Skip to main content

Extrusive Bacterial Ectosymbiosis of Ciliates

  • Chapter

Part of the book series: Progress in Molecular and Subcellular Biology ((PMSB,volume 41))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Amann RI, Springer N, Ludwig W, Görtz HD, Schleifer KH (1991) Identification in situ and phylogeny of uncultured bacterial endosymbionts. Nature 351:161–164

    Article  PubMed  CAS  Google Scholar 

  • Andersson SGE, Stothard DR, Fuerst P, Kurland C (1999) Molecular phylogeny and rearrangement of rRNA genes in Rickettsia species. Mol Biol Evol 16:987–995

    PubMed  CAS  Google Scholar 

  • Bauer-Nebelsick M, Bardele CF, Ott J (1996) Electron microscopic studies of Zoothamnium niveum (Hemprich and Erhemberg 1831) Ehremberg 1838 (Oligohymenophorea, Peritrichida), a ciliate with ectosymbiotic, chemioautotrophic bacteria. Eur J Protistol 32:202–215

    Google Scholar 

  • Beier CL, Horn M, Michel R, Schweikert M, Görtz HD, Wagner M (2002) The genus Caedibacter comprises endosymbionts of Paramecium spp. related to the Rickettsiales (alphaproteobacteria) and to Francisella tularensis (gammaproteobacteria). Appl Environ Microbiol 68:6043–6050

    Article  PubMed  CAS  Google Scholar 

  • Berger J (1980) Feeding behavior of Didinium nasutum on Paramecium bursaria with normal or apochlorotic zooclorellae. J Gen Microbiol 118:397–404

    Google Scholar 

  • Bermudes D, Hinkle G, Margulis L (1994) Do prokaryotes contain microtubules? Microbiol Rev 58:387–400

    PubMed  CAS  Google Scholar 

  • Bramhill D, Thompson CM (1994) GTP-dependent polymerization of Escherichia coli FtsZ protein to form tubules. Proc Natl Acad Sci USA 91:5813–5817

    PubMed  CAS  Google Scholar 

  • de Boer P, Crossley R, Rothfield L (1992) The essential bacterial cell-division protein FtsZ is a GTPase. Nature 359:254–256

    Article  PubMed  Google Scholar 

  • Chin K-J, Liesack W, Janssen H (2001) Opitutus terrae gen nov., sp. nov., to accommodate novel strains of the division “Verrucomicrobia” isolated from rice paddy soil. Int J Syst Evol Microbiol 51:1965–1968

    PubMed  CAS  Google Scholar 

  • Daims H, Brühl A, Amann R., Schleifer K-H, Wagner M (1999) The domain-specific probe EUB338 is insufficient for detection of all Bacteria: development and evaluation of a more comprehensive probe set. Syst Appl Microbiol 23:434–444

    Google Scholar 

  • Erickson HP (1995) FtsZ, a prokaryotic homolog of tubulin? Cell 80:367–370

    Article  PubMed  CAS  Google Scholar 

  • Esteban G, Finlay BJ (1994). A new genus of anaerobic scuticociliate with endosymbiotic methanogens and ectobiotic bacteria. Arch Protistenkd 144:350–356

    Google Scholar 

  • Favinger J, Stackebrandt R, Gest H (1989) Rhodospirillum centenum sp. nov., a thermotolerant cyst-forming anoxygenic photosyntheric bacterium. Antonie van Leeuwenhoek 55:291–296

    Article  PubMed  CAS  Google Scholar 

  • Fenchel T, Finlay BJ (1991) The biology of free-living anaerobic ciliates. Eur J Protistol 26:200–216

    Google Scholar 

  • Fenchel T, Finlay JB (1995) Symbiosis with prokaryotes: intracellular syntrophy. In: May RM, Harvey PH (eds) Ecology and evolution in the anoxic worlds. Oxford Univ Press, Oxford, pp 135–161

    Google Scholar 

  • Fenchel T, Perry T, Thane A (1977) Anaerobiosis and symbiosis with bacteria in free-living ciliates. J Protozool 24:154–163

    PubMed  CAS  Google Scholar 

  • Finlay JB, Clarke KJ, Vicente E, Miracle MR (1991) Anaerobic ciliates from sulphide-rich solution lake in Spain. Eur J Protistol 27:148–159

    Google Scholar 

  • Giambelluca MA, Rosati G (1996) Behavior of epixenosomes and epixenosomal band during divisional morphogenesis in Euplotidium itoi (Ciliata, Hypotrichida). Eur J Protistol 32:77–80

    Google Scholar 

  • Hausmann K (1978) Extrusive organelles in Protists. Int Rev Cytol 52:197–276

    Article  PubMed  CAS  Google Scholar 

  • Hedlund BP, Gosink JJ, Staley JT (1996) Phylogeny of Prosthecobacter, the fusiform Caulobacters: members of a recently discovered division of the bacteria. Int J Syst Bacteriol 46:960–966

    PubMed  CAS  Google Scholar 

  • Hernández-Romero D, Lucas-Elio P, López-Serrano D, Solano F, Sanchez-Amat A (2003) Marinomonas mediterranea is a lysogenic bacterium that synthesizes R-bodies. Microbiology UK 149:2679–2686

    Google Scholar 

  • Heruth DP, Pond FR, Dilts JA, Quackenbush RL (1994) Characterization of genetic determinants for R body synthesis and assembly in Caedubacter taeniospiralis 47 and 116. J Bacteriol 176:3559–3567

    PubMed  CAS  Google Scholar 

  • Ito S (1958) Two new species of marine ciliate. Euplotidium itoi sp. nov. and Gastrocirrhus sp nov. Zool Mag Tokyo 67:184–187

    Google Scholar 

  • Jenkins C, Samudrala R, Anderson I, Hedlund BP, Petroni G, Michailova N, Pinel N, Overbeek R, Rosati G, Staley JT (2002) Genes for the cytoskeletal protein tubulin in the bacterial genus Prosthecobacter. Proc Nat Acad Sci USA 99:17049–17054

    Article  PubMed  CAS  Google Scholar 

  • Jensen TE (1984) Cyanobacterial cell inclusions of irregular occurrence: systematic and evolutionary implications. Cytobiosis 39:35–62

    Google Scholar 

  • Kugrens P, Lee RE, Corliss JO (1994) Ultrastructure, biogenesis and functions of extrusive organelles in selected non-ciliate protists. Protoplasma 181:164–190

    Article  Google Scholar 

  • Lalucat J, Pares R, Schlegel HG (1982) Pseudomonas taeniospiralis sp. nov., an R-body-containing hydrogen bacterium. Int J Syst Bacteriol 32:232–238

    Google Scholar 

  • Lenard J (1992) Mammalian hormones in microbial cells. Trends Biochem Sci 17:147–150

    Article  PubMed  CAS  Google Scholar 

  • Ludwig W, Strunk O (1997) ARB: a software environment for sequence data (http://www.mikro.biologie.tu.muenchen de/pub/ARB/documentation/arb/ps)

    Google Scholar 

  • Miyake A, Harumoto T (1996) Defensive function of trichocysts in Paramecium against the predatory ciliate Monodoinium balbiani. Eur J Protistol 32:128–123

    Google Scholar 

  • Noland LE (1937) Observation on marine ciliates of the gulf coast of Florida. Trans Am Microsc Soc 56:160–171

    Google Scholar 

  • Ott JA, Bright M, Schiemer F (1998) The ecology of a novel symbiosis between a marine peritrich ciliate and chemoautotrophic bacteria. Mar Ecol 19:229–243

    CAS  Google Scholar 

  • Petroni G, Spring S, Schleifer K-H, Verni F, Rosati G (2000) Defensive extrusive ectosymbionts of Euplotidium (Ciliophora) that contain microtubule-like structures are bacteria related to Verrucomicrobia. Proc Natl Acad Sci USA 97:1813–1817

    Article  PubMed  CAS  Google Scholar 

  • Pond FR, Gibson I, Lalucat G, Quackembush RL (1989) R-body-producing bacteria. Microbiol Re 53:25–67

    CAS  Google Scholar 

  • Preer JR, Preer LB, Jurand A (1974) Kappa and other endosymbionts in Paramecium aurelia. Bacteriol Rev 38:113–163

    PubMed  CAS  Google Scholar 

  • Preer Jr JR, Preer LB (1982) Revival of names of protozooan endosymbionts and proposal of Holospora caryophila nom nov. Int J Syst Bacteriol 32:140–141

    Article  Google Scholar 

  • Quackembush RL, Burbach J (1983) Cloning and expression of DNA sequence associated with the killer trait of Paramecium tetraurelia sock 47. Proc Natl Acad Sci USA 80:250–254

    Google Scholar 

  • Raikov IB (1971) Bactéries épizoiques et mode de nutrition du cilié psammophile Kentrophorus fistulosum Fauré-Fremiet (étude au microscope electronique). Protistologica 7:365–378

    Google Scholar 

  • Ricci N, Verni F (1988) Motor and predatory behavior of Litonotus lamella (Protozoa, Ciliata). Can J Zool 66:1973–1981

    Article  Google Scholar 

  • Ricci N, Morelli A, Verni F (1996) The predation of Litonotus on Euplotes: a two-step cell-cell recognition process. Acta Protozool 35:201–208

    Google Scholar 

  • Rinke C, Ott JA, Bright M (2003) Fatal picnic on a high speed elevator: nutrition in the chemoautotrophic Zoothamnium niveum symbiosis. IV Int Congress of ISS Halifax, p 83

    Google Scholar 

  • Rosati G (1999) Epixenosomes: symbionts of the hypotrich ciliate Euplotidium itoi. Symbiosis 26:1–23

    Google Scholar 

  • Rosati G, Verni F, Lenzi P (1993a) “Epixenosomes”: peculiar epibionts of the ciliate Euplotidium itoi. The formation of the extrusive apparatus and the ejecting mechanism. Eur J Protistol 29:238–245

    Google Scholar 

  • Rosati G, Lenzi P, Verni F (1993b) “Epixenosomes”: peculiar epibionts of the ciliate Euplotidium itoi: do their cytoplasmic tubules consist of tubulin? Micron 24:465–471

    Article  Google Scholar 

  • Rosati G, Giambelluca MA, Taiti E (1996) Epixenosomes: peculiar epibionts of the ciliate Euplotidium itoi: morphological and functional cell compartmentalization. Tissue Cell 28:313–320

    Article  PubMed  CAS  Google Scholar 

  • Rosati G, Giambelluca MA, Grossi M, Morelli A (1997) “Epixenosomes”: peculiar epibionts of the ciliate Euplotidium itoi: involvement of membrane receptors and the adenylate-cyclase cyclic-AMP system in the ejecting process. Protoplasma 147:57–63

    Article  Google Scholar 

  • Rosati G, Verni F, Lenzi P, Giambelluca MA, Sironi M, Bandi C (1998) Epixenosomes, peculiar epibionts of the ciliated protozoon Euplotidium itoi: what kind of organisms are they? Protoplasma 201:38 44

    Article  Google Scholar 

  • Rosati G, Petroni G, Quochi S, Modeo L, Verni F (1999) Epixenosomes: peculiar epibionts of the hypotrich ciliate Euplotidium itoi defend their host against predators. J Eukaryot Microbiol 46:278–282

    Google Scholar 

  • Tuffrau M (1985) Une nouvelle éspece du genre Euplotidium (Noland 1937: Euplotidium prosaltans n, sp (Cilié Hypotriche). Cah Biol Mar 26:53–62

    Google Scholar 

  • Vandekerckhove TTM, Willems A, Gillis M, Coomans A (2000) Occurrence of novel verrucomicrobial species, endosymbiotic and associated with parthenogenesis in Xiphinema americanum-group specias (nematoda, Longidoridae). Int J Syst Evol Microbiol 50:2197–2205

    PubMed  Google Scholar 

  • Verni F, Rosati G (1990) Peculiar epibionts in Euplotidium itoi (Ciliata, Hypotrichida). J Protozool 37:337–343

    Google Scholar 

  • Wells B, Horne RW (1983) The ultrastructure of Pseudomonas avenae. II. Intracellular refractile (R-body) structure. Micron Microsc Acta 14:329–344

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rosati, G. (2005). Extrusive Bacterial Ectosymbiosis of Ciliates. In: Overmann, J. (eds) Molecular Basis of Symbiosis. Progress in Molecular and Subcellular Biology, vol 41. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-28221-1_6

Download citation

Publish with us

Policies and ethics