Up-conversions in RE-doped Solids

  • F. Auzel
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 83)


As for other fiuorescence light emitters, rare-earth-doped solids usually follow the well known principle of the Stokes law which simply states that excitation photons are ar higher energy than emitted ones, or in other words that out put photon energy is weak, less than input photon energy. Such a principle is valid of course only when one ion system is considered.

In this chapter, we want to discuss the “unconventional case” where the above principle is not respected in its simple statement. Ir will be shown that RE-doped solids may deviate rather easily from the above principle giving rise, under moderate to strong excitation density, to unconventional emissions of the anti-Stokes types.

Four mechanisms may be involved in up-conversion: Besides (1)multistep excitation due to classical excited state absorption (ESA), there is (2) the very efficient process of up-conversion by sequential energy transfers due to the fact that in many RE-doped solids, ions may be connected energetically by energy transfer diffusion. This last phenomenon has to be distinguished from (3)a third process, namely cooperative up-conversion either between two ions or between a pair of ions anda third one. Though some of their theoretical behaviors are rather analogous to those of up-conversion by energy transfers, their efficiencies are usually much lower because they involve virtual levels which have to be described in a higher order of perturbation. (4)A fourth process, the photon avalanche effect, will also be considered. It is also based on sequential energy transfers but of the down-conversion type (usually called cross-relaxation), whereas the up-conversion step itself is due to ESA.

Various experimental techniques that allow distinctions to be made between the behaviors of these various processes will be analyzed.

Finally, perspectives for applications of these processes in various types of RE-doped solids such as crystals and glasses in bulk or fiber form are given, and recent advances are encompassed and described.

At any rate this chapter is not intended to be a review; its purpose is to be a didactic description of the various processes that may be involved together with selected typical examples that may help in understanding further developments.


Energy Transfer Second Harmonic Generation Excited State Absorption Energy Mismatch Photon Avalanche 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allain, J.-Y., M. Monerie, and H. Poignant. Electron. Lett. 26, 261 (1990a).Google Scholar
  2. Allain, J.-Y., M. Monerie, and H. Poignant. Electron. Lett. 26, 166 (1990).ADSGoogle Scholar
  3. Auzel F., and P. Goldner. Opt. Mat. 16, 93 (2001).Google Scholar
  4. Auzel, F., Y. H. Chen. J. Lumin. 65, 45 (1995a).Google Scholar
  5. Auzel, F., Y. H. Chen. J. Non-Crystal. Sol. 184, 57 (1995b).ADSGoogle Scholar
  6. Auzel, F., D. Meichenin, F. Pellé, and P. Goldner. Opt. Mat. 4, 35 (1994).Google Scholar
  7. Auzel, F., Y. H. Chen, and D. Meichenin J. Lumin. 60/61, 692 (1994).Google Scholar
  8. Auzel, F. In: Defects in Insulating Materials (World Scientific, Singapore, 1993), p.43.Google Scholar
  9. Auzel, F., J. Lumin. 45, 341 (1990).Google Scholar
  10. Auzel, F., S. Hubert, and D. Meichenin. Appl. Phys. Lett. 54, 681 (1989).ADSGoogle Scholar
  11. Auzel, F., S. Hubert, and D. Meichenin. Europhys. Lett. 7, 459 (1988).ADSGoogle Scholar
  12. Auzel, F., In: Rare-Earth Spectroscopy (World Scientific, Singapore, 1985), p.502.Google Scholar
  13. Auzel, F., P. A. Santa-Cruz, and G. F. de Sa. Rev. Phys. Appl. (France) 20, 273 (1985).Google Scholar
  14. Auzel, F. J. Lumin. 31/32, 759 (1984).Google Scholar
  15. Auzel, F. In: Radiationless Processes, eds. B. DiBartolo and V. Goldberg (Plenum Publishing Co., New York, 1980), p. 213.Google Scholar
  16. Auzel, F., Mat. Res. Bull. 14, 223 (1979).ADSGoogle Scholar
  17. Auzel F. Phys. Rev. B 13, 2809 (1976).ADSGoogle Scholar
  18. Auzel F., D. Pecile. J. Lumin. 11, 321 (1976).Google Scholar
  19. Auzel, F., C. R. Acad. Sci. (Paris) 262, 1016 (1966), and 263, 819 (1966).Google Scholar
  20. Auzel F., D. Pecile. J. Lumin. 11, 321 (1976).Google Scholar
  21. Auzel F., D. Pecile. De l’influence de la matrice sur l’addition de photons par transferts d’energie (APTE) dans les couples Yb3+-Er3+ et Yb3+-Tm3+ (Thèse, Université P. et M. Curie, Paris, 1976).Google Scholar
  22. Auzel, F., Pecile, and D. Morin. J. Electrochem. Soc. 122, 101 (1975).Google Scholar
  23. Auzel, F. Proc. IEEE, 61, 758 (1973).Google Scholar
  24. Auzel F., and D. Pecile. J. Lumin. 8, 32 (1973).Google Scholar
  25. Auzel F., D. Pecile, and C. R. Acad. Sc. Paris B bd155, 277 (1973).Google Scholar
  26. Auzel F., and O. Deuschbein. Z. Namrfosch 24a, 1562 (1969).ADSGoogle Scholar
  27. Auzel, F. Ann. Telecom. (France) 24, 363 (1969).Google Scholar
  28. Auzel, F. French Patent No1.532. 609 (1968).Google Scholar
  29. Auzel, F. Document de Travail “PCM. 171”. Utilisation du transfert d’energie entre ions de terres-rares pour leur application eventuelles aux compteurs quantiques; addition de deux et trois photons, CNET, Issy-les Moulineaux (France), 13 Mars(1967), unpublished.Google Scholar
  30. Axe, J. D., P. F. Weller. J. Chem. Phys. 40, 3066 (1964).ADSGoogle Scholar
  31. Bagdasarov, K. S., V. I. Zhekov, V. A. Lobachev, J. M. Murina, and A. M. Prokhorov. Sov. J. Quantum Electron. 13, 262 (1983).ADSGoogle Scholar
  32. Basiev, T. T., M. E. Doroshenko, and V. V. Osiko. JETP Letters 71, 8 (2000).ADSGoogle Scholar
  33. Blätte, M., H. G. Danielmeyer, and R. Verich. Appl. Phys. (German.) 1, 275 (1973).ADSGoogle Scholar
  34. Blixt, P., J. Nilsson, J. Carlknäs, and B. Jaskorzynska. IEEE Trans. Photon. Techn. 3, 996 (1991).ADSGoogle Scholar
  35. Bloe mbergen. N. Phy S. Rev. Lett. 2, 84(1959).ADSGoogle Scholar
  36. Bonifacio R., L. A. Lugiato. In: Dissipative Systems in Quatum Optics (Springer-Verlag, Berlin, 1982), p.2.Google Scholar
  37. Bonneville R., and F. Auzel. Opt. Commun. 18, 51 (1976).ADSGoogle Scholar
  38. Brede, R., E. Heumann, J. Koltke, T. Danger, and G. Huber. Appl. Phys. Lett. 63, 2030 (1993).ADSGoogle Scholar
  39. Brenier, A., L. C. Courrol, C. Pédrini, C. Madej, G. Boulon. J. Lumin. 58, 285 (1994a).Google Scholar
  40. Brenier, A., L. C. Courrol, C. Pédrini, C. Madej, G. Boulon. Opt. Mat. 3, 25 (1994b).Google Scholar
  41. Brenier, A., G. Boulon, C. Madej, C. Pédrini, and L. Lou. J. Lumin. 54, 271 (1993).Google Scholar
  42. Breteau, J. M., J. L. Ayral, F. Micheron, and F. Auzel. J. Appl. Phys. 67, 1102 (1990)ADSGoogle Scholar
  43. Bril, A., J. L. Sommerdijk, and A. Jager. J. Electrochem. Soc. 121, 660 (1974).Google Scholar
  44. Brown M. R., H. Thomas, J. M. Williams, and R. J. Woodwards. J. Chem. Phys. 51, 3321 (1969).ADSGoogle Scholar
  45. Case, W. E., M. E. Koch, and A. W. Kueny. J. Lumin. 45, 351 (1990).Google Scholar
  46. Chamaro M. A., and R. Cases. J. Lumin. 46, 59 (1990).Google Scholar
  47. Chen, Y. H., F. Auzel. J. Phys. D: Appl. Phys. 28, 207 (1995).ADSGoogle Scholar
  48. Chen, Y. H., F. Auzel. Electron. Lett. 30, 1602 (1994a).Google Scholar
  49. Chen, Y. H., F. Auzel. Electron. Letters 30, 323 (1994b).Google Scholar
  50. Chivian, J. S., W. E. Case, and D. D. Eden. Appl. Phys. Lett. 35, 124 (1979).ADSGoogle Scholar
  51. Cockroft, N. J., G. D. Jones, and R. W. G. Syme. J. Lumin. 43, 275 (1989).Google Scholar
  52. Danielmeyer H. G., M. Blätte. Appl. Phys. (German.) 1, 269 (1973).ADSGoogle Scholar
  53. de Leeuward, D. M., and G. W. ’t Hooft. J. Lumin. 28, 275 (1983).Google Scholar
  54. Delevaque, E., T. Georges, M. Monerie, P. Lamouler, and J. F. Bayon. IEEE Photon. Techn. Lett. 5, 73 (1993).ADSGoogle Scholar
  55. Deutschbein O., F. Auzel. In: Quantum Electronics, eds. P. Grivet, and N. Bloembergen (Dunod, Paris and Columbia Univ. Press, NYC, 1963), p.85.Google Scholar
  56. Dexter, D. L. J. Chem. Phys. 21. 836 (1953).ADSGoogle Scholar
  57. Downing, E., L. Hesselink, J. Ralston, and R. Macfarlane. Science 273, 1185 (1996).ADSGoogle Scholar
  58. Dyson, J. M., S. M. Jaffe, H. Eilers, M. L. Jones, W. M. Dennis, and W. M. Yen. J. Lumin. 60/61, 668 (1994).Google Scholar
  59. Förster, T. Ann. Physik 2, 55 (1948).zbMATHGoogle Scholar
  60. Garlick, G. F. J. Contemp. Phys. 17, 127 (1976).ADSGoogle Scholar
  61. Goldner, P., F. Pellé, and F. Auzel. J. Lumin. 72/74, 901 (1997).Google Scholar
  62. Goldner, P., F. Pellé, D. Meichenin, and F. Auzel. J. Lumin. 71, 137 (1997).Google Scholar
  63. Goldner, P., and F. Pellé. Opt. Mat. 5, 239 (1995).Google Scholar
  64. Gosnell, T. R. Selected papers on Up-conversion Lasers, SPIE Milestone Series MS 161 (SPIE Optical Engineering Press, Bellingham, Washington, 2000).Google Scholar
  65. Grant, W. J. C. Phys. Rev. 109,648 (1958).Google Scholar
  66. Grubb, S. G., K. W. Bennett, R. S. Cannon, and W. F. Humer. Electron. Lett. 28, 1243 (1992).ADSGoogle Scholar
  67. Goldner, P., M. Fesquet, and F. Auzel. J. Opt. Soc. Am. B 15, 2688 (1998).ADSGoogle Scholar
  68. Gomes, A. S. L., G. S. Maciel, R. Araujo, L. H. Acioli, and C. B. de Araujo. Opt. Comm. 103, 361 (1993).ADSGoogle Scholar
  69. Guy, S. L. Avalanche de photons; application á 1’ ion Tm3+ dans differents matériaux, Thèse, Université Claude-Bernard-Lyon I, 14 Décembre(1995).Google Scholar
  70. Heber, J. Z. Phys. B-Condensed Matter 68, 115 (1987).ADSGoogle Scholar
  71. Hebert, T., R. Wannemacher, W. Lenth, and R. M. Macfarlane. Appl. Phys. Lett. 57, 1727 (1990).ADSGoogle Scholar
  72. Hehlen, M. P., H. U. Güdel, Q. Shu, S. C. Rand. J. Chem. Phys. 104, 1232 (1996).ADSGoogle Scholar
  73. Hehlen, M. P., H. U. Güdel, Q. Shu, S. Rai, S. C. Rand. Phys. Rev. Lett. 73, 1103 (1994).ADSGoogle Scholar
  74. Heine, F., E. Heumann, T. Danger, T. Schweizer, and G. Huber. Appl. Phys. Lett. 65, 383 (1994).ADSGoogle Scholar
  75. Henderson, B., G. F. Imbusch. Optical Spectroscopy of Inorganic Solids (Clarendon Press, Oxford, 1989), p.445.Google Scholar
  76. Hewes R. A., and J. F. Sarver. Phys. Rev. 182, 427 (1969).ADSGoogle Scholar
  77. Hubert, S., Chong Li Song, M. Genet, and F. Auzel. J. Solid State Chem. 61, 252 (1986).ADSGoogle Scholar
  78. Hubert, S., D. Meichenin, B. Zhou, and F. Auzel. J. Lumin. 50, 7 (1991).Google Scholar
  79. Inokuti M., and F. Hirayama. J. Chem. Phys. 43, 1978 (1965).ADSGoogle Scholar
  80. Joubert, M. F., S. Guy, C. Linares, B. Jacquier, and J. L. Adam. J. of Non-crystal. Sol. 184, 98 (1995).ADSGoogle Scholar
  81. Joubert, M. F., S. Guy, and B. Jacquier. Phys. Rev. B 48,10,031 (1993).Google Scholar
  82. Johnson, L. F., H. J. Guggenheim. Appl. Phys. Lett. 19, 44 (1971).ADSGoogle Scholar
  83. Kermaoui, A., G. Özen, P. Goldner, J. P. Denis, and F. Pellé. J. Phys. Chem. Solids 55, 677 (1994).ADSGoogle Scholar
  84. Koch, M. E., A. W. Kueny, and W. E. Case. Appl. Phys. Lett. 56, 1083 (1990).ADSGoogle Scholar
  85. Komukai, T., T. Yamamoto, T. Sugawa, and Y. Miyajima. Electron. Lett. 28, 830 (1992).Google Scholar
  86. Krasutsky, N. J. J. Appl. Phys. 54, 1261 (1983).ADSGoogle Scholar
  87. Kueny, A. W., W. E. Case, and M. E. Koch. J. Opt. Soc. Am. B 10, 1834 (1993).ADSGoogle Scholar
  88. Kük, S., A. Diening, E. Heumann, E. Mix, T. Sandrock, K. Sebald, and G. Huber. J. Alloys and Compounds 300/301, 65 (2000).Google Scholar
  89. Kurochkin. A. V., O. Ya. Manshisrov, D. K. Sattarov, V. B. Smirnov, and O. V. Tsyumpa. Svetotekhnika 5, 4 (1992) (Tranlated by Allerton Press Inc., 1993).Google Scholar
  90. Kurokin, A. V., L. M. Mailibaeva, O. Ya. Manashirov, D. K. Sattarov, and V. B. Smirnov. Part 1, Opt. Spectrosc. 73, 442 (1992); and Part 2, ibidem, 447.Google Scholar
  91. Kushida, T. J. Phys. Soc. Jpn. 34, 1318 (1973).ADSGoogle Scholar
  92. Lee, L. S., S. C. Rand, and A. L. Schawlow. Phys. Rev. B 29, 6901 (1984).ADSGoogle Scholar
  93. Lenth, W., and R. M. Macfarlane. J. Lumin. 45, 346 (1990).Google Scholar
  94. Livanova, L. D., I. G. Saitkulov, and A. L. Stolov. Sov. Phys. Solid State 11, 750 (1969).Google Scholar
  95. Leverenz, H. W. Introduction to Luminescence of Solids (Dover Publications, NYC, 1968).Google Scholar
  96. Macfarlane, R. M., F. Tong, A.J. Silversmith, and W. Lenth. Appl. Phys. Lett. 52, 1300 (1988).ADSGoogle Scholar
  97. Maurice, E., G. Monnom, B. Dussardier, and D. B. Ostrowsky. Optics Lett. 20, 2487 (1995).ADSGoogle Scholar
  98. McGonigle, A. J. S., S. Girard, D. W. Coutts, and R. Moncorgé. Electon. Lett. 35, 1640 (1999).Google Scholar
  99. Mears, R. J., L. Reekie, S. B. Poole, and D. N. Payne. Electron. Lett. 22, 159 (1986).Google Scholar
  100. Milne, E. A. Lond. Math. Soc. 1, 1 (1926).zbMATHMathSciNetGoogle Scholar
  101. Mita, Y., H. Yamamoto, K. Katayanagi, and S. Shionoya. J. Appl. Phys. 378, 1219 (1995).ADSGoogle Scholar
  102. Mita, Y., E. Nagasawa. NEC Research and Development, 33, 61 (1974).Google Scholar
  103. Miyakawa, T., Dexter, D.L. Phys. Rev. B 1, 70 (1971).ADSGoogle Scholar
  104. Möbert, P.E.-A., E. Heumann, and G. Huber. Opt. Lett. 22, 1412 (1997).ADSGoogle Scholar
  105. Monerie, M., J.-Y. Allain, H. Poignant, and F. Auzel. Fluorescence, Up-conversion, and lasing in Er-doped quasi-single mode fluorozirconate fibres, In: Proceedings of ECOC’89 (Gothenburg, Sweden, 1989), paper TuB12-6.Google Scholar
  106. Nakazawa E., S. Shionoya. Phys. Rev. Lett. 25, 1710 (1970).ADSGoogle Scholar
  107. Ni, H., S. C. Rand. Opt. Lett. 17, 1222 (1992).ADSGoogle Scholar
  108. Nicolas, S., E. Descroix, Y. Guyot, M.-F. Joubert, R. Yu. Abdulsabirov, S. L. Korableva, A. K. Naumov, and V. V. Semashko. Optical Materials, Fev, 2001.Google Scholar
  109. Oetliker, U., M. J. Riley, P. S. May, and H. U. Güdel. J. Lumin. 53, 553 (1992).Google Scholar
  110. Ohwaki J., Y. Wang. Appl. Phys. Lett. 65, 129 (1994a).ADSGoogle Scholar
  111. Ohwaki J., Y. Wang. Jpn. J. Appl. Phys. 33, L334 (1994b).ADSGoogle Scholar
  112. Orbach, R. In: Optical Properties of Ions in Solids, ed. B. DiBartolo (Plenum Press, New York, 1975), p.445.Google Scholar
  113. Ostermayer, F. W., Jr. and L. G. Van Uitert. Phys. Rev. B 1, 4208 (1970).ADSGoogle Scholar
  114. Ovsyankin, V. V. In: Spectroscopy of Solids Containing Rare-Earth Ions, ed. A. A. Kaplyanskii R. M. MacFarlane (North Holland, Amsterdam, 1987), p.405.Google Scholar
  115. Ovsyankin V. V., and A. A. Fedorov. Opt. Spectrosc. 50, 565 (1981).ADSGoogle Scholar
  116. Ovsyankin V. V., and P. P. Feofilov. Sov. Phys., JETP Lett. 4, 317 (1966).ADSGoogle Scholar
  117. Page, R. H., K. I. Schaffers, P. A. Waide, J. B. Tassano, S. A. Payne, W. F. Krupke, W. K. Bischel. J. Opt. Soc. Am. B 15, 996 (1998).ADSGoogle Scholar
  118. Pelletier-Allard, N., R. Pelletier. Phys. Rev. B 26, 4425 (1987).ADSGoogle Scholar
  119. “Photo-Turkey-l” (Sumita Optical Glass Inc., 4-7-25 Harigaya, Urawa-City, Saitama, Japan, 1994).Google Scholar
  120. Pollack, S. A., D. B. Chang. J. Appl. Phys. 64, 2885 (1988).ADSGoogle Scholar
  121. Pouradier, J. F., F. Auzel. J. Phys. (France) 39, 825 (1978).Google Scholar
  122. Quimby, R. S., M. G. Drexhage, and M. J. Suscavage. Electron. Lett. 23, 32 (1987).Google Scholar
  123. Rand, S. C., L. S. Lee, and A. L. Schawlow. Opt. Comm. 42, 179 (1982).ADSGoogle Scholar
  124. Rois Leite J. R., and C. B. de Araujo. Chem. Phys. Lett. 73, 71 (1980).ADSGoogle Scholar
  125. Rubin, J., A. Brenier, R. Moncorgé, and C. Pédrini. J. Lumin. 36, 39 (1986).Google Scholar
  126. Sandrock, T., H. Scheife, E. Heuman, and G. Huber. Opt. Lett. 22, 808 (1997).ADSGoogle Scholar
  127. Schaudel, B., P. Goldner, M. Prassas, and F. Auzel. J. Alloys and Compounds 300/301, 443 (2000).Google Scholar
  128. Scheps, R. IEEE QE31, 309 (1995).Google Scholar
  129. Scheps, R. IEEE QE30, 2914 (1994).Google Scholar
  130. Smart, R. G., D. C. Hanna, A. C. Tropper, S. T. Davey, S. F. Carter, and D. Szebesta. Electron. Lett. 27, 1308 (1991).ADSGoogle Scholar
  131. Smith, D. J. Lumin. 23, 209 (1981).Google Scholar
  132. Snitzer, E., and R. Woocock. Appl. Phys. Lett. 6, 5 (1965).ADSGoogle Scholar
  133. Stavola M., and D. L. Dexter. Phys. Rev. B 20, 1867 (1979).ADSGoogle Scholar
  134. “Tokin IR Catcher” (Tokin America, 155 Nicholson Lane, San Jose, Calif. 95134, USA, 1987).Google Scholar
  135. Tong, F., W. P. Risk, R. M. Macfarlane, and W. Lenth. Electron. lett. 25, 1389 (1989).ADSGoogle Scholar
  136. Tverjanovich, A., Ya. G. Grioriev, S. V. Degtyarev, A. V. Kurochkin, A. A. Man’ shina, and Yu. S. Tver’yanovich. J. Non-Cryst. Sol. 286,89(2001).ADSGoogle Scholar
  137. Van der Weg W. F., M. W. Van Tol. Appl. Phys. lett. 38, 705 (1981).ADSGoogle Scholar
  138. Van Uitert L. G., L. F. Johnson. J. Chem. Phys. 44, 3514 (1966).ADSGoogle Scholar
  139. Varsanyi, F., D. L. Wood, and A. L. Schawlow. Phys. Rev. Lett. 3, 544 (1959).ADSGoogle Scholar
  140. Vial, J. C., R. Buisson, F. Madeore, and M. Poirier. J. Phys. (France) 40, 913 (1979).Google Scholar
  141. Wang Y., and J. Ohwaki. Appl. Phys. Lett. 63, 3268 (1993a).ADSGoogle Scholar
  142. Wang Y., and J. Ohwaki. J. Appl. Phys. 74, 1272 (1993b).ADSGoogle Scholar
  143. Weber, M. J. Phys. Rev. B 4, 2932 (1971).ADSGoogle Scholar
  144. Wegh, R. T., H. Donker, K. D. Oskam, and A. Meijerink. Science 283, 663 (1999).ADSGoogle Scholar
  145. Whitley, T. J., C. A. Millar, R. Wyatt, M. C. Brierley, and D. Szebesta. Electron. Lett. 27, 1785 (1991).ADSGoogle Scholar
  146. Wright, J. In: Radiationless Processes in Molecules and Condensed Phases, Topics in Applied Physics 15, ed. F. K. Fong (Springer, NYC, 1976), p. 239.Google Scholar
  147. Yamada, N., S. Shionoya, and T. Kushida. J. Phys. Soc. Jpn. 32, 1577 (1972).ADSGoogle Scholar
  148. Yeh, D. C., W. A. Sibley, and M. J. Suscavage. J. Appl. Phys. 63, 4644 (1988).ADSGoogle Scholar
  149. Yokota M., and O. Tanimoto. J. Phys. Soc. Jpn. 22, 779 (1967).ADSGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • F. Auzel

There are no affiliations available

Personalised recommendations