Skip to main content

Prediction and Elucidation of Population Dynamics of the Blue-green Algae Microcystis aeruginosa and the Diatom Stephanodiscus hantzschii in the Nakdong River-Reservoir System (South Korea) by a Recurrent Artificial Neural Network

  • Chapter
Ecological Informatics

12.6 Conclusions

Artificial neural networks were applied to the prediction and elucidation of two bloom forming algal species in the Nakdong river-reservoir system. The lower Nakdong River, which has characteristics of both rivers and reservoirs, represents a complicated system for algal bloom modeling. Yet, RNN proved capable not only to predict the distinct seasonal abundance and succession of Microcystis aeruginosa and Stephanodiscus hantzschii but elucidate key driving variables by means of sensitivity analyses. Findings of the sensitivity analysis corresponded very well with existing theories on the ecology of these two algae species.

This study yields promising results for the application of machine learning to complex ecosystems such as regulated rivers. It encourages inter-disciplinary research between ecologists, modelers and computer scientists in the newly emerging area of ecological informatics in order to better understand and predict ecological phenomena at different levels of organization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 289.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Blom N, Gammeltoft S, Brunak S (1999) Sequence and structure-based prediction of eukaryotic protein phosphorylation sites. N. Mol. Biol., 294: 1351–1362

    Article  CAS  Google Scholar 

  • Bobbin J, Recknagel F (2001) Knowledge discovery for prediction and explanation of blue-green algal dynamics in lakes by evolutionary algorithms. Ecol. Modelling 146,1–3, 253–262

    Article  CAS  Google Scholar 

  • Brosse S, Guégan JF, Tourenq JN, Lek S (1999) The use of artificial neural networks to assess fish abundance and spatial occupancy in the littoral zone of a mesotrophic lake. Ecol. Modelling, 120: 299–311

    Article  Google Scholar 

  • Bullinaria JA (1997) Modeling reading, spelling, and past tense learning with artificial neural networks. Brain Lang., 59: 236–266

    Article  CAS  Google Scholar 

  • Burt TP (1992) The Hydrology of Headwater Catchments. In: (Eds) P. Calow and G. E. Petts. The River Handbook: Hydrological and Ecological Principles. Vol. 1. Blackwell Scientific Publication, Oxford, 526 pp

    Google Scholar 

  • Carson AD, Bizot EB, Hendershot PE, Barton MG, Garvin MK, Kraemer B (1999) Modeling career counselor decisions with artificial neural networks: predictions of fit across a comprehensive occupational map. J. Vocational Behav., 54: 196–213

    Article  Google Scholar 

  • Cassie V (1989) A Contribution to the Study of New Zealand Diatoms. J. Cramer, Berlin, 266 pp

    Google Scholar 

  • Chon TS, Park YS, Cha EY (2000) Patterning of Community Changes in Benthic Macroinvertebrates Collected from Urbanized Streams for the Short Term Prediction by Temporal Artificial Neuronal Networks. 99–114. In: S. Lek and J. F. Guégan (Eds). Artificial Neuronal Networks: Application to Ecology and Evolution. Springer-Verlag, Berlin, 97-113

    Google Scholar 

  • Connors J, Martin D, Atlas L (1994) Recurrent neural networks and robust time series prediction. IEEE T. Neural Networ., 5: 240–254

    Article  Google Scholar 

  • Descy JP (1987) Phytoplankton composition and dynamics in the River Meuse (Belgium). Arch. Hydrobiol., 78: 225–245

    Google Scholar 

  • Einsle U (1993) Crustacea, Copepoda, Calanoidia and Cyclopoida. Susswasserfauna von Mitteleuropa, Vol. 8, Part 4-1, J. Fisher, Stuttgart, 208 pp

    Google Scholar 

  • Fielding A (1999) An introduction to machine learning methods. In: (Ed) A. Fielding. Machine Learning Methods for Ecological Applications. Kluwer Academic Publishers, Massachusetts, 261 pp

    Google Scholar 

  • Foged E (1978) Diatoms in Eastern Australia, J. Cramer, Berlin, 243 pp

    Google Scholar 

  • Ha K, Joo GJ (2000) Role of silica in phytoplankton succession: an enclosure experiment in the downstream Nakdong River (Mulgum). Korean J. Ecol., 23: 299–307

    Google Scholar 

  • Ha K, Cho EA, Kim HW, Joo GJ (1999) Microcystis bloom formation in the lower Nakdong River, South Korea: importance of hydrodynamics and nutrient loading. Mar. Freshwater Res., 50: 89–94

    Article  Google Scholar 

  • Ha K, Kim HW, Joo GJ (1998) The phytoplankton succession in the lower part of hypertrophic Nakdong River (Mulgum), South Korea. Hydrobiologia, 369/370: 217–227

    Article  CAS  Google Scholar 

  • Ha K (1999) Phytoplankton Community Dynamics and Microcystis Bloom Development in a Hypertrophic River (Nakdong River, Korea). Ph. D. dissertation. Pusan National Univ., Pusan, 140 pp

    Google Scholar 

  • Harris GP (1986) Phytoplankton Ecology: Structure, Function and Fluctuation. Chapman and Hall, NY, 384 pp

    Google Scholar 

  • Hecht-Nielsen R (1987) Neurocomputing. Addison-Wesley Publishing Co., NY, 433 pp

    Google Scholar 

  • Jeong KS, Joo GJ, Kim HW, Ha K, Recknagel F (2001a) Prediction and elucidation of algal dynamics in the Nakdong River (Korea) by means of a recurrent artificial neural network. Ecol. Modelling, 146: 115–129

    Article  CAS  Google Scholar 

  • Jeong KS, Jang MH, Park SB, Cho GI, Joo GJ (2001b) Neuro-Genetic Learning to the algal dynamics: a preliminary experiment for the new technique to the ecological modelling. Proceeding of the Korean Environmental Science Society, pp 234–235

    Google Scholar 

  • Joo GJ, Kim HW, Ha K, Kim JK (1997) Long-term trend of the eutrophication of the lower Nakdong River. Kor. J. Limnol., 30-supplement: 472–480

    Google Scholar 

  • Kamp-Nielsen L (1978) Modelling the vertical gradients in sedimentary phosphorus fractions. Verh. Internat. Verein. Limnol., 20: 720–727

    Google Scholar 

  • Kim HW, Joo GJ, Walz N (2001) Zooplankton dynamics in the hyper-eutrophic Nakdong River system (Korea) regulated by an estuary dam and side channels. Internat. Rev. Hydrobiol., 86: 127–143

    Article  CAS  Google Scholar 

  • Kim HW, Ha K, Joo GJ (1998) Eutrophication of the lower Nakdong River after the construction of an estuarine dam in 1987. Internat. Rev. Hydrobiol., 83: 65–72

    Google Scholar 

  • King DL (1970) The role of carbon in eutrophication. J. Water Poll. Contr. Fed., 42: 2035–2051

    CAS  Google Scholar 

  • Köler J (1994) Origin and succession of phytoplankton in a river-lake system (Spree, Germany). Hydrobiologia, 289: 73–83

    Article  Google Scholar 

  • Koste W (1978) Rotatoria. Die Radertiere Mitteleuropes. Ein Bestimmungswerk begrunder von Max Voigt. 2nd ed. Borntrager, Stuttgart, Vol. 1, Textband 673 pp., Vol. 2. Tafelband 234 pp

    Google Scholar 

  • Krebs CJ (1994) Ecology: the Experimental Analysis of Distribution and Abundance. Harper Collins College Publishers, NY, 801 pp

    Google Scholar 

  • Kromkamp J, Walsby AE (1990) A computer model of buoyancy and vertical migration in cyanobacteria. J. Plankton Res., 12: 161–183

    Google Scholar 

  • Lee SK, Choi SH, Kim HW, Ha K, Joo GJ (1999) Inter-annual variability of nutrient loadings in the lower Nakdong River, Mulgum, Korea. Acta Hydrobiol. Sinica, 23: 17–23

    Google Scholar 

  • Lek S, Delacoste M, Baran P, Dimopoulos I, Lauga J, Aulagnier S (1996) Application of neural networks to modelling nonlinear relationships in ecology. Ecol. Modelling, 90:39–52

    Article  Google Scholar 

  • Medsker LR (1996) Microcomputer applications of hybrid intelligent systems. J. Networ. Comput. Appl., 19: 213–234

    Article  Google Scholar 

  • Moss B (1998) Ecology of Fresh Waters: Man and Medium, Past to Future. 3rd ed. Blackwell Science, Oxford, 557 pp

    Google Scholar 

  • Murakami T (1998) Flora and biomass of planktonic communities upstream of a river mouth dam in Japan. Internat. Rev. Hydrobiol., 83: 463–466

    Google Scholar 

  • NeuroDimension (1999) NeuroSolutions: The Neural Network Simulation Environment, (Vers. 3.02 consultants level) and NeuroSolutions for Excel (Vers. 1.02)

    Google Scholar 

  • Odum EP (1983) Basic Ecology. Saunders College Publishing, Florida, 613 pp

    Google Scholar 

  • Paerl HW (1988) Nuisance phytoplankton blooms in coastal, estuarine, and inland waters. Limnol. Oceanogr. 33: 823–847

    Article  CAS  Google Scholar 

  • Park SB (1998) Basic Water Quality of the Mid to Lower Part of Nakdong River and the Influences of the Early Rainfall during Monsoon on the Water Quality. M. S. thesis. Pusan National Univ., Pusan, 104 pp. (in Korean)

    Google Scholar 

  • Pineda F (1987) Generalization of backpropagation to recurrent neural networks. Phys. Rev. Lett., 19,59, 2229–2232

    Article  Google Scholar 

  • Recknagel F (2001) Applications of machine learning to ecological modeling. Ecol. Modelling 146,1–3, 303–310

    Article  Google Scholar 

  • Recknagel F, Wilson H (2000) Elucidation and prediction of aquatic ecosystems by artificial neuronal networks. In: (Eds) S. Lek and J. F. Guégan. Artificial Neuronal Networks: Application to Ecology and Evolution. Springer-Verlag, Berlin, 143–155

    Google Scholar 

  • Recknagel F (1997) ANNA-Artificial Neural Network model for predicting species abundance and succession of blue-green algae. Hydrobiologia, 349: 47–57

    Article  CAS  Google Scholar 

  • Recknagel F, French M, Harkonen P, Yabunaka KI (1997) Artificial neural network approach for modelling and prediction of algal blooms. Ecol. Modelling, 96: 11–28

    Article  CAS  Google Scholar 

  • Reynolds CS (1984) The Ecology of Freshwater Phytoplankton. Cambridge University Press, NY, 384 pp

    Google Scholar 

  • Reynolds CS (1986) Experimental manipulation of phytoplankton prediodicity in large limnetic enclosures in Blelham Tarn, English Lake District. In: (Eds) M. Munawar and J. F. Talling. Seasonality of Freshwater Phytoplankton. Junk, Dordrecht

    Google Scholar 

  • Reynolds CS (1992) Algae. In: (Eds) P. Calow and G. E. Petts. The River Handbook: Hydrological and Ecological Principles. Vol. 1. Blackwell Scientific Publication, Oxford, 526 pp

    Google Scholar 

  • Round FE, Crawford RM, Mann DG (1990) The Diatoms, Cambridge University Press, New York, 747 pp

    Google Scholar 

  • Shapiro J (1984) Blue-green dominance in lakes: the role and management significance of pH and CO2. Internat. Revue Ges. Hydrobiol., 69: 765–780

    Google Scholar 

  • Shapiro J (1990) Current beliefs regarding dominance by blue-greens: the case for the importance of CO2 and pH. Verh. Int. Verein. Limnol., 24: 38–54

    Google Scholar 

  • Smirnov NN, Timms BV (1983) A revision of the Australian Cladocera (Crustacea). Records of the Australian Museum Supplement, 1: 1–132

    Google Scholar 

  • Sommer U, Gliwicz ZM, Lampert W, Duncan A (1986) The PEG-model of seasonal succession of planktonic events in fresh waters. Arch. Hydrobiol., 106: 433–471

    Google Scholar 

  • Stober QJ, Nakatani RE (1992) Water quality and biota of the Columbia River system. In: (Eds) C. D. Becker and D. A. Neitzel. Water Quality in North American River Systems, Battelle Press, Ohio, 51–83 pp

    Google Scholar 

  • Straskraba M (1994) Ecotechnological models for reservoir water quality management. Ecol. Modelling, 74: 1–38

    Article  Google Scholar 

  • Talling JF (1976) The depletion of carbon dioxide from lake water by phytoplankton. J. Ecol., 64: 79–121

    CAS  Google Scholar 

  • Utermöhl H (1958) Zur Vervollkommnung der Quantitativen Phytoplankton. Methodik. Mitt. Internat. Verein. Limnol., 9: 1–38

    Google Scholar 

  • Walter M, Recknagel F, Carpenter C, Bormans M (2001) Predicting eutrophication effects in the Burrinjuck Reservoir (Australia) by means of the deterministic model SALMO and the recurrent neural network model ANNA. Ecol. Modelling 146,1–3, 97–113

    Article  CAS  Google Scholar 

  • Wetzel RG, Likens GE (1991) Limnological Analyses. 2nd ed. Springer-Verlag, New York, 391 pp

    Google Scholar 

  • Whigham PA, Recknagel F (2001) An inductive approach to ecological time series modeling by evolutionary computation. Ecol. Modelling 146,1–3, 275–287

    Article  Google Scholar 

  • Whigham PA, Recknagel F (2001) Predicting chlorophyll-a in freshwater lakes by hybridising process-based models and genetic algorithms. Ecol. Modelling 146,1–3, 243–251

    Article  CAS  Google Scholar 

  • Yoon YN (1998) Industrial Hydrology. Cheongmoongak Publishers, Seoul, 656 pp. (in Korean)

    Google Scholar 

  • Young MT, Blanchard SM, White MW, Johnson EE, Smith WM, Ideker RE (2000) Using an artificial neural network to detect activation during ventricular fibrillation. Comput. Biomed. Res., 33: 43–58

    Article  CAS  Google Scholar 

  • Zar JH (1984) Biostatistical Analysis. 2nd ed. Prentice-Hall, NJ, 718 pp

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Jeong, K.S., Recknagel, F., Joo, G.J. (2006). Prediction and Elucidation of Population Dynamics of the Blue-green Algae Microcystis aeruginosa and the Diatom Stephanodiscus hantzschii in the Nakdong River-Reservoir System (South Korea) by a Recurrent Artificial Neural Network. In: Recknagel, F. (eds) Ecological Informatics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-28426-5_12

Download citation

Publish with us

Policies and ethics