Skip to main content

Syntrophic Associations in Methanogenic Degradation

  • Chapter
Molecular Basis of Symbiosis

Part of the book series: Progress in Molecular and Subcellular Biology ((PMSB,volume 41))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahring BK, Westermann P (1988) Product inhibition of butyrate metabolism by acetate and hydrogen in a thermophilic coculture. Appl Environ Microbiol 54:2393–2397

    PubMed  CAS  Google Scholar 

  • Beaty PS, McInerney MJ (1989) Effect of organic acid anions on the growth and metabolism of Syntrophomonas wolfei in pure culture and in defined consortia. Appl Environ Microbiol 55:977–983

    PubMed  CAS  Google Scholar 

  • Ben-Bassat A, Lamed R, Zeikus JG (1981) Ethanol production by thermophilic bacteria: metabolic control of end product formation in Thermoanaerobium brockii. J Bacteriol 146:192–199

    PubMed  CAS  Google Scholar 

  • Benz M, Schink B, Brune A (1998) Humic acid reduction by Propionibacterium freudenreichii and other fermenting bacteria. Appl Environ Microbiol 64:4507–4512

    PubMed  CAS  Google Scholar 

  • Biebl H, Pfennig N (1978) Growth yields of green sulfur bacteria in mixed cultures with sulfur and sulfate reducing bacteria. Arch Microbiol 117:9–16

    Article  CAS  Google Scholar 

  • Boetius A, Ravenschlag K, Schubert CJ, Rickert D, Widdel F, Giesecke A, Amann R, Jorgensen BB, Witte U, Pfannkuche O (2000) A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature 407:623–626

    Article  PubMed  CAS  Google Scholar 

  • Boone DR, Bryant MP (1980) Propionate-degrading bacterium, Syntrophobacter wolinii sp. nov. gen. nov, from methanogenic ecosystems. Appl Environ Microbiol 40:626–632

    PubMed  CAS  Google Scholar 

  • Boone DR, Johnson RL, Liu Y (1989) Diffusion of the interspecies electron carriers H2 and formate in methanogenic ecosystems, and implications in the measurement of KM for H2 or formate uptake. Appl Environ Microbiol 55:1735–1741

    PubMed  CAS  Google Scholar 

  • Bryant MP (1979) Microbial methane production — theoretical aspects. J Anim Sci 48:193–201

    CAS  Google Scholar 

  • Bryant MP, Wolin EA, Wolin MJ, Wolfe RS (1967) Methanobacillus omelianskii, a symbiotic association of two species of bacteria. Arch Microbiol 59:20–31

    CAS  Google Scholar 

  • Cherepanov DA, Mulkidjanian AY, Junge W (1999) Transient accumulation of elastic energy in proton translocating ATP synthase. FEBS Lett 449:1–6

    Article  PubMed  CAS  Google Scholar 

  • Cord-Ruwisch R, Lovley DR, Schink B (1998) Growth of Geobacter sulfurreducens with acetate in syntrophic cooperation with hydrogen-oxidizing anaerobic partners. Appl Environ Microbiol 64:2232–2236

    PubMed  CAS  Google Scholar 

  • De Bok FA, Luijten ML, Stams AJ (2002a) Biochemical evidence for formate transfer in syntrophic propionate-oxidizing cocultures of Syntrophobacter fumaroxidans and Methanospirillum hungatei. Appl Environ Microbiol 68:4247–4252

    Article  PubMed  CAS  Google Scholar 

  • De Bok FA, Roze EH, Stams AJ (2002b) Hydrogenases and formate dehydrogenases of Syntrophobacter fumaroxidans. Antonie van Leeuwenhoek 81:283–291

    Article  PubMed  Google Scholar 

  • De Bok FA, Plugge CM, Stams AJ (2004) Interspecies electron transfer in methanogenic propionate degrading consortia. Water Res 38:1368–1375

    Article  PubMed  CAS  Google Scholar 

  • Dimroth P (1987) Sodium transport decarboxylases and other aspects of sodium ion cycling in bacteria. Microbiol Rev 51:320–340

    PubMed  CAS  Google Scholar 

  • Dimroth P (2000) Operation of the F0 motor of the ATP synthase. Biochem Biophys Acta 1458:374–386

    Article  PubMed  CAS  Google Scholar 

  • Dong X, Plugge CM, Stams AJM (1994) Anaerobic degradation of propionate by a mesophilic acetogenic bacterium in co-and triculture with different methanogens. Appl Environ Microbiol 60:2834–2838

    PubMed  CAS  Google Scholar 

  • Dörner C (1992) Biochemie und Energetik der Wasserstofffreisetzung in der syntrophen Vergärung von Fettsäuren und Benzoat. Thesis, Universität Tübingen

    Google Scholar 

  • Dwyer DF, Weeg-Aerssens E, Shelton DR, Tiedje JM (1988) Bioenergetic conditions of butyrate metabolism by a syntrophic, anaerobic bacterium in coculture with hydrogen-oxidizing methanogenic and sulfidogenic bacteria. Appl Environ Microbiol 54:1354–1359

    PubMed  CAS  Google Scholar 

  • Eichler B, Schink B (1986) Fermentation of primary alcohols and diols, and pure culture of syntrophically alcohol-oxidizing anaerobes. Arch Microbiol 143:60–66

    Article  Google Scholar 

  • Emde R, Schink B (1990) Oxidation of glycerol, lactate, and propionate by Propionibacterium freudenreichii in a poised-potential amperometric culture system. Arch Microbiol 153:506–512

    Article  CAS  Google Scholar 

  • Engelbrecht S, Junge W (1997) ATP synthase: a tentative structural model. FEBS Lett 414:485–491

    Article  PubMed  CAS  Google Scholar 

  • Hattori S, Kamagata Y, Hanada S, Shoun H (2000) Thermacetogenium phaeum gen. nov, sp. nov, a strictly anaerobic, thermophilic, syntrophic acetate-oxidizing bacterium. Int J Syst Evol Microbiol 50:1601–1609

    PubMed  CAS  Google Scholar 

  • Hedderich R (2004) Energy-converting [NiFe] hydrogenases from archaea and extremophiles: ancestors of complex I. Bioenerg Biomembr 36:65–75

    Article  CAS  Google Scholar 

  • Hinrichs KU, Hayes JM, Sylva SP, Brewer PG, DeLong EF (1999) Methane-consuming archaebacteria in marine sediments. Nature 398:802–805

    Article  PubMed  CAS  Google Scholar 

  • Hoehler TM, Alperin MJ, Albert DB, Martens CS (1994) Field and laboratory studies of methane oxidation in an anoxic marine sediment: evidence for a methanogen-sulfate reducer consortium. Global Biochem Cycl 8:451–463

    Article  CAS  Google Scholar 

  • Hoehler TM, Alperin MJ, Albert DB, Martens CS (2001) Apparent minimum free energy requirements for methanogenic Archaea and sulfate-reducing bacteria in an anoxic marine sediment. FEMS Microbiol Ecol 38:33–41

    CAS  Google Scholar 

  • Houwen FP, Dijkema C, Schoenmakers CHH, Stams AJM, Zehnder AJB (1987) 13C-NMR study of propionate degradation by a methanogenic coculture. FEMS Microbiol Lett 41:269–274

    CAS  Google Scholar 

  • Houwen FP, Plokker J, Stams AJM, Zehnder AJB (1990) Enzymatic evidence for involvement of the methylmalonyl-CoA pathway in propionate oxidation by Syntrophobacter wolinii. Arch Microbiol 155:52–55

    Article  CAS  Google Scholar 

  • Jackson BE, McInerney MJ (2002) Anaerobic microbial metabolism can proceed close to thermodynamic limits. Nature 415:454–456

    Article  PubMed  CAS  Google Scholar 

  • Kaden J, Galushko AS, Schink B (2002) Cysteine-mediated electron transfer in syntrophic acetate oxidation by cocultures of Geobacter sulfurreducens and Wolinella succinogenes. Arch Microbiol 178:53–58

    Article  PubMed  CAS  Google Scholar 

  • Koch M, Dolfing J, Wuhrmann K, Zehnder AJB (1983) Pathway of propionate degradation by enriched methanogenic cultures. Appl Environ Microbiol 45:1411–1414

    PubMed  CAS  Google Scholar 

  • Kreikenbohm R, Pfennig N (1985) Anaerobic degradation of 3.4.5-trimethoxybenzoate by a defined mixed culture of Acetobacterium woodii, Pelobacter acidigallici and Desulfobacter postgatei. FEMS Microbiol Ecol 31:29–38

    CAS  Google Scholar 

  • Lovley DR, Coates JD, Blunt-Harris EL, Phillips EJP, Woodward JC (1996) Humic substances as electron acceptors for microbial respiration. Nature 382:445–448

    Article  CAS  Google Scholar 

  • Lovley DR, Fraga JL, Coates JD, Blunt-Harris EL (1999) Humics as an electron donor for anaerobic respiration. Environ Microbiol 1:89–98

    Article  PubMed  CAS  Google Scholar 

  • McInerney MJ (1988) Anaerobic hydrolysis and fermentation of fats and proteins. In: Zehnder AJB (ed) Biology of anaerobic microorganisms. Wiley, New York, pp 373–415

    Google Scholar 

  • McInerney MJ, Bryant MP, Pfennig N (1979) Anaerobic bacterium that degrades fatty acids in syntrophic association with methanogens. Arch Microbiol 122:129–135

    Article  CAS  Google Scholar 

  • Nauhaus K, Boetius A, Krüger M, Widdel F (2002) In vitro demonstration of anaerobic oxidation of methane coupled to sulphate reduction in sediment from a marine gas hydrate area. Environ Microbiol 4:296–305

    Article  PubMed  CAS  Google Scholar 

  • Orphan VJ, Hinrichs K-U, Ussler W, Paull CK, Taylor LT, Sylva SP, Hayes JM, DeLong EF (2001) Comparative analysis of methane-oxidizing archaea and sulfate-reducing bacteria in anoxic marine sediments. Appl Environ Microbiol 67:1922–1934

    Article  PubMed  CAS  Google Scholar 

  • Pancost RD, Damsté JSS, de Lint S, van der Maarel MJEC, Gottschal JC, and the Medinaut Shipboard Scientific Party (2000) Biomarker evidence for widespread anaerobic methane oxidation in Mediterranean sediments by a consortium of methanogenic archaea and bacteria. Appl Environ Microbiol 66:1126–1132

    Article  PubMed  CAS  Google Scholar 

  • Platen H, Schink B (1987) Methanogenic degradation of acetone by an enrichment culture. Arch Microbiol 149:136–141

    Article  PubMed  CAS  Google Scholar 

  • Platen H, Janssen PH, Schink B (1994) Fermentative degradation of acetone by an enrichment culture in membrane-separated culture devices and in cell suspensions. FEMS Microbiol Lett 122:27–32

    Article  PubMed  CAS  Google Scholar 

  • Plugge CM, Dijkema C, Stams AJM (1993) Acetyl-CoA cleavage pathway in a syntrophic propionate oxidizing bacterium growing on fumarate in the absence of methanogens. FEMS Microbiol Lett 110:71–76

    CAS  Google Scholar 

  • Sapra R, Bagramyan K, Adams MW (2003) A simple energy-conserving system: proton reduction coupled to proton translocation. Proc Natl Acad Sci USA 100:7545–7550

    Article  PubMed  CAS  Google Scholar 

  • Schink B (1985) Mechanism and kinetics of succinate and propionate degradation in anoxic freshwater sediments and sewage sludge. J Gen Microbiol 131:643–650

    CAS  Google Scholar 

  • Schink B (1990) Conservation of small amounts of energy in fermenting bacteria. In: Finn RK, Präve P (eds) Biotechnology, Focus 2. Hanser Publ, Munich, pp 63–89

    Google Scholar 

  • Schink B (1991) Syntrophism among prokaryotes. In: Balows A, Trüper HG, Dworkin M, Schleifer KH (eds) The Prokaryotes, 2nd edn, chap 11. Springer, Berlin Heidelberg New York, pp 276–299

    Google Scholar 

  • Schink B (1997) Energetics of syntrophic cooperations in methanogenic degradation. Microbiol Mol Biol Rev 61:262–280

    PubMed  CAS  Google Scholar 

  • Schink B (2002) Synergistic interactions in the microbial world. Antonie van Leeuwenhoek 81:257–261

    Article  PubMed  CAS  Google Scholar 

  • Schink B, Stams AJM (2001) Syntrophism among prokaryotes. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) The Prokaryotes: an evolving electronic resource for the microbiological community, 3rd edn, (latest update release 3.8, December 2001). Springer, Berlin Heidelberg New York

    Google Scholar 

  • Schink B, Thauer RK (1988) Energetics of syntrophic methane formation and the influence of aggregation. In: Lettinga G, Zehnder AJB, Grotenhuis JTC, Hulshoff Pol LW (eds) Granular anaerobic sludge; microbiology and technology. Pudoc, Wageningen, pp 5–17

    Google Scholar 

  • Seelert H, Poetsch A, Dencher NA, Engel A, Stahlberg H, Müller DJ (2000) Proton-powered turbine of a plant motor. Nature 405:418–419

    Article  PubMed  CAS  Google Scholar 

  • Scholten JCM, Conrad R (2000) Energetics of syntrophic propionate oxidation in defined batch and chemostat cocultures. Appl Environ Microbiol 66:2934–2942

    Article  PubMed  CAS  Google Scholar 

  • Stams AJM (1994) Metabolic interactions between anaerobic bacteria in methanogenic environments. Antonie van Leeuwenhoek 66:271–294

    Article  PubMed  CAS  Google Scholar 

  • Stams AJM, Grotenhuis JTC, Zehnder AJB (1989) Structure-function relationship in granular sludge. In Hattori T, Ishida Y, Maruyama Y, Morita RY, Uchida A (eds) Recent advances in microbial ecology. Japan Sci Soc Press Tokyo Japan, pp 440–445

    Google Scholar 

  • Stams AJM, van Dijk JB, Dijkema C, Plugge CM (1993) Growth of syntrophic propionate-oxidizing bacteria with fumarate in the absence of methanogenic bacteria. AEM 59:1114–1119

    CAS  Google Scholar 

  • Stock D, Leslie AGW, Walker JE (1999) Molecular architecture of the rotary motor in ATP synthase. Science 286:1700–1705

    Article  PubMed  CAS  Google Scholar 

  • Thauer RK, Morris JG (1984) Metabolism of chemotrophic anaerobes: old views and new aspects. In: Kelly DP, Carr NG (eds) The microbe 1984, part II. Prokaryotes and eukaryotes. Cambridge Univ Press, Cambridge, pp 123–168

    Google Scholar 

  • Thauer RK, Jungermann K, Decker K (1977) Energy conservation in chemotrophic anaerobic bacteria. Bacteriol Rev 41:100–180

    PubMed  CAS  Google Scholar 

  • Thomsen TR, Finster K, Ramsing NB (2001) Biogeochemical and molecular signatures of anaerobic methane oxidation in a marine sediment. Appl Environ Microbiol 67:1646–1656

    Article  PubMed  CAS  Google Scholar 

  • Wallrabenstein C, Schink B (1994) Evidence of reversed electron transport involved in syntrophic butyrate and benzoate oxidation by Syntrophomonas wolfei and Syntrophus buswellii. Arch Microbiol 162:136–142

    Article  CAS  Google Scholar 

  • Wallrabenstein C, Hauschild E, Schink B (1995) Syntrophobacter pfennigii sp. nov, a new syntrophically propionate-oxidizing anaerobe growing in pure culture with propionate and sulfate. Arch Microbiol 164:346–352

    Article  CAS  Google Scholar 

  • Wildenauer FX, Winter J (1986) Fermentation of isoleucine and arginine by pure and syntrophic cultures of Clostridium sporogenes. FEMS Microbiol Ecol 38:373–379

    CAS  Google Scholar 

  • Winter J, Wolfe RS (1979) Complete degradation of carbohydrate to carbon dioxide and methane by syntrophic cultures of Acetobacterium woodii and Methanosarcina barkeri. Arch Microbiol 121:97–102

    Article  PubMed  CAS  Google Scholar 

  • Winter J, Schindler F, Wildenauer FX (1987) Fermentation of alanine and glycine by pure and syntrophic cultures of Clostridium sporogenes. FEMS Microbiol Ecol 45:153–161

    CAS  Google Scholar 

  • Wofford NQ, Beaty PS, McInerney MJ (1986) Preparation of cell-free extracts and the enzymes involved in fatty acid metabolism in Syntrophomonas wolfei. J Bacteriol 167:179–185

    PubMed  CAS  Google Scholar 

  • Zehnder AJB, Brock TD (1979) Methane formation and methane oxidation by methanogenic bacteria. J Bacteriol 137:420–432

    PubMed  CAS  Google Scholar 

  • Zeikus JG, Winfrey M (1976) Temperature limitation of methanogenesis in aquatic sediments. Appl Environ Microbiol 31:99–107

    PubMed  CAS  Google Scholar 

  • Zinder SH, Koch M (1984) Non-aceticlastic methanogenesis from acetate: acetate oxidation by a thermophilic syntrophic coculture. Arch Microbiol 138:263–272

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schink, B. (2005). Syntrophic Associations in Methanogenic Degradation. In: Overmann, J. (eds) Molecular Basis of Symbiosis. Progress in Molecular and Subcellular Biology, vol 41. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-28221-1_1

Download citation

Publish with us

Policies and ethics