielsen SO (1966) Hydrogen exchange in proteins. Adv Protein Chem 21:287–386

    Google Scholar 

  • Ivorra I, Fernandez A, Gal B, Aleu J, Gonzalez-Ros JM, Ferragut JA, Morales A (2002) Protein orientation affects the efficiency of functional protein transplantation into the Xenopus oocyte membrane. J Membrane Biol 185:117–127

    Article  Google Scholar 

  • Jones OT, Eubanks JH, Earnest JP, McNamee MG (1988) A minimum number of lipids are required to support the functional properties of the nicotinic acetylcholine receptor. Biochemistry 27:3733–3742

    Google Scholar 

  • Jones OT, McNamee MG (1988) Annular and nonannular binding sites for cholesterol associated with the nicotinic acetylcholine receptor. Biochemistry 27:2364–2374

    Google Scholar 

  • Karlin A (2002) Emerging structure of the nicotinic acetylcholine receptor. Nat Rev Neurosci 3:102–114

    Article  Google Scholar 

  • Karlin A, Cox RN, Dipaola M, Holtzman E, Kao PN, Lobel P, Wang L, Yodh N (1986) Functional domains of the nicotinic acetylcholine receptor. Ann NY Acad Sci 463:53–69

    ADS  Google Scholar 

  • Kash TL, Jenkins A, Kelley JC, Trudell JR, Harrison NL (2003) Coupling of agonist binding to channel gating in the GABA(A) receptor. Nature 421:272–5

    Article  ADS  Google Scholar 

  • Katz B, Miledi R (1975) The effect of procaine on the action of acetylcholine at the neuromuscular junction. J Physiol 249:269–284

    Google Scholar 

  • Ke L, Lukas RJ (1996) Effects of steroid exposure on ligand binding and functional activities of diverse nicotinic acetylcholine receptor subtypes. J Neurochem 67:1100–1112

    Google Scholar 

  • Kuo A, Gulbis JM, Antcliff JF, Rahman T, Lowe ED, Zimmer J, Cuthbertson J, Ashcroft FM, Ezaki T, Doyle DA (2003) Crystal structure of the potassium channel KirBac11 in the closed state. Science 300:1922–1926

    Article  ADS  Google Scholar 

  • Latorre R, Labarca P, Naranjo D (1992) Surface charge effects on ion conduction in ion channels. Methods Enzymol 207:471–501

    Google Scholar 

  • Le Cahèrec F, Bron P, Verbavatz JM, Garret A, Morel G, Cavalier A, Bonnec G, Thomas D, Gouranton J, Hubert JF (1996) Incorporation of proteins into (Xenopus) oocytes by proteoliposome microinjection: functional characterization of a novel aquaporin. J Cell Sci 109:1285–1295

    Google Scholar 

  • Lee AG (1998) How lipids interact with an intrinsic membrane protein: the case of the calcium pump. Biochim Biophys Acta 1376:381–90

    Google Scholar 

  • Lee AG (2003) Lipid-protein interactions in biological membranes: a structural perspective. Biochim Biophys Acta 1612:1–40

    Google Scholar 

  • Lee AG (2004) How lipids affect the activities of integral membrane proteins. Biochim Biophys Acta 3:1666:62–87

    Google Scholar 

  • Liu LP, Deber CM (1997) Anionic phospholipids modulate peptide insertion into membranes. Biochemistry 36(18):5476–5482

    Google Scholar 

  • Liu Y, Dilger JP, Vidal AM (1994) Effects of alcohols and volatile anaesthetics on the activation of nicotinic acetylcholine receptor channels. Mol Pharmacol 45:1235–1241

    Google Scholar 

  • Luan P, Yang L, Glaser M (1995) Formation of membrane domains created during the budding of vesicular stomatitis virus. A model for selective lipid and protein sorting in biological membranes. Biochemistry 34:9874–83

    Article  Google Scholar 

  • Lugovskoy AA, Maslennikov IV, Utkin YN, Tsetlin VI, Cohen JB, Arseniev AS (1998) Spatial structure of the M3 transmembrane segment of the nicotinic acetylcholine receptor alpha subunit. Eur J Biochem 255:455–461

    Article  Google Scholar 

  • Lundbaek JA, Birn P, Hansen AJ, Søgaard R, Nielsen C, Girshman J, Bruno MJ, Tape SE, Egebjerg J, Greathouse DV, Mattice GL, Koeppe II RE, Andersen OS (2004) Regulation of sodium channel function by bilayer elasticity: the importance of hydrophobic coupling. Effects of micelle-forming amphiphiles and cholesterol. J Gen Physiol 121:599–621

    Google Scholar 

  • MacKinnon R (2003) Potassium channels. FEBS Lett 555:62–65

    Article  Google Scholar 

  • Marheineke K, Grunewald S, Christie W, Reilander H (1998) Lipid composition of Spodoptera frugiperda (Sf9) and Trichoplusia ni (Tn) insect cells used for baculovirus infection. FEBS Lett 441:49–52

    Article  Google Scholar 

  • Marsal J, Tigy G, Miledi R (1995) Incorporation of acetylcholine receptors and Cl-channels in Xenopus oocytes injected with Torpedo electroplaque membranes. Proc Natl Acad Sci USA 92:5224–5228

    ADS  Google Scholar 

  • Marsh D, Barrantes FJ (1978) Immobilized lipid in acetylcholine receptor-rich membranes from Torpedo marmorata Proc Natl Acad Sci USA 73:4329–4333

    ADS  Google Scholar 

  • Marsh D, Horvath LI (1998) Structure, dynamics and composition of the lipid-protein interface perspectives from spin-labelling. Biochim Biophys Acta 1376:267–296

    Google Scholar 

  • Marsh D, Pali T (2004) The protein-lipid interface: perspectives from magnetic resonance and crystal structures. Biochim Biophys Acta 1666:118–41

    Google Scholar 

  • Marsh D, Pellkofer R, Hoffmann-Bleihauer P, Sandhoff K (1982) Incorporation of lipids into cellular membranes — a spin-label assay. Anal Biochem 122:206–12

    Article  Google Scholar 

  • Marsh D, Watts A, Barrantes FJ (1981) Phospholipid chain immobilization and steroid rotational immobilization in acetylcholine receptor-rich membranes from Torpedo marmorata. Biochim Biophys Acta 645:97–101

    Google Scholar 

  • Martens JR, Kwak YG, Tamkun MM (1999) Modulation of Kv channel alpha/beta subunit interactions. Trends Cardiovasc Med 8:253–258

    Google Scholar 

  • Martens JR, Navarro-Polanco R, Coppock EA, Nishiyama A, Parshley L, Grobaski TD, Tamkum MM (2000) Differential targeting of shaker-like potassium channels to lipid rafts. J Biol Chem 275:7443–7446

    Article  Google Scholar 

  • Martinac B, Hamill OP (2002) Gramicidin A channels switch between stretch activation and stretch inactivation depending on bilayer thickness. Proc Natl Acad Sci USA 99:4308–4312

    Article  ADS  Google Scholar 

  • Maxfield FR (2002) Plasma membrana microdomains. Curr Opin Cell Biol 14:483–487

    Article  Google Scholar 

  • Methot N, McCarthy MP, Baenziger JE (1994) Secondary structure of the nicotinic acetylcholine receptor: implications for structural models of a ligand-gated ion channel. Biochemistry 33:7709–7717

    Article  Google Scholar 

  • Mielke DL, Wallace BA (1988) Secondary structural analyses of the nicotinic acetylcholine receptor as a test of molecular models. J Biol Chem 263(7):3177–3182

    Google Scholar 

  • Miledi R, Dueñas Z, Martinez-Torres A, Kawas CH, Eusebi F (2004) Microtransplantation of functional receptors and channels from the Alzheimer’s brain to frog oocytes. Proc Natl Acad Sci USA 101:1760–1763

    Article  ADS  Google Scholar 

  • Miledi R, Eusebi F, MartÍnez-Torres A, Palma E, Trettel F (2002) Expression of functional neurotransmitter receptors in Xenopus oocytes after injection of human brain membranes. Proc Natl Acad Sci USA 99:13238–13242

    Article  ADS  Google Scholar 

  • Miledi R, Parker I, Sumikawa K (1989) Transplanting receptors from brains into oocytes. In: Fidia Research Foundation Neuroscience Award Lectures 3, pp 57–90, Raven Press, New York

    Google Scholar 

  • Miller AJ, Zhou JJ (2000) Xenopus oocytes as an expression system for plant transporters. Biochim Biophys Acta 1465:343–358

    Google Scholar 

  • Miyazawa A, Fujiyoshi Y, Unwin N (2003) Structure and gating mechanism of the acetylcholine receptor pore. Nature 423:949–955

    Article  ADS  Google Scholar 

  • Moore WM, Holliday LA, Puett D, Brady RN (1974) On the conformation of the acetylcholine receptor protein from Torpedo nobiliana. FEBS Lett 45:145–149

    Article  Google Scholar 

  • Morales A, Aleu J, Ivorra I, Ferragut JA, González-Ros JM, Miledi R (1995) Incorporation of reconstituted acetylcholine receptors from Torpedo into the Xenopus oocyte membrane. Proc Natl Acad Sci USA 92:8468–8472

    ADS  Google Scholar 

  • Neher E, Steinbach H (1978) Local anaesthetics transiently block currents through single acetylcholine-receptor channels. J Physiol 277:153–176

    Google Scholar 

  • Nurowska E, Ruzzier F (1996) Corticosterone modifies the murine muscle acetylcholine receptor channel kinetics. Neuro Report 8:77–80

    Google Scholar 

  • Ochoa EL, A Chattopadhyay, MG McNamee (1989) Desensitization of the nicotinic acetylcholine receptor: molecular mechanisms and effect of modulators. Cell Mol Neurobiol 9:141–178

    Article  Google Scholar 

  • Oliver D, Lien CC, Soom M, Baukrowitz T, Jonas P, Fakler B (2004) Functional conversion between A-type and delayed rectifier K+ channels by membrane lipids. Science 304:265–270

    Article  ADS  Google Scholar 

  • Olivera S, Ivorra I, Morales A (2005) The acetylcholinesterase inhibitor BW284c51 is a potent blocker of Torpedo nicotinic AchRs incorporated into the Xenopus oocyte membrane. Br J Pharmacol (in press)

    Google Scholar 

  • Opekarová M, Tanner W (2003) Specific lipid requirements of membrane proteins — a putative bottleneck in heterologous expression. Biochim Biophys Acta 1610:11–22

    Google Scholar 

  • Opella SJ, Marassi FM, Gesell JJ, Valente AP, Kim Y, Oblatt-Montal M, Montal M (1999) Structures of the M2 channel-lining segments from nicotinic acetylcholine and NMDA receptors by NMR spectroscopy. Nat Struct Biol 4:374–379

    Google Scholar 

  • Ortiz-Acevedo A, Melendez M, Asseo AM, Biaggi N, Rojas LV, Lasalde-Dominicci JA (2004) Tryptophan scanning mutagenesis of the gammaM4 transmembrane domain of the acetylcholine receptor from Torpedo californica. J Biol Chem 279:42250–42257

    Article  Google Scholar 

  • Paas Y, Cartaud J, Recouvreur M, Grailhe R, Dufresne V, Pebay-Peyroula E, Landau EM, Changeux JP (2003) Electron microscopic evidence for nucleation and growth of 3D acetylcholine receptor microcrystals in structured lipid-detergent matrices. Proc Natl Acad Sci USA 100:11309–11314

    Article  ADS  Google Scholar 

  • Palma E, Trettel F, Fucile S, Renzi M, MIledi R, Eusebi F (2003) Microtransplantation of membranes from cultured cells to Xenopus oocytes: A method to study neurotransmitter receptors embedded in native lipids. Proc Natl Acad Sci USA 100:2896–2900

    Article  ADS  Google Scholar 

  • Palsdottir H, Hunte C (2004) Lipids in membrane protein structures. Biochim Biophys Acta 1666:2–18

    Google Scholar 

  • Paradiso K, Sabey K, Evers AS, Zormski CF, Covey DF, Steinbach JH (2000) Steroid inhibition of rat neuronal nicotinic 4 2 receptors experessed in HEK 293 cells. Mol Pharmacol 58:341–351

    Google Scholar 

  • Paradiso K, Zhang J, Steinbach JH (2001) The C terminus of the human nicotinic 4 2 receptor forms a binding site required for potentiation by an estrogenic steroid. J Neurosci 21:6561–6568

    Google Scholar 

  • Pashkov VS, Maslennikov IV, Tchikin LD, Efremov RG, Ivanov VT, Arseniev AS (1999) Spatial structure of the M2 transmembrane segment of the nicotinic acetylcholine receptor alpha-subunit. FEBS Lett 45:117–121

    Google Scholar 

  • Pebay-Peyroula E, Rosenbusch JP (2001) High-resolution structures and dynamics of membrane protein-lipid complexes: a critique. Curr Opin Struct Biol 11:427–432

    Article  Google Scholar 

  • Perozo E, Cortes DM, Somporspisut P, Kloda A, Martinac B (2002) Open channel structure of MscL and gating mechanism of mechanosensitive channels. Nature 418:942–948

    Article  ADS  Google Scholar 

  • Pershina L, Hvidt A (1974) A study by the hydrogen-exchange method of the complex formed between the basic pancreatic trypsin inhibitor and trypsin. Eur J Biochem 48:339–344

    Article  Google Scholar 

  • Polozova A, Litman BJ (2000) Cholesterol dependent recruitment of di22:6-PC by a G proteincoupled receptor into lateral domains. Biophys J 79:2632–4263

    Google Scholar 

  • Poveda JA, Encinar JA, Fernandez AM, Mateo CR, Ferragut JA, Gonzalez-Ros JM (2002) Segregation of phosphatidic acid-rich domains in reconstituted acetylcholine receptor membranes. Biochemistry 41:12253–12262

    Article  Google Scholar 

  • Powl AM, East JM, Lee AG (2005) Heterogeneity in the binding of lipid molecules to the surface of a membrane protein: hot spots for anionic lipids on the mechanosensitive channel of large conductance MscL and effects on conformation. Biochemistry 44:5873–5883

    Google Scholar 

  • Revah F, Bertrand D, Galzi JL, Devillers-Thiery A, Mulle C, Hussy N, Bertrands S, Ballivet M, Changeux JP (1991) Mutations in the channel domain alter desensitization of a neuronal nicotinic receptor. Nature 353:846–849

    Article  ADS  Google Scholar 

  • Revah F, Galzi JL, Giraudat J, Haumont PY, Lederer F, Changeux JP (1990) The noncompetitive blocker [3H]chlorpromazine labels three amino acids of the acetylcholine receptor gamma subunit: implications for the alpha-helical organization of regions MII and for the structure of the ion channel. Proc Natl Acad Sci USA 87:4675–4679

    ADS  Google Scholar 

  • Sackmann E (1984) Physical basis for trigger processes and membrane structures. In: Chapman D (ed) Biological membranes, Vol. 5, Academic Press, London, pp 105–143

    Google Scholar 

  • Sali D, Bycroft M, Fersht AR (1988) Stabilization of protein structure by interaction of alphahelix dipole with a charged side chain. Nature 335:740–743

    ADS  Google Scholar 

  • Sanna E, Motzo C, Usala M, Pau D, Cagetti E, Biggio G (1998) Functional changes in rat nigral GABAA receptors induced by degeneration of the striatonigral GABAergic pathway: an electrophysiological study of receptors incorporated into Xenopus oocytes. J Neurochem 70:2539–2544

    Google Scholar 

  • Sansom MS, Shrivastava IH, Bright JN, Tate J, Capener CE, Biggin PC (2002) Potassium channels: structures, models, simulations. Biochim Biophys Acta 1565(2):294–307

    Google Scholar 

  • Santiago J, Guzmán GR, Rojas LV, Marti R, Asmar-Rovira GA, Santana LF, McNamee M, Lasalde-Dominicci JA (2001) Probing the effects of membrane cholesterol in the Torpedo californica acetylcholine receptor and the novel lipid-exposed mutation C418W in Xenopus oocytes. J Biol Chem 276:46523–46532

    Google Scholar 

  • Santiago J, Guzman GR, Torruellas K, Rojas LV, Lasalde-Dominicci JA (2004) Tryptophan scanning mutagenesis in the TM3 domain of the Torpedo californica acetylcholine receptor beta subunit reveals an alpha-helical structure. Biochemistry 43:10064–70

    Article  Google Scholar 

  • Schlegel A, Volonte D, Engelman JA, Galbiati F, Mehta P, Zhang XL, Scherer PE, Lisanti MP (1998) Crowded little caves: structure and function of caveolae. Cell Signal 10:457–463

    Article  Google Scholar 

  • Shogomori H, Brown DA (2003) Use of detergents to study membrane rafts: the good, the bad, and the ugly. J Biol Chem 384:1259–1263

    Google Scholar 

  • Simmonds AC, East JM, Jones OT, Rooney EK, McWhirter J, Lee AG (1982) Annular and non-annular binding sites on the (Ca2++Mg2+)-ATPase. Biochim Biophys Acta 693 398–406

    Google Scholar 

  • Simons K, Ikonen E (1997) Functional rafts in cell membranes. Nature 387:569–572

    Article  ADS  Google Scholar 

  • Simons K, Toomre D (2000) Lipid rafts and signal transduction. Nat Rev Mol Cell Biol 1:31–39

    Article  Google Scholar 

  • Singer S, Nicolson GL (1972) The fluid mosaic model of cell membranes. Science 172:720–730

    ADS  Google Scholar 

  • Sivilotti LG, Mcneil DK, Lewis TM, Nassar MA, Schoepfer R, Colquhoun D (1997) Recombinant nicotinic receptors, expressed in Xenopus oocytes, do not resemble native rat sympathetic ganglion receptors in single-channel behaviour. J Physiol 500:123–138

    Google Scholar 

  • Soreq H, Seidman S (1992) Xenopus oocyte microinjection: from gene to protein. Meth Enzymol 207:225–265

    Google Scholar 

  • Starace DM, Bezanilla F (2004) A proton pore in a potassium channel voltage sensor reveals a focused electric field. Nature 427:548–553

    Article  ADS  Google Scholar 

  • Stith BJ, Hall J, Ayres P, Waggoner L, Moore JD, Shaw WA (2000) Quantification of major classes of Xenopus phospholipids by high performance liquid chromatography with evaporative light scattering detection. J Lipid Res 41:1448–1454

    Google Scholar 

  • Sukharev S, Betanzos M, Chiang CS, Guy HR (2001) The gating mechanism of the large mechanosensitive channel MscL. Nature 409:720–724

    Article  ADS  Google Scholar 

  • Sunshine C, McNamee MG (1992) Lipid modulation of nicotinic acetylcholine receptor function: the role of neutral and negatively charged lipids. Biochim Biophys Acta 1108:240–246

    Google Scholar 

  • Sunshine C, McNamee MG (1994) Lipid modulation of nicotinic acetylcholine receptor function: the role of membrane lipid composition and fluidity. Biochim Biophys Acta 1191:59–64

    Google Scholar 

  • Tamamizu S, Guzman GR, Santiago J, Rojas LV, McNamee MG, Lasalde-Dominicci JA (2000) Functional effects of periodic tryptophan substitutions in the alpha M4 transmembrane domain of the Torpedo californica nicotinic acetylcholine receptor. Biochemistry 39:4666–73

    Article  Google Scholar 

  • Tillman TS, Cascio M (2003) Effects of membrane lipids on ion channel structure and function. Cell Biochem Biophys 38:161–190

    Google Scholar 

  • Toyoshima C, Unwin N (1998) Ion channel of acetylcholine receptor reconstructed from images of postsynaptic membranes. Nature 336:247–250

    ADS  Google Scholar 

  • Turnheim K, Gruber J, Cristoph W, Ruiz Gutierrez V (1999) Membrane phospholipids composition affects function of potassium channels from rabit colon epithelium. Am Phys Soc 277:83–90

    Google Scholar 

  • Unwin N (1993) Nicotinic acetylcholine receptor at 9 Å resolution. J Mol Biol 229:1101–1124

    Article  Google Scholar 

  • Unwin N (1995) Acetylcholine receptor channel imaged in the open state. Nature 373:37–43

    Article  ADS  Google Scholar 

  • Unwin N (2003) Structure and action of the nicotinic acetylcholine receptor explored by electron microscopy. FEBS Lett 555:91–95

    Article  Google Scholar 

  • Valera S, Ballivet M, Bertrand D (1992) Progesterone modulates a neuronal nicotinic acetylcholine receptor. Proc Natl Acad Sci USA 89:9949–9953

    ADS  Google Scholar 

  • Valiyaveetil FI, Zhou Y, Mackinnon R (2002) Lipids in the structure, folding and function of the KcsA K+ channel. Biochemistry 41:10771–10777

    Article  Google Scholar 

  • van den Brink-van der Laan E, Killian JA, de Kruijff B (2004) Nonbilayer lipids affect peripheral and integral membrane proteins via changes in the lateral pressure profile. Biochim Biophys Acta 1666:275–288

    Google Scholar 

  • Villar MT, Artigues A, Ferragut JA, Gonzalez-Ros JM (1988) Phospholipase A2 hydrolysis of membrane phospholipids causes structural alteration of the nicotinic acetylcholine receptor. Biochim Biophys Acta 938:35–43

    Google Scholar 

  • Wenz JJ, Barrantes FJ (2005) Nicotinic acetylcholine receptor induces lateral segregation of phosphatidic acid and phosphatidylcholine in reconstituted membranes. Biochemistry 44(1):398–410

    Article  Google Scholar 

  • White BH, Cohen JB (1992) Agonist-induced changes in the structure of the acetylcholine receptor M2 regions revealed by photoincorporation of an uncharged nicotinic non-competitive antagonist. J Biol Chem 267:15770–15783

    Google Scholar 

  • Williamson IM, Alvis SM, East JM, Lee AG (2002) Interactions of phospholipids with the potassium channel KcsA. Biophys J 83:2026–2038

    Google Scholar 

  • Williamson PT, Meier BH, Watts A (2004) Structural and functional studies of the nicotinic acetylcholine receptor by solid-state NMR. Eur Biophys J 33(3):247–54

    Article  Google Scholar 

  • Wu L, Bauer CS, Zhen XG, Xie C, Yang J (2002) Dual regulation of voltage-gated calcium channels by PtdIns(4,5)P2. Nature 419:947–952

    ADS  Google Scholar 

  • Yager P, Chang EL, Williams RW, Dalziel AW (1984) The secondary structure of acetylcholine receptor reconstituted in a single lipid component as determined by Raman spectroscopy. Biophys J 45:26–28

    Google Scholar 

  • Zhang H, Karlin A (1997) Identification of acetylcholine receptor channel-lining residues in the M1 segment of the beta-subunit. Biochemistry 36:15856–15864

    Google Scholar 

  • Zhou Y, Morals-Cabral JH, Kaufman A, Mackinnon R (2001) Chemistry of ion coordination and hydration revealed by a K+ channel-Fab complex at 2.0 Å resolution. Nature 414:43–48

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fernández, A.M., Poveda, J.A., Encinar, J.A., Morales, A., González-Ros, J.M. (2006). Structural and Functional Modulation of Ion Channels by Specific Lipids: from Model Systems to Cell Membranes. In: Mateo, C.R., Gómez, J., Villalaín, J., González-Ros, J.M. (eds) Protein-Lipid Interactions. Springer Series in Biophysics, vol 9. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-28435-4_8

Download citation

Publish with us

Policies and ethics