Skip to main content

Bacterial Ectosymbionts which Confer Motility: Mixotricha paradoxa from the Intestine of the Australian Termite Mastotermes darwiniensis

  • Chapter

Part of the Progress in Molecular and Subcellular Biology book series (PMSB,volume 41)

Keywords

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abe T. Bignell DE, Higashi M (eds.) (2000) Termites: Evolution, Sociality, Symbioses, Ecology, Kluwer Academic Publ. Dordrecht.

    Google Scholar 

  • Amann RI, Krumholz L, Stahl DA (1990) Fluorescent-oligonucleotide probing of whole cells for determinative, phylogenetic, and environmental studies in microbiology. J Bacteriol 172:762–770

    PubMed  CAS  Google Scholar 

  • Berchtold M, König H (1995) Phylogenetic position of two uncultivated trichomonads Pentatrichomonoides scroa Kirby and Metadevescovina extranea Kirby from the hindgut of the termite Mastotermes darwiniensis Froggatt. System Appl Microbiol 18:567–573

    Google Scholar 

  • Berchtold M, König H (1996) Phylogenetic analysis and in situ identification of uncultivated spirochetes from the hindgut of the termite Mastotermes darwiniensis. System Appl Microbiol 19:66–73

    Google Scholar 

  • Berchtold M, Ludwig W, König H (1994) 16S rDNA sequence and phylogenetic position of an uncultivated spirochete from the hindgut of the termite Mastotermes darwiniensis Froggatt. FEMS Microbiol Lett 123:269–274

    PubMed  CAS  Google Scholar 

  • Berchtold M, Breunig A, König H (1995) Culture and phylogenetic characterization of Trichomitus trypanoides Duboscque & Grassè 1924, n. comb. a trichomonad flagellate isolated from the hindgut of the termite Reticulitermes santonensis Feytaud. J Eukar Microbiol. 42: 388–391

    CAS  Google Scholar 

  • Berchtold M, Chatzinotas A, Schönhuber W, Brune A, Amann R, Hahn D, König H (1999) Differential enumeration and in situ localization of microorganisms in the hindgut of the lower termite Mastotermes darwiniensis. Arch Microbiol 172: 407–416

    CrossRef  PubMed  CAS  Google Scholar 

  • Bermudes D, Margulis I, Tzertzinis G (1987) Prokaryotic origin of undulipodia. In: Lee JJ, Jerome FF (eds) Endocytobiology III. New York Academy of Sciences, New York, pp 187–197

    Google Scholar 

  • Bloodgood RA, Fitzharris TP (1976) Specific associations of prokaryotes with symbiotic flagellate protozoa from the hindgut of the termite Reticulitermes and the wood-eating roach Cryptocercus. Cytobios 17:103–122

    PubMed  CAS  Google Scholar 

  • Breznak JA, Pankratz HS (1977) In situ morphology of the gut microbiota of wood-eating termites [Reticulitermes flavipes (Kollar) and Coptotermes formosanus (Shiraki)]. Appl Environ Microbiol 33:406–426

    PubMed  CAS  Google Scholar 

  • Breznak JA (1984) Biochemical aspects of symbiosis between termites and their intestinal microbiota. In: Anderson JM, Rainer ADM, Walton DWH (eds) Invertebrate-microbial interactions. Cambridge Univ Press, Cambridge, pp 173–203

    Google Scholar 

  • Brugerolle G (2000) A microscopic investigation of the genus Foaina, a parabasalid protist symbiotic in termites and phylogenetic considerations. Eur J Protistol 36:20–28

    Google Scholar 

  • Brugerolle G, König H (1997) Ultrastructure and organisation of the cytoskeleton in Oxymonas, an intestinal flagellate of termites. J Eukaryot Microbiol 44:305–313

    Google Scholar 

  • Brugerolle G, Lee JJ (2000a) Phylum Parabasalia. In: Lee JJ, Leedale GF, Bradbury P (eds) The illustrated guide to the protozoa, 2nd edn, vol 2. Society of Protozoologists, Lawrence, Kansas, pp 1196–1250

    Google Scholar 

  • Brugerolle G, Lee JJ (2000b) Order Oxymonadida. In: Lee JJ, Leedale GF, Bradbury P (eds) The illustrated guide to the protozoa, vol 2. Society of Protozoologists, Lawrence, Kansas, pp 1186–1195

    Google Scholar 

  • Brugerolle G, Breunig A, König H (1994) Ultrastructural study of Pentatrichomonoides sp., a trichomonad flagellate from Mastotermes darwiniensis. Eur J Protistol 30:372–378

    Google Scholar 

  • Canale-Parola E (1991) Free-living saccharolytic spirochetes: the genus Spirochaeta. In: Balows A, Trüper HG, Dworkin M, Harder W, Schleifer K (eds) The Prokaryotes, vol 4. Springer, Berlin Heidelberg New York, pp 3593–3607

    Google Scholar 

  • Cleveland LR, Cleveland BT (1966) The locomotory waves of Koruga, Deltotrichonympha and Mixotricha. Arch Protistenk 109:39–63

    Google Scholar 

  • Cleveland LR, Grimstone AV (1964) The fine structure of the flagellate Mixotricha paradoxa and its associated microorganisms. Proc R Soc Lond Ser B 159:668–686

    CrossRef  Google Scholar 

  • Czolij R, Slaytor M, Veivers PC, O’Brien RW (1984) Gut morphology of Mastotermes darwiniensis Froggatt (Isoptera: Mastotermitidae). Int J Insect Morphol Embryol 13:337–355

    CrossRef  Google Scholar 

  • Czolij R, Slaytor M, O’Brien RW (1985) Bacterial flora of the mixed segment and the hindgut of the higher termite Nasutitermes exitiosus Hill. (Termitidae: Nasutitermitinae). Appl Environ Microbiol 49:1226–1236

    Google Scholar 

  • Czolij R, Slaytor M, O’Brien RW (1986) Bacterial flora of the mixed segment and the hindgut of the higher termite Nasutitermes exitiosus Hill (Termitidae, Nasutermitinae). Appl Environ Microbiol 49:1226–1236

    Google Scholar 

  • Dacks JB, Redfield RJ (1998) Phylogenetic placement of Trichonympha. J Eukaryot Microbiol 45:445–447

    PubMed  CAS  Google Scholar 

  • Delgado-Viscogliosi P, Viscogliosi E, Gerbod D, Kulda J, Sogin ML, Edgcomb VP (2000) Molecular phylogeny of parabasalids based on small subunit rRNA sequences, with emphasis on the Trichomonadinae subfamily. J Eukaryot Microbiol 47:70–75

    CrossRef  PubMed  CAS  Google Scholar 

  • Dröge S, Fröhlich J, Radek R, König H (2005) Spirochaeta coccoides sp. nov., a novel coccoid spirochete from the hindgut of the termite Neotermes castaneus. Appl Environ Microbiol. In press

    Google Scholar 

  • Dyer BD, Khalsa O (1993) Surface bacteria of Streblomastix strix are sensory symbionts. Biosystems 31:169–180

    CrossRef  PubMed  CAS  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution. 39:783–791.

    Google Scholar 

  • Felsenstein J (1993) Phylip (Phylogeny Inference Package) version 3.5. Department of genetics, University of Washington, Seattle.

    Google Scholar 

  • Fröhlich J, König H (1999a) Ethidium bromide: a fast fluorescent staining procedure for the detection of symbiotic partnership of flagellates and prokaryotes. J Microbiol Meth 35:121–127

    CrossRef  Google Scholar 

  • Fröhlich J, König H (1999b) Rapid isolation of single microbial cells from mixed natural and laboratory populations with the aid of a micromanipulator. System Appl Microbiol 22:249–257

    Google Scholar 

  • Fuchs BM, Glöckner FO, Wulf J, Amann R (2000) Unlabeled helper oligonucleotides increase the in situ accessibility to 16S rRNA of fluorescently labeled oligonucleotide probes. Appl Environ Microbiol 66:3603–3607

    CrossRef  PubMed  CAS  Google Scholar 

  • Gay FJ, Calaby JH (1970) Termites of the Australian region. In: Krishna K, Weesner FM (eds) Biology of termites, vol 2. Academic Press, New York, pp 393–448

    Google Scholar 

  • Gerbod D, Nöel C, Dolan MF, Edgcomb VP, Kitade O, Noda S, Dufernez F, Ohkuma M, Kudo T, Capron M, Sogin ML, Viscogliosi E (2002) Molecular phylogeny of parabasalids inferred from small subunit rRNA sequences, with emphasis on the Devescovinidae and Calonymphidae (Trichomonadea). Mol Phylogenet Evol 25:545–556

    CrossRef  PubMed  CAS  Google Scholar 

  • Graber JR, Breznak JA (2004a) Physiology and nutrition of Treponema primitia, an H2/CO2-acetogenic spirochete from termite hindguts. Appl Environ Microbiol 70:1307–1314

    CrossRef  PubMed  CAS  Google Scholar 

  • Graber JR, Leadbetter JR, Breznak JA (2004b) Description of Treponema azotonutricium sp. nov. and Treponema primitia sp. nov., the first spirochetes isolated from termite guts. Appl. Environ. Microbiol. 70:13154–1320

    Google Scholar 

  • Holt SC (1978) Anatomy and chemistry of spirochetes. Microbiol Rev 42:114–160

    PubMed  CAS  Google Scholar 

  • Honigberg BM (1970) Protozoa associated with termites and their role in digestion. In: Krishna K, Weesner FM (eds) Biology of termites, vol 2. Academic Press, New York, pp 1–36

    Google Scholar 

  • Iida T, Ohkuma M, Ohtoko K, Kudo T (2000) Symbiotic spirochetes in the termite hindgut: phylogenetic identification of ectosymbiotic spirochetes of oxymonad protists. FEMS Microbiol Ecol 34:17–26

    PubMed  CAS  Google Scholar 

  • Kirby H Jr (1936) Two polymastigote flagellates of the genera Pseudodevescovina and Caduceia. Quart J Microscop Sci 79:309–335

    Google Scholar 

  • Keeling P, Poulsen N, McFadden GI (1998) Phylogenetic diversity of parabasalian symbionts from termites, including the phylogenetic position of Pseudotrypanosoma and Trichonympha. J Eukaryot Microbiol 45:643–650

    PubMed  CAS  Google Scholar 

  • Kitade O, Matsumoto T (1998) Characteristics of the symbiotic flagellate composition within the termite family Rhinotermitidae. Symbiosis 25:271–278

    Google Scholar 

  • König H, Breunig A (1997) Ökosystem Termitendarm. Spektrum der Wissenschaft 68–76

    Google Scholar 

  • König H, Varma A (eds.) (2005) Intestinal Microorganisms of Termites and Other Invertebrates. Springer Verlag, Heidelberg.

    Google Scholar 

  • König H, Fröhlich J, Berchtold M, Wenzel M (2002) Diversity and microhabitats of the hindgut flora of termites. Rec Res Dev Microbiol 6:125–156

    Google Scholar 

  • Leadbetter JR, Schmidt TM, Graber JR, Breznak JA (1999) Acetogenesis from H2 plus CO2 by spirochetes from termite guts. Science 283:686–689

    CrossRef  PubMed  CAS  Google Scholar 

  • Li L (2003) Cellulases and cellulase genes of the Australian termite Mastotermes darwiniensis and its hindgut Archaezoa. Thesis, Johannes Gutenberg-University, Mainz

    Google Scholar 

  • Li L, Fröhlich J, Pfeiffer P, König H (2003) Termite’s symbiotic gut Archaezoa are becoming living metabolic fossils. Eukaryotic Cell 2:1091–1098

    CrossRef  PubMed  CAS  Google Scholar 

  • Lilburn TG, Schmidt TM, Breznak JA (1999) Phylogenetic diversity of termite gut spirochaetes. Environ Microbiol 1:331–345

    CrossRef  PubMed  CAS  Google Scholar 

  • Machin KE (1963) The control and synchronization of flagellar movements. Proc R Soc Lond B Biol Sci 158:88–104

    CrossRef  Google Scholar 

  • Margulis L (1993) Symbiosis in cell evolution, 2nd edn. Freeman, New York

    Google Scholar 

  • Margulis L, Hinkle G (1992) Large symbiotic spirochetes: Clevelandina, Cristispira, Diplocalyx, Hollandina, and Pillotina. In: Balows A, Trüper HG, Dworkin M, Harder W, Schleifer K-H (eds) The prokaryotes, 2nd edn. Springer, Berlin Heidelberg New York, pp 3965–3978

    Google Scholar 

  • Moriya S, Ohkuma M, Kudo T (1998) Phylogenetic position of symbiotic protist Dinenympha exilis in the hindgut of the termite Reticulitermes speratus inferred from the protein phylogeny of elongation factor 1 alpha. Gene 210:221–227

    CrossRef  PubMed  CAS  Google Scholar 

  • Myles TG (1999) Phylogeny and Taxonomy of the Isoptera. XIIIth international congress of the International Union for the Study of Social Insects 29, Adelaide, Australia

    Google Scholar 

  • Nakashima K, Watanabe H, Saitoh H, Tokuda G, Azuma JI (2002) Dual cellulose-digesting system of the wood-feeding termite, Coptotermes formosanus Shiraki. Insect Biochem Mol Bio 32:777–784

    CrossRef  CAS  Google Scholar 

  • Noda S, Ohkuma M, Yamada A, Hongoh Y, Kudo T (2003) Phylogenetic position and in situ identification of ectosymbiotic spirochetes on protists in the termite gut. Appl Environ Microbiol 69:625–633

    CrossRef  PubMed  CAS  Google Scholar 

  • Noirot C (1995) The gut of termites (Isoptera). Comparative anatomy, systematics, phylogeny. I. Lower termites. Ann Soc Entomol Fr 31:197–226

    Google Scholar 

  • Noirot C, Noirot-Timotheé C (1969) The digestive system. In: Krishna K, Weesner FM (eds) Biology of termites, vol 2. Academic Press, New York, pp 49–88

    Google Scholar 

  • Ohkuma M, Ohtoko K, Grunau C, Moriya S, Kudo T (1998) Phylogenetic identification of the symbiotic hypermastigote Trichonympha agilis in the hindgut of the termite Reticulitermes speratus based on small-subunit rRNA sequence. J Eukaryot Microbiol 45:439–444

    PubMed  CAS  Google Scholar 

  • Ohkuma M, Iida T, Kudo T (1999) Phylogenetic relationships of symbiotic spirochetes in the gut of diverse termites. FEMS Microbiol Lett 181:123–129

    PubMed  CAS  Google Scholar 

  • Paster BJ, Dewhirst FE, Cooke SM, Fussing V, Poulsen LK, Breznak JA (1996) Phylogeny of not-yet-cultured spirochetes from termite guts. Appl Environ Microbiol 2:347–352

    Google Scholar 

  • Prillinger H, Messner R, König H, Bauer R, Lopandic K, Molnar O, Dangel P, Weigang F, Kirisitis T, Nakase T, Sigler L (1996) Yeasts associated with termites: a phenotypic and genotypic characterization and use of coevolution for dating evolutionary radiations in asco-and basidiomycetes. System Appl Microbiol 19:265–283

    CAS  Google Scholar 

  • Radek R, Hausmann K (1993) Symbiontische Flagellaten im Termitendarm. In: Hausmann K, Kremer BP (eds) Extremophile Mikroorganismen in ausgefallenen Lebensräumen. VCH, Weinheim, pp 325–339

    Google Scholar 

  • Radek R, Tischendorf G (1999) Bacterial adhesion to different termite flagellates: ultrastructural and functional evidence for distinct molecular attachment modes. Protoplasma 207:43–53

    CrossRef  CAS  Google Scholar 

  • Radek R, Hausmann K, Breunig A (1992) Ectobiotic and endocytobiotic bacteria associated with the termite flagellate Joenia annectens. Acta Protozool 31:93–107

    Google Scholar 

  • Radek R, Roesel J, Hausmann K (1996) Light and electron microscopic study of the bacterial adhesion to termite flagellates applying lectin cytochemistry. Protoplasma 193:105–122

    CrossRef  Google Scholar 

  • Schäfer A, Konrad R, Kuhnigk T, Kämpfer P, Hertel H, König H (1996) Hemicellulose-degrading bacteria and yeasts from the termite gut. J Appl Bacteriol 80:471–478

    PubMed  Google Scholar 

  • Smith HE, Buhse HE, Stamler SJ (1975) Possible formation and development of spirochaete attachment sites found on the surface of symbiotic polymastigote flagellates of the termite Reticulitermes flavipes. BioSystems 7:374–379

    CrossRef  PubMed  CAS  Google Scholar 

  • Stoesser G, Baker W, van den Broek A, Camon E, Garcia-Pastor M, Kanz C, Kulikova T, Lombard V, Lopez R, Parkinson H, Redaschi N, Sterk P, Stoehr P, Tuli MA (2001) The EMBL nucleotide sequence database. Nucleic Acids Res 29:17–21

    CrossRef  PubMed  CAS  Google Scholar 

  • Sutherland JL (1933) Protozoa from Australian termites. Quart J Microscop Sci 76:145–173

    Google Scholar 

  • Tamm SL (1982) Flagellated ectosymbiotic bacteria propel a eucaryotic cell. J Cell Biol 94:697–709

    CrossRef  PubMed  CAS  Google Scholar 

  • Tamm SL (1999) Locomotory waves of Koruga and Deltotrichonympha: flagella wag the cell. Cell Motil Cytoskeleton 43:145–158

    CrossRef  PubMed  CAS  Google Scholar 

  • Thorne BL, Grimaldi DA, Krishna K (2000) Early fossil history of termites. In: Abe T, Bignell DE, Higashi M (eds) Termites: evolution, sociality, symbioses, ecology. Kluwer Academic Publ, Dordrecht, pp 77–93

    Google Scholar 

  • To LP, Margulis L, Chase D, Nuttung WL (1980) The symbiotic microbial community of the sonoran desert termite: Pterotermes occidentis. BioSystems 13:109–137

    CrossRef  PubMed  CAS  Google Scholar 

  • Veivers PC, Musca AM, O’Brien RW, Slaytor M (1982) Digestive enzymes of the salivary glands and gut of Mastotermes darwiniensis. Insect Biochem 12:35–40

    CrossRef  CAS  Google Scholar 

  • Veivers PC, O’Brien RW, Slaytor M (1983) Selective defaunation of Mastotermes darwiniensis and its effect on cellulose and starch metabolism. Insect Biochem 13:95–101

    CrossRef  Google Scholar 

  • Viscogliosi E, Philippe H, Baroin A, Perasso R, Brugerolle G (1993) Phylogeny of trichomonads based on partial sequences of large subunit rRNA and on cladistic analysis of morphological data. J Eukaryot Microbiol 40:411–421

    PubMed  CAS  Google Scholar 

  • Wenzel M (1998) Untersuchungen der symbiotischen Bakterien von Mixotricha paradoxa, eines Flagellaten aus der Termite Mastotermes darwiniensis. Diploma Thesis, Johannes Gutenberg-University Mainz, Germany

    Google Scholar 

  • Wenzel M, Radek R, Brugerolle G, König H (2003) Identification of the ectosymbiotic bacteria of Mixotricha paradoxa involved in movement symbiosis. Eur J Protistol 39:11–23

    CrossRef  Google Scholar 

  • Wier A, Dolan M, Grimaldi D, Guerrero R, Wagensberg J, Margulis L (2002) Spirochete and protist symbionts of a termite (Mastotermes electrodominicus) in Miocene amber. Proc Natl Acad Sci USA 99:1410–1413

    CrossRef  PubMed  CAS  Google Scholar 

  • Wood TG, Sands WA (1978) The role of termites in ecosystems. In: Brian JV (ed) Production ecology of ants and termites. Cambridge Univ Press, Cambridge, pp 245–292

    Google Scholar 

  • Yamin MA (1978) Axenic cultivation of the cellulolytic flagellate Trichomitopsis termopsidis (Cleveland) from the termite, Zootermopsis. J Protozool 25:535–538

    Google Scholar 

  • Yamin MA (1979) Flagellates of the orders Trichomondida Kirby, Oxymonadida Grassé, and Hypermastigida Grassi & Foà reported from lower termites (Isoptera families Mastotermitidae, Kalotermitidae, Hodotermitidae, Termopsidae, Rhinotermitidae, and Serritermitidae) and from the wood-feeding roach Cryptocercus (Dictyoptera: Cryptocercidae). Sociobiology 4:4–119

    Google Scholar 

  • Yamin MA (1980) Cellulose metabolism by the termite flagellate Trichomitopsis termopsidis. Appl Environ Microbiol 39:859–863

    PubMed  CAS  Google Scholar 

  • Yamin MA (1981) Cellulose metabolism by the flagellate Trichonympha from the termite is independent of endosymbiotic bacteria. Science 211:58–59

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Additional information

Dedicated to Prof. Dr. Karl Otto Stetter on the occasion of his 65th birthday

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

König, H., Li, L., Wenzel, M., Fröhlich, J. (2005). Bacterial Ectosymbionts which Confer Motility: Mixotricha paradoxa from the Intestine of the Australian Termite Mastotermes darwiniensis . In: Overmann, J. (eds) Molecular Basis of Symbiosis. Progress in Molecular and Subcellular Biology, vol 41. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-28221-1_5

Download citation

Publish with us

Policies and ethics