Skip to main content

Clustering with Entropy-Like k-Means Algorithms

  • Chapter
Grouping Multidimensional Data

Summary

The aim of this chapter is to demonstrate that many results attributed to the classical k-means clustering algorithm with the squared Euclidean distance can be extended to many other distance-like functions. We focus on entropy-like distances based on Bregman [88] and Csiszar [119] divergences, which have previously been shown to be useful in various optimization and clustering contexts. Further, the chapter reviews various versions of the classical k-means and BIRCH clustering algorithms with squared Euclidean distance and considers modifications of these algorithms with the proposed families of distance-like functions. Numerical experiments with some of these modifications are reported.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Teboulle, M., Berkhin, P., Dhillon, I., Guan, Y., Kogan, J. (2006). Clustering with Entropy-Like k-Means Algorithms. In: Kogan, J., Nicholas, C., Teboulle, M. (eds) Grouping Multidimensional Data. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-28349-8_5

Download citation

  • DOI: https://doi.org/10.1007/3-540-28349-8_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-28348-5

  • Online ISBN: 978-3-540-28349-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics