Summary
Clustering of text documents enables unsupervised categorization and facilitates browsing and search. Any clustering method has to embed the objects to be clustered in a suitable representational space that provides a measure of (dis)similarity between any pair of objects. While several clustering methods and the associated similarity measures have been proposed in the past for text clustering, there is no systematic comparative study of the impact of similarity measures on the quality of document clusters, possibly because most popular cost criteria for evaluating cluster quality do not readily translate across qualitatively different measures. This chapter compares popular similarity measures (Euclidean, cosine, Pearson correlation, extended Jaccard) in conjunction with several clustering techniques (random, self-organizing feature map, hypergraph partitioning, generalized k-means, weighted graph partitioning), on a variety of high dimension sparse vector data sets representing text documents as bags of words. Performance is measured based on mutual information with a human-imposed classification. Our key findings are that in the quasiorthogonal space of word frequencies: (i) Cosine, correlation, and extended Jaccard similarities perform comparably; (ii) Euclidean distances do not work well; (iii) Graph partitioning tends to be superior especially when balanced clusters are desired; (iv) Performance curves generally do not cross.
Keywords
- Similarity Measure
- Mutual Information
- Cosine Similarity
- Normalize Mutual Information
- Graph Partitioning
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, access via your institution.
Buying options
Preview
Unable to display preview. Download preview PDF.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Ghosh, J., Strehl, A. (2006). Similarity-Based Text Clustering: A Comparative Study. In: Kogan, J., Nicholas, C., Teboulle, M. (eds) Grouping Multidimensional Data. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-28349-8_3
Download citation
DOI: https://doi.org/10.1007/3-540-28349-8_3
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-28348-5
Online ISBN: 978-3-540-28349-2
eBook Packages: Computer ScienceComputer Science (R0)