Skip to main content

Nanoscale Boundary Lubrication Studies

  • Chapter
Nanotribology and Nanomechanics
  • 2379 Accesses

Summary

Boundary films are formed by physisorption, chemisorption, and chemical reaction. With physisorption, no exchange of electrons takes place between the molecules of the adsorbate and those of the adsorbant. The physisorption process typically involves van der Waals forces, which are relatively weak. In chemisorption, there is an actual sharing of electrons or electron interchange between the chemisorbed species and the solid surface. The solid surfaces bond very strongly to the adsorption species through covalent bonds. Chemically reacted films are formed by the chemical reaction of a solid surface with the environment. The physisorbed film can be either monomolecularly or polymolecularly thick. The chemisorbed films are monomolecular, but stoichiometric films formed by chemical reaction can have a large film thickness. In general, the stability and durability of surface films decrease in the following order: chemically reacted films, chemisorbed films, and physisorbed films. A good boundary lubricant should have a high degree of interaction between its molecules and the sliding surface. As a general rule, liquids are good lubricants when they are polar and, thus, able togrip solid surfaces (or be adsorbed). In this chapter, we focus on PFPEs. We first introduce details of the commonly used PFPE lubricants; then present a summary of nanodeformation, molecular conformation, and lubricant spreading studies; followed by an overview of nanotribological properties of polar and nonpolar PFPEs studied by atomic force microscopy (AFM) and some concluding remarks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B. Bhushan. Magnetic Recording Surfaces, pages 116–133. Butterworth-Heinemann, 1993.

    Google Scholar 

  2. B. Bhushan. Principles and Applications of Tribology. Wiley, 1999.

    Google Scholar 

  3. B. Bhushan. Introduction to Tribology. Wiley, 2002.

    Google Scholar 

  4. V. J. Novotny, I. Hussla, J. M. Turlet, and M. R. Philpott. Liquid polymer conformation on solid surfaces. J. Chem. Phys., 90:5861–5868, 1989.

    Article  CAS  Google Scholar 

  5. V. J. Novotny. Migration of liquid polymers on solid surfaces. J. Chem. Phys., 92:3189–3196, 1990.

    Article  CAS  Google Scholar 

  6. C. M. Mate and V. J. Novotny. Molecular conformation and disjoining pressures of polymeric liquid films. J. Chem. Phys., 94:8420–8427, 1991.

    Article  CAS  Google Scholar 

  7. C. M. Mate. Application of disjoining and capillary pressure to liquid lubricant films in magnetic recording. J. Appl. Phys., 72:3084–3090, 1992.

    Article  CAS  Google Scholar 

  8. G. G. Roberts. Langmuir—Blodgett Films. Plenum, 1990.

    Google Scholar 

  9. A. Ulman. An Introduction to Ultrathin Organic Films. Academic, 1991.

    Google Scholar 

  10. B. Bhushan. Tribology and Mechanics of Magnetic Storage Devices. Springer, 2nd edition, 1996.

    Google Scholar 

  11. B. Bhushan. Macro-and microtribology of magnetic storage devices, pages 1413–1513. CRC, 2001.

    Google Scholar 

  12. Anonymous. Fomblin z perfluoropolyethers, 2002.

    Google Scholar 

  13. B. Bhushan and Z. Zhao. Macroscale and microscale tribological studies of molecularly thick boundary layers of perfluoropolyether lubricants for magnetic thin-film rigid disks. J. Info. Storage Proc. Syst., 1:1–21, 1999.

    Google Scholar 

  14. B. Bhushan. Tribology Issues and Opportunities in MEMS. Kluwer, 1998.

    Google Scholar 

  15. B. Bhushan, J. N. Israelachvili, and U. Landman. Nanotribology: Friction, wear and lubrication at the atomic scale. Nature, 374:607–616, 1995.

    Article  CAS  Google Scholar 

  16. B. Bhushan. Handbook of Micro/Nanotribology. CRC, 2nd edition, 1999.

    Google Scholar 

  17. B. Bhushan. Self-assembled monolayers for controlling hydrophobicity and/or friction and wear, pages 909–929. CRC, 2001.

    Google Scholar 

  18. J. Ruhe, G. Blackman, V. J. Novotny, T. Clarke, G. B. Street, and S. Kuan. Thermal attachment of perfluorinated polymers to solid surfaces. J. Appl. Polym. Sci., 53:825–836, 1994.

    Article  CAS  Google Scholar 

  19. J. Ruhe, V. Novotny, T. Clarke, and G. B. Street. Ultrathin perfluoropolyether films — influence of anchoring and mobility of polymers on the tribological properties. ASME J. Tribol., 118:663–668, 1996.

    CAS  Google Scholar 

  20. V. N. Koinkar and B. Bhushan. Microtribological studies of unlubricated and lubricated surfaces using atomic force/friction force microscopy. J. Vac. Sci. Technol. A, 14:2378–2391, 1996.

    Article  CAS  Google Scholar 

  21. H. Liu and B. Bhushan. Nanotribological characterization of molecularly-thick lubricant films for applications to mems/nems by afm. Ultramicroscopy, 97:321–340, 2003.

    Article  CAS  Google Scholar 

  22. G. S. Blackman, C. M. Mate, and M. R. Philpott. Interaction forces of a sharp tungsten tip with molecular films on silicon surface. Phys. Rev. Lett., 65:2270–2273, 1990.

    Article  CAS  Google Scholar 

  23. G. S. Blackman, C. M. Mate, and M. R. Philpott. Atomic force microscope studies of lubricant films on solid surfaces. Vacuum, 41:1283–1286, 1990.

    Article  CAS  Google Scholar 

  24. C. A. Kim, H. J. Choi, R. N. Kono, and M. S. Jhon. Rheological characterization of perfluoropolyether lubricant. Polym. Prepr., 40:647–649, 1999.

    CAS  Google Scholar 

  25. M. Ruths and S. Granick. Rate-dependent adhesion between opposed perfluoropoly(alkylether) layers: Dependence on chain-end functionality and chain length. J. Phys. Chem. B, 102:6056–6063, 1998.

    Article  CAS  Google Scholar 

  26. X. Ma, J. Gui, K. J. Grannen, L. A. Smoliar, B. Marchon, M. S. Jhon, and C. L. Bauer. Spreading of pfpe lubricants on carbon surfaces: Effect of hydrogen and nitrogen content. Tribol. Lett., 6:9–14, 1999.

    Article  CAS  Google Scholar 

  27. U. Jonsson and B. Bhushan. Measurement of rheological properties of ultrathin lubricant films at very high shear rates and near-ambient pressure. J. Appl. Phys., 78:3107–3109, 1995.

    Article  CAS  Google Scholar 

  28. C. Hahm and B. Bhushan. High shear rate viscosity measurement of perfluoropolyether lubricants for magnetic thin-film rigid disks. J. Appl. Phys., 81:5384–5386, 1997.

    Article  CAS  Google Scholar 

  29. C. M. Mate. Atomic-force-microscope study of polymer lubricants on silicon surface. Phys. Rev. Lett., 68:3323–3326, 1992.

    Article  CAS  Google Scholar 

  30. C. M. Mate. Nanotribology of lubricated and unlubricated carbon overcoats on magnetic disks studied by friction force microscopy. Surf. Coat. Technol., 62:373–379, 1993.

    Article  CAS  Google Scholar 

  31. S. J. O’shea, M. E. Welland, and T. Rayment. Atomic force microscope study of boundary layer lubrication. Appl. Phys. Lett., 61:2240–2242, 1992.

    Article  CAS  Google Scholar 

  32. S. J. O’shea, M. E. Welland, and J. B. Pethica. Atomic force microscopy of local compliance at solid—liquid interface. Chem. Phys. Lett., 223:336–340, 1994.

    Article  CAS  Google Scholar 

  33. B. Bhushan, T. Miyamoto, and V. N. Koinkar. Microscopic friction between a sharp diamond tip and thin-film magnetic rigid disks by friction force microscopy. Adv. Info.Storage Syst., 6:151–161, 1995.

    Google Scholar 

  34. V. N. Koinkar and B. Bhushan. Micro/nanoscale studies of boundary layers of liquid lubricants for magnetic disks. J. Appl. Phys., 79:8071–8075, 1996.

    Article  CAS  Google Scholar 

  35. B. Bhushan and S. Sundararajan. Micro/nanoscale friction and wear mechanisms of thin films using atomic force and friction force microscopy. ActaMater., 46:3793–3804, 1998.

    CAS  Google Scholar 

  36. B. Bhushan and C. Dandavate. Thin-film friction and adhesion studies using atomic force microscopy. J. Appl. Phys., 87:1201–1210, 2000.

    Article  CAS  Google Scholar 

  37. S. Sundararajan and B. Bhushan. Static friction and surface roughness studies of surface micromachined electrostatic micromotors using an atomic force/friction force microscope. J. Vac. Sci. Technol. A, 19:1777–1785, 2001.

    Article  CAS  Google Scholar 

  38. B. Bhushan and J. Ruan. Atomic-scale friction measurements using friction force microscopy: Part ii — application to magnetic media. ASME J. Tribol., 116:389–396, 1994.

    Article  CAS  Google Scholar 

  39. T. Stifter, O. Marti, and B. Bhushan. Theoretical investigation of the distance dependence of capillary and van der waals forces in scanning probe microscopy. Phys. Rev. B, 62:13667–13673, 2000.

    Article  CAS  Google Scholar 

  40. J. N. Israelachvili. Intermolecular and Surface Forces. Academic, 2nd edition, 1992.

    Google Scholar 

  41. S. K. Chilamakuri and B. Bhushan. A comprehensive kinetic meniscus model for prediction of long-term static friction. J. Appl. Phys., 15:4649–4656, 1999.

    Article  Google Scholar 

  42. H. Ishigaki, I. Kawaguchi, M. Iwasa, and Y. Toibana. Friction and wear of hot pressed silicon nitride and other ceramics. ASME J. Tribol., 108:514–521, 1986.

    Article  CAS  Google Scholar 

  43. T. E. Fischer. Tribochemistry. Annu. Rev. Mater. Sci., 18:303–323, 1988.

    Article  Google Scholar 

  44. K. Mizuhara and S. M. Hsu. Tribochemical reaction of oxygen and water on silicon surfaces, pages 323–328. Elsevier, 1992.

    Google Scholar 

  45. S. Danyluk, M. McNallan, and D. S. Park. Friction and wear of silicon nitride exposed to moisture at high temperatures, pages 61–79. Dekker, 1994.

    Google Scholar 

  46. V. A. Muratov and T. E. Fischer. Tribochemical polishing. Annu. Rev. Mater. Sci., 30:27–51, 2000.

    Article  CAS  Google Scholar 

  47. H. Yoshizawa, Y. L. Chen, and J. N. Israelachvili. Fundamental mechanisms of interfacial friction i: Relationship between adhesion and friction. J. Phys. Chem., 97:4128–4140, 1993.

    Article  CAS  Google Scholar 

  48. H. Yoshizawa and J. N. Israelachvili. Fundamental mechanisms of interfacial friction ii: Stick slip friction of spherical and chain molecules. J. Phys. Chem., 97:11300–11313, 1993.

    Article  CAS  Google Scholar 

  49. K. C. Eapen, S. T. Patton, and J. S. Zabinski. Lubrication of microelectromechanical systems (mems) using bound and mobile phase of fomblin z-dol. Tibol. Lett., 12:35–41, 2002.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bhushan, B., Liu, H. (2005). Nanoscale Boundary Lubrication Studies. In: Bhushan, B. (eds) Nanotribology and Nanomechanics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-28248-3_19

Download citation

Publish with us

Policies and ethics