Radiofrequency Ablation: The Percutaneous Approach

  • Philippe L. Pereira
  • Andreas Boss
  • Stephen Clasen
  • Cecile Gouttefangeas
  • Diethard Schmidt
  • Claus D. Claussen
Part of the Recent Results in Cancer Research book series (RECENTCANCER, volume 167)

3.8 Conclusion

The aim of image-guided RF ablation for tumor therapy lies in a complete destruction of the tumor tissue with a surrounding margin of nontumorous tissue. This means the development of larger coagulation volume, which can be achieved through a controlled energy deposition, and sufficient imaging allowing ideal targeting of the tumor combined with monitoring of the ablation course. MR imaging is able to provide all requisites for image-guided ablation in a reproducible manner. The ever-increasing technological development of the RF devices will ensure that the procedure will improve in the future, resulting in widespread use of RF in routine clinical practice. RF ablation has shown in various phase II and phase III studies that a safe and effective destruction of tumor tissue is possible, and that patients may benefit from image-guided RF therapy. A further advantage of this minimally invasive therapy lies in the low complication rate of RF ablation. The most suitable tumor pattern forimage guided RF ablation must now be defined, as well as the therapies that can be systematically combined with RF, and finally how RF can be integrated into current oncological concepts.


Radiofrequency Ablation Ablation Time Coagulation Necrosis Neutral Electrode Radiofrequency Tissue Ablation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gazelle GS, Goldberg SN, Solbiati L, Livraghi T (2002) Tumor ablation with radio-frequency energy. Radiology 217:633–646Google Scholar
  2. 2.
    Wood BJ, Ramkaransingh JR, Fojo T, Walther MM, Libutti SK (2002) Percutaneous tumor ablation with radiofrequency. Cancer 94:443–451PubMedCrossRefGoogle Scholar
  3. 3.
    Sweet WH, Mark VH, Hamlin H (1960) Radiofrequency lesions in the central nervous system of man and cat, including case reports of eight bulbar pain-tract interruptions. J Neurosurg 17:213–225PubMedGoogle Scholar
  4. 4.
    Solbiati L, Goldberg SN, Ierace T, Livraghi T, Meloni F, Dellanoce M, Sironi S, Gazelle GS (1997) Hepatic metastases: percutaneous radiofrequency ablation with cooled-tip electrodes. Radiology 205:367–373PubMedGoogle Scholar
  5. 5.
    Rossi S, Di Stasi M, Buscarini E, Quaretti P, Garbagnati F, Squassante L, Paties CT, Silverman PE, Buscarini L (1996) Percutaneous RF interstitial thermal ablation in the treatment of hepatic cancer. Am J Roentgenol 169:759–769Google Scholar
  6. 6.
    Livraghi T, Goldberg SN, Lazzaroni S et al. (1999) Small hepatocellular carcinoma: treatment with radio-frequency ablation versus ethanol injection. Radiology 210:655–661PubMedGoogle Scholar
  7. 7.
    Lencioni R, Crocetti L (2005) A critical appraisal of the literature on local ablative therapies for hepatocellular carcinoma. Clin Liver Dis 9:301–314PubMedCrossRefGoogle Scholar
  8. 8.
    Livraghi T, Solbiati L, Meloni F, Ierace T, Goldberg SN, Gazelle GS (2003) Percutaneous radiofrequency ablation of liver metastases in potential candidates for resection: the test of time approach. Cancer 12:3027–3035CrossRefGoogle Scholar
  9. 9.
    Tateishi R, Shiina S, Teratani T et al. (2005) Percutaneous radiofrequency ablation for hepatocellular carcinoma: an analysis of 1000 cases. Cancer 103:1201–1209PubMedCrossRefGoogle Scholar
  10. 10.
    Vogl T, Mack M, Straub R, Zangos S, Woita-schek, Eichler K, Engelmann K (2001) Thermische Ablation von Lebermetastasen. Der Radiologe 41:49–55PubMedCrossRefGoogle Scholar
  11. 11.
    Shibata T, Iimuro Y, Yamamoto Y, Maetoni Y, Ametani F, Itoh K, Konishi J (2002) Small hepatocellular carcinoma: comparison of radio-frequency ablation and percutaneous microwave coagulation therapy. Radiology 223:331–337PubMedGoogle Scholar
  12. 12.
    Cline HE, Hynynen K, Watkins RD, Adams WJ, Schenck JF, Ettinger RH, Vetro JP, Jolesz FA (1995) Focussed US system for MR imagingguided tumor ablation. Radiology 194:31–737Google Scholar
  13. 13.
    Onik GM, Atkinson D, Zemel R, Weaver ML (1993) Cryosurgery of liver cancer. Sem Surg Oncol 9:309–317Google Scholar
  14. 14.
    Silverman SG, Tuncali K, Adams DF, van Sonnenberg E, Zou KH, Kacher DF, Morrison PR, Jolesz FA (2000) MR imaging-guided percutaneous cryotherapy of liver tumors: initial experience. Radiology 217:657–664PubMedGoogle Scholar
  15. 15.
    Rossi S, Buscarini E, Garbagnati F, DiStasi M, Quaretti P, Rago M, Zangrandi A, Andreola S, Silverman D, Buscarini L (1998) Percutaneous treatment of small hepatic tumors by an expandable RF needle electrode. Am J Roentgenol 170:1015–1022Google Scholar
  16. 16.
    Curley SA, Izzo F, Delrio P, Ellis CM, Grandi J, Vallone P, Fiore F, Pignata S, Daniele B, Cremona F (1999) Radiofrequency ablation of unresectable primary and metastatic hepatic malignancies: results in 123 patients. Ann Surg 1230:1–8CrossRefGoogle Scholar
  17. 17.
    Solbiati L, Livraghi T, Goldberg SN, Ierace T, Meloni F, Dellanoce M, Cova L, Halpern E, Gazelle GS (2001) Percutaneous radio-frequency ablation of hepatic metastases from colorectal cancer: long-term results in 117 patients. Radiology 221:159–166PubMedGoogle Scholar
  18. 18.
    D’Arsonval MA (1891) Action physiologique des courants alternatifs. CR Soc Biol 43:283–286Google Scholar
  19. 19.
    Organ LW (1976) Electrophysiologic principles of radiofrequency lesion making. Appl Neurophysiol 39:69–76PubMedGoogle Scholar
  20. 20.
    McGahan JP, Brock JM, Tesluk H, Gu WZ, Schneider P, Browning PD (1992) Hepatic ablation with use of radiofrequency electrocautery in the animal model. J Vasc Interv Radiol 3:291–297PubMedGoogle Scholar
  21. 21.
    Zervas NT, Kuwayama A (1972) Pathological characteristics of experimental thermal lesions: comparison of induction heating and radiofrequency electrocoagulation. J Neurosurg 37:418–422PubMedCrossRefGoogle Scholar
  22. 22.
    Goldberg SN, Gazelle GS, Dawson SL, Rittman WJ, Mueller PR, Rosenthal DI (1995) Tissue ablation with radiofrequency: effect of probe size, gauge, duration and temperature on lesion volume. Acad Radiol 2:399–404PubMedCrossRefGoogle Scholar
  23. 23.
    Trübenbach J, Pereira PL, Schick F, Claussen CD, Huppert PE (1998) MRI-guided radiofrequency ablation of liver tumors: a valuable and minimally-invasive therapeutic option. Min Invas Ther 6:533–539Google Scholar
  24. 24.
    Goldberg SN, Gazelle GS, Compton CC, Mueller PR, Tanabe KK (2000) Treatment of intrahepatic malignancy with radiofrequency ablation: radiologic-pathologic correlation. Cancer 88:2452–2463PubMedCrossRefGoogle Scholar
  25. 25.
    Pennes HH (1948) Analysis of tissue and arterial blood temperatures in the resting human forearm. J Appl Physiol 1:93–122PubMedGoogle Scholar
  26. 26.
    Hill RP, Hunt JW (1987) Hyperthermia. In: Tannock IF, Hill RP (eds) The basic science of oncology. Pergamon New York, pp 337–357Google Scholar
  27. 27.
    Seegenschmidt MH, Brady LW, Sauer R (1990) Interstitial thermoradiotherapy: review on technical and clinical aspects. Am J Clin Oncol 13:352–363CrossRefGoogle Scholar
  28. 28.
    Larson TR, Bostwick DG, Corcia A (1996) Temperature-correlated histopathologic changes following microwave thermoablation of obstructive tissue in patients with benign prostatic hyperplasia. Urology 47:463–469PubMedCrossRefGoogle Scholar
  29. 29.
    Thomsen S (1991) Pathologic analysis of photothermal and photomechanical effects of laser-tissue interactions. Photochem Photobiol 53:825–835PubMedGoogle Scholar
  30. 30.
    Goldberg SN, Solbiati L, Hahn PF, Cosman E, Conrad JE, Fogle R, Gazelle GS (1998) Large-volume tissue ablation with radiofrequency by using a clustered, internally-cooled electrode technique: laboratory and clinical experience in liver metastases. Radiology 209:371–379PubMedGoogle Scholar
  31. 31.
    Trübenbach J, Huppert PE, Pereira PL, Ruck P, Claussen CD (1997) Radiofrequenzablation der Leber in vitro: Effektivitätserhöhung mittels perfundierter Sonden. Fortschr Röntgenstr 167:633–637Google Scholar
  32. 32.
    Goldberg SN, Gazelle GS (2001) Radiofrequency tissue ablation: physical principles and techniques for increasing coagulation necrosis. Hepatogastroenterol 48:359–367Google Scholar
  33. 33.
    Goldberg SN, Gazelle GS, Dawson SL, Mueller PR, Rittman WJ, Rosenthal DI (1995) Radiofrequency tissue ablation using multiprobe arrays: greater tissue destruction than multiple probes operating alone. Acad Radiol 2:670–674PubMedGoogle Scholar
  34. 34.
    LeVeen RF (1997) Laser hyperthermia and radiofrequency ablation of hepatic lesions. Semin Int Radiology 14:313–324Google Scholar
  35. 35.
    Goldberg SN, Gazelle GS, Solbiati L, Rittman WJ, Mueller PR (1996) Radiofrequency tissue ablation: increased lesion diameter with a perfusion electrode. Acad Radiol 3:636–644PubMedCrossRefGoogle Scholar
  36. 36.
    Lorentzen T (1996) A cooled needle electrode for radiofrequency tissue ablation: Thermodynamic aspects of improved performance compared with conventional needle design. Acad Radiol 13:556–563CrossRefGoogle Scholar
  37. 37.
    Schmidt D, Trübenbach J, König CW, Putzhammer H, Duda SH, Claussen CD, Pereira PL (2003) Automated saline-enhanced radiofrequency thermal ablation: initial results in ex-vivo liver. Am J Roentgenol 180:163–165Google Scholar
  38. 38.
    Kettenbach J, Peer K, Grurin M, Berger J, Hupfl M, Lammer J (2001) MRI-guided percutaneous radiofrequency ablation of neoplasms using a MRcompatible RF-system: first technical and clinical experiences (abstract). Radiology 221:626Google Scholar
  39. 39.
    Tacke J, Mahnken A, Roggan A, Günther RW (2004) Multipolar radiofrequency ablation: first clinical results. Fortschr Röntgenstr 176:324–329CrossRefGoogle Scholar
  40. 40.
    McGahan JP, Wei-Zhong G, Brock JM, Tesluk H, Jones CD (1996) Hepatic ablation using bipolar radiofrequency electrocautery. Acad Radiol 3:418–422PubMedCrossRefGoogle Scholar
  41. 41.
    Burdio F, Guemes A, Burdio JM, Navarro A, Sousa R, Castiella T, Cruz I, Burzaco O, Lozano R (2003) Bipolar saline-enhanced electrode for radiofrequency ablation: results of experimental study of in vivo porcine liver. Radiology 229:447–456PubMedGoogle Scholar
  42. 42.
    Goldberg SN, Stein M, Gazelle GS, Sheiman RG, Kruskal JB, Clouse ME (1999) Percutaneous radiofrequency tissue ablation: optimization of pulsed-RF technique to increase coagulation necrosis. J Vasc Interv Radiol 10:907–916PubMedCrossRefGoogle Scholar
  43. 43.
    Merkle E, Goldberg SN, Boll DT, Shankaranarayanan A, Boaz T, Jacobs GH, Wendt M, Lewin JS (1999) Effect of superparamagnetic MR contrast agents on radiofrequency-induced temperature distribution: in-vitro measurements in polyacrylamide phantoms and in-vivo results in a rabbit liver model. Radiology 212:459–466PubMedGoogle Scholar
  44. 44.
    Melvyn Lobo S, Afzal KS, Ahmed M, Kruskal JB, Lenkinski RE, Goldberg SN (2004) Radiofrequency ablation: modelling the enhanced temperature response to adjuvant NaCl pre-treatment. Radiology 230:175–182PubMedGoogle Scholar
  45. 45.
    Goldberg SN, Solbiati L, Halpern EF, Gazelle GS (2000) Variables affecting proper system grounding for radiofrequency ablation in animal model. J Vasc Interv Radiol 11:1069–1075PubMedGoogle Scholar
  46. 46.
    Debaere T, Denys A, Wood BJ, Lassau N, Kardache M, Vilgrain V, Menu Y, Roche A (2001) Radiofrequency liver ablation: experimental comparative study of water-cooled versus expandable systems. Am J Roentgenol 176:187–192Google Scholar
  47. 47.
    Goldberg SN, Hahn PF, Tanabe KK, Mueller PR, Schima W, Athanasoutis CA, Compton CC, Solbiati L, Gazelle GS (1998) Percutaneous radiofrequency tissue ablation: does perfusion-mediated tissue cooling limit coagulation necrosis? J Vasc Interv Radiol 9:101–111PubMedCrossRefGoogle Scholar
  48. 48.
    Goldberg SN, Hahn PF, Halpern E, Fogle R, Gazelle GS (1998) Radiofrequency tissue ablation: effect of pharmacologic modulation of blood flow on coagulation diameter. Radiology 209:761–769PubMedGoogle Scholar
  49. 49.
    Buscarini L, Buscarini E, diStasi M, Quaretti P, Zangrandi A (1999) Percutaneous radiofrequency thermal ablation combined with transcatheter arterial embolization in the treatment of large hepatocellular carcinoma. Ultraschall Med 20:47–53PubMedCrossRefGoogle Scholar
  50. 50.
    Akamatsu M, Yoshida H, Obi S, Sato S, Koike Y, Fujishima T, Tateishi R, Imamura M, Hamamura K, Teratani T, Shina S, Ishikawa T, Omata M (2004) Evaluation of transcatheter arterial embolization prior to percutaneous tumor ablation in patients with hepatocellular carcinoma: a randomized controlled trial. Liver Int 24:625–629PubMedCrossRefGoogle Scholar
  51. 51.
    Goldberg SN, Saldinger PF, Gazelle GS, Huertas JL, Stuart KE, Jacobs T, Kruskal JB (2001) Percutaneous tumor ablation: increased coagulation necrosis with combined radiofrequency and percutaneous doxorubicin injection. Radiology 220:420–427PubMedGoogle Scholar
  52. 52.
    Itoh T, Orba Y, Takei H, Ishida Y, Saitoh M, Nakamura H, Meguro T, Horita S, Fujita M, Nagashima K (2002) Immunohistochemical detection of hepatocellular carcinoma in the setting of ongoing necrosis after radiofrequency ablation. Mod Pathol 15:110–115PubMedCrossRefGoogle Scholar
  53. 53.
    Sauter B, Albert ML, Fransisco L, Larsson M, Somersan S, Bhardwaj N (2000) Consequences of cell death: exposure to necrotic tumor cells, but not primary tissue cells or apoptotic cells, induces maturation of immunostimulatory dendritic cells. J Exp Med 191:423–434PubMedCrossRefGoogle Scholar
  54. 54.
    Basu S, Binder RJ, Suto R, Anderson KM, Srivastava PK (2000) Necrotic but not apoptotic cell death releases heat shock proteins, which deliver a partial maturation signal to dendritic cells and activate the NF-kappa B pathway. Int Immunol 12:1539–1546PubMedCrossRefGoogle Scholar
  55. 55.
    Shi Y, Evans JE, Rock KL (2003) Molecular identification of a danger signal that alerts the immune system to dying cells. Nature 425:516–521PubMedCrossRefGoogle Scholar
  56. 56.
    Hu DE, Moore AM, Thomsen LL, Brindle KM (2004) Uric acid promotes tumor immune rejection. Cancer Res 64:5059–5062PubMedCrossRefGoogle Scholar
  57. 57.
    Srivastava P (2002) Interaction of heat shock proteins with peptides and antigen presenting cells: chaperoning of the innate and adaptive immune responses. Annu Rev Immunol 20:395–425PubMedCrossRefGoogle Scholar
  58. 58.
    Schueller G, Kettenbach J, Sedivy R, Stift A, Friedl J, Gnant M, Lammer J (2004) Heat shock protein expression induced by percutaneous radiofrequency ablation of hepatocellular carcinoma in vivo. Int J Oncol 24:609–613PubMedGoogle Scholar
  59. 59.
    Yang WL, Nair DG, Makizumi R, Gallos G, Ye X, Sharma RR, Ravikumar TS (2004) Heat shock protein 70 is induced in mouse human colon tumor xenografts after sublethal radiofrequency ablation. Ann Surg Oncol 11:399–406PubMedCrossRefGoogle Scholar
  60. 60.
    Zerbini Z, Pilli M, Penna A, Pelosi G, Schianchi C, Molinari A, Schivazappa S, Zibera C, Fagnoni FF, Ferrari C, Missale G (2006) Radiofrequency thermal ablation of hepatocellular carcinoma liver nodules can activate and enhance tumor-specific T-cell responses. Cancer Res 66:1139–1146PubMedCrossRefGoogle Scholar
  61. 61.
    Wissniowski TT, Hansler J, Neureiter D, Frieser M, Schaber S, Esslinger B, Voll R, Strobel D, Hahn EG, Schuppan D (2003) Activation of tumorspecific T lymphocytes by radio-frequency ablation of the VX2 hepatoma in rabbits. Cancer Res 63:6496–6500PubMedGoogle Scholar
  62. 62.
    Den Brok MH, Sutmuller RP, van der Voort R, Bennink EJ, Figdor CG, Ruers TJ, Adema GJ (2004) In situ tumor ablation creates an antigen source for the generation of antitumor immunity. Cancer Res 64:4024–4029CrossRefGoogle Scholar
  63. 63.
    Pereira PL, Trübenbach J, Schenk M, Subke J, Kröber S, Schäfer I, Remy CT, Schmidt D, Brieger J, Claussen CD (2004) Radiofrequency ablation: in vivo comparison of four commercially available devices in pig livers. Radiology 232:482–490PubMedGoogle Scholar
  64. 64.
    Kahn T, Bettag M, Ulrich F et al. (1994) MRIguided laser-induced interstitial thermotherapy of cerebral neoplasms. J Comput Assist Tomogr 18:519–532PubMedGoogle Scholar
  65. 65.
    Anzai Y, Lufkin R, DeSalles A, Hamilton DR, Farahani K, Black KL (1995) Preliminary experience with MR-guided thermal ablation of brain tumors. AJNR Am J Neuroradiol 16:39–52PubMedGoogle Scholar
  66. 66.
    Lewin JS, Connell CF, Duerk JL et al. (1998) Interactive MRI-guided radiofrequency interstitial thermal ablation of abdominal tumors: clinical trial for evaluation of safety and feasibility. J Magn Reson Imaging 8:40–47PubMedGoogle Scholar
  67. 67.
    Reither K, Wacker F, Ritz JP et al. (2000) Laser-induced thermotherapy (LITT) for liver metastasis in an open 0.2T MRI. Rofo Fortschr Geb Rontgenstr Neuen Bildgeb Verfahr 172:175–178PubMedCrossRefGoogle Scholar
  68. 68.
    Lewin JS, Nour SG, Connell CF, Sulman A, Duerk JL, Resnick MI, Haaga JR (2004) Phase II trial of interactive MR imaging-guided interstitial radiofrequency thermal ablation of primary kidney tumors: initial experience. Radiology 232:835–845PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Philippe L. Pereira
    • 1
    • 2
  • Andreas Boss
  • Stephen Clasen
  • Cecile Gouttefangeas
  • Diethard Schmidt
  • Claus D. Claussen
  1. 1.Division of Local TherapyTübingenGermany
  2. 2.Department of Diagnostic RadiologyTübingenGermany

Personalised recommendations