Advertisement

Development of Navigation Systems for Image-Guided Laparoscopic Tumor Resections in Liver Surgery

  • Thomas Lange
  • Michael Hünerbein
  • Sebastian Eulenstein
  • Sigfried Beller
  • Peter Michael Schlag
Chapter
Part of the Recent Results in Cancer Research book series (RECENTCANCER, volume 167)

Keywords

Navigation System Augmented Reality Liver Surgery Statistical Shape Model Laparoscopic Liver Surgery 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Marescaux J, Clement JM, Tassetti V, Koehl C, Cotin S, Russier Y, Mutter D, Delingette H, Ayache N (1998) Virtual reality applied to hepatic surgery simulation: the next revolution. Ann Surg 228:627–634PubMedCrossRefGoogle Scholar
  2. 2.
    Fong Y, Fortner J, Sun RL, Brennan MF, Blumgart LH (1999) Clinical score for predicting recurrence after hepatic resection for metastatic colorectal cancer: analysis of 1001 consecutive cases. Ann Surg 230:309–318PubMedCrossRefGoogle Scholar
  3. 3.
    Cady B, Jenkins RL, Steele GD Jr, Lewis WD, Stone MD, McDermott WV, Jessup JM, Bothe A, Lalor P, Lovett EJ, Lavin P, Linehan DC (1998) Surgical margin in hepatic resection for colorectal metastasis: a critical and improvable determinant of outcome. Ann Surg 227:566–571PubMedCrossRefGoogle Scholar
  4. 4.
    Pawlik TM, Scoggins CR, Zorzi D, Abdalla EK, Andres A, Eng C, Curley SA, Loyer EM, Muratore A, Mentha G, Capussotti L, Vauthey JN (2005) Effect of surgical margin status on survival and site of recurrence after hepatic resection for colorectal metastases. Ann Surg 241:715–722PubMedCrossRefGoogle Scholar
  5. 5.
    Wray CJ, Lowy AM, Mathews JB, Park S, Choe KA, Hanto DW, James LE, Soldano DA, Ahmad SA (2005) The significance and clinical factors associated with a subcentimeter resection of colorectal liver metastases. Ann Surg Oncol 12:374–380PubMedCrossRefGoogle Scholar
  6. 6.
    Fasel JH, Selle D, Evertsz CJ, Terrier F, Peitgen HO, Gailloud P (1998) Segmental anatomy of the liver: poor correlation with CT. Radiology 206:151–156PubMedGoogle Scholar
  7. 7.
    Lorensen WE, Cline HE (1987) Marching cubes: a high resolution 3D surface construction algorithm. SIGGRAPH 21:163–169CrossRefGoogle Scholar
  8. 8.
    Hahn H, Preim B, Selle D, Peitgen HO (2001) Visualization and interaction techniques for the exploration of vascular structures. In: IEEE visualization. IEEE Computer Society, pp 395–402Google Scholar
  9. 9.
    Oeltze S, Preim B (2005) Visualization of vascular structures: method, validation and evaluation. IEEE Trans Med Imag 24:540–548CrossRefGoogle Scholar
  10. 10.
    Soler L, Delingette H, Malandain G, Montagnat J, Ayache N, Koehl C, Dourthe O, Malassagne B, Smith M, Mutter D, Marescaux J (2001) Fully automatic anatomical, pathological and functional segmentation from CT scans for hepatic surgery. Comput Aided Surg 21:1344–1357Google Scholar
  11. 11.
    Schenk A, Prause G, Peitgen HO (2000) Efficient semiautomatic segmentation of 3D objects. In: Delp SL, DiGioia AM, Jaramaz B (eds) Medical image computing and computer-assisted intervention (MICCAI), lecture notes in computer science, Vol. 1935, Springer, Berlin New York Heidelberg, pp 186–195Google Scholar
  12. 12.
    Mortensen EN, Barrett WA (1998) Interactive segmentation with intelligent scissors. Graphical Models and Image Processing 60:349–384CrossRefGoogle Scholar
  13. 13.
    Turk G, OBrian JF (1999) Shape transformation using variational implicit functions. SIGGRAPH 99:335–342CrossRefGoogle Scholar
  14. 14.
    Cootes T, Hill A, Taylor CJ, Haslam J (1994) Use of active shape models for locating structures in medical images. Image Vision Comput 12:355–366CrossRefGoogle Scholar
  15. 15.
    Lamecker H, Lange T, Seebass M (2002) A statistical shape model for the liver. In: Dohi T, Kikinis R (eds) Medical image computing and computer-assisted intervention, Vol. 2489, Lecture Notes in Computer Science, Springer, Berlin New York Heidelberg, pp 422–427Google Scholar
  16. 16.
    Lamecker H, Lange T, Seebass M, Eulenstein S, Westerhoff M, Hege HC (2003) Automatic segmentation of the liver for the preoperative planning of resections. In: Westwood JD et al. (eds) Medicine meets virtual reality, Vol. 94. Studies in health technologies and informatics. IOS Press, Amsterdam, pp 171–174Google Scholar
  17. 17.
    Lamecker H, Lange T, Seebass M (2004) Segmentation of the liver using a 3D statistical shape model. Zuse Institute, Berlin. ZIB Technical Report 04-09Google Scholar
  18. 18.
    Lange T, Wenckebach T, Lamecker H, Seebass M, Hünerbein M, Eulenstein S, Gebauer B, Schlag PM (2005) Registration of different phases of contrast-enhanced CT/MRI data for computer-assisted liver surgery planning: evaluation of state-of-the-art methods. Int J Med Robotics Comput Assist Surg 1:6–20CrossRefGoogle Scholar
  19. 19.
    Selle D, Preim B, Schenk A, Peitgen HO (2002) Analysis of vasculature for liver surgical planning. IEEE Trans Med Imaging 21:1344–1357PubMedCrossRefGoogle Scholar
  20. 20.
    Meinzer HP, Thorn M, Cardenas C (2002) Computerized planning of liver surgery — an overview. Comput Graphics 26:569–576CrossRefGoogle Scholar
  21. 21.
    Frericks BB, Caldarone FC, Nashan B, Savellano DH, Stamm G, Kirchhoff TD, Shin HO, Schenk A, Selle D, Spindler W, Klempnauer J, Peitgen HO, Galanski M (2004) 3D CT modeling of hepatic vessel architecture and volume calculation in living donated liver transplantation. Eur Radiol 14:326–333PubMedCrossRefGoogle Scholar
  22. 22.
    Harms J, Bartels M, Bourquain H, Peitgen HO, Schulz T, Kahn T, Hauss J, Fangmann J (2005) Computerized CT-based 3D visualization technique in living related liver transplantation. Transplant Proc 37:1059–1062PubMedCrossRefGoogle Scholar
  23. 23.
    Hogemann D, Stamm G, Shin H, Oldhafer KJ, Schlitt HJ, Selle D, Peitgen HO (2000) Individual planning of liver surgery interventions with a virtual model of the liver and its associated structures. Radiologe 40:267–273PubMedCrossRefGoogle Scholar
  24. 24.
    Oldhafer KJ, Hogemann D, Stamm G, Raab R, Peitgen HO, Galanski M (1999) 3-dimensional (3-D) visualization of the liver for planning extensive liver resections. Chirurg 70:233–238PubMedCrossRefGoogle Scholar
  25. 25.
    Preim B, Bourquian H, Selle D, Peitgen HO, Oldhafer KJ (2002) Resection proposals for oncologic liver surgery based on vascular territories. In: Lemke HU, Vannier, MW, Inamura K, Farman AG (eds) Computer assisted radiology and surgery (CARS). Springer, Berlin New York Heidelberg, pp 353–358Google Scholar
  26. 26.
    Lang H, Radtke A, Hindenach M, Schroeder T, Frühauf NR, Malgó M, Bourquain H, Peitgen HO, Oldhafer KJ, Broelsch CE (2005) Impact of virtual tumor resection and computer-assisted risk analysis on operation planning and intraoperative strategy in major hepatic resection. Arch Surg 140:629–638PubMedCrossRefGoogle Scholar
  27. 27.
    Schicho K, Figl M, Donat M, Birkfellner W, Seemann R, Wagner A, Bergmann H, Ewers R (2005) Stability of miniature electromagnetic tracking systems. Phys Med Biol 50:2089–2098PubMedCrossRefGoogle Scholar
  28. 28.
    Peters TM (2000) Image guided surgery: from Xrays to virtual reality. Comput Methods Biomech Biomed Eng 4:27–57Google Scholar
  29. 29.
    Knott PD, Maurer CR, Gallivan R, Roh HJ, Citardi MJ (2004) The impact of fiducial distribution on headset-based registration in image-guided sinus surgery. Otolaryngol Head Neck Surg 131:666–672PubMedCrossRefGoogle Scholar
  30. 30.
    Maurer CR, Fitzpatrick JM, Wang MY, Galloway RL, Maciunas RJ (1997) Registration of head volume images using implantable fiducial markers. IEEE Trans Med Imaging 16:447–462PubMedCrossRefGoogle Scholar
  31. 31.
    Besl PJ, McKay ND (1992) A method for registration of 3-D shapes. IEEE PAMI 14:239–256Google Scholar
  32. 32.
    Raabe A, Krishan R, Wolff R, Hermann E, Zimmermann M, Seifert V (2002) Laser surface scanning for patient registration in intracranial image-guided surgery. Neurosurgery 50:797–803PubMedCrossRefGoogle Scholar
  33. 33.
    Marmulla R, Lüth T, Mühling J, Hassfeld S (2004) Automated laser registration in image-guided surgery: evaluation of the correlation between laser scan resolution and navigation accuracy. Int J Oral Maxillofac Surg 33:642–648PubMedCrossRefGoogle Scholar
  34. 34.
    Azuma RT (1997) A survey of augmented reality. Presence: Teleoperators and Virtual Environments 6:355–385Google Scholar
  35. 35.
    Wirtz CR, Knauth M, Hassfeld S, Tronnier VM, Albert FK, Bonsanto M, Kunze S (1998) Neuronavigation — first experiences with three different commercially available systems. Zentralbl Neurochir 59:14–22PubMedGoogle Scholar
  36. 36.
    State A, Linvingston MA, Hirota G, Garret WF, Whitton MC, Fuchs H (1996) Technologies for augmented-reality systems: realizing ultrasoundguided needle biopsies. In: SIGGRAPH 96 Conference Proceedings, ACM SIGGRAPH, Addison Wesley, pp 439–446Google Scholar
  37. 37.
    Grimson WEL, Lozano-Perez T, Wells WM, Ettinger GJ, White SJ, Kikinis R (1996) An automatic registration method for frameless stereotaxy, image guided surgery, and enhanced reality visualization. IEEE Trans Med Imaging 15:129–140CrossRefPubMedGoogle Scholar
  38. 38.
    Fichtinger G, Deguet A, Masamune K, Fischer G, Balogh E, Mathieu H, Taylor RH, Fayad LM, Zinreich SJ (2004) Needle Insertion in CT scanner with image overlay-cadaver studies. In: Medical image computing and computer assisted intervention (MICCAI). Vol. 3217, Lecture Notes in Computer Science (LNCS), Springer, Berlin New York, Heidelberg, pp 795–803Google Scholar
  39. 39.
    Schwald B, Seibert H, Schnaider M, Wesarg S, Rödiger S, Dogan S (2004) Implementation and evaluation of an augmented reality system supporting minimal invasive interventions. In: Vol. Workshop AMI-ARCS 2004, pp 41–48Google Scholar
  40. 40.
    Hoppe H, Eggers G, Heurich T, Raczkowsky J, Marmulla R, Wörn H, Hassfeld S, Moctezuma JL (2003) Projector based visualization for intraoperative navigation: first clinical results. In: Lemke HU, Vannier, MW, Inamura K, Farman AG, Doi K, Reiber JHC (eds) Proc Comput Assist Radiol Surg (CARS) pp 771Google Scholar
  41. 41.
    Måvik R, Langø T, Tangen GA, Andersen JO, Kaspersen JH, Ystgaard B, Sjølie E, Fougner R, Fjøsne HE, Nagelhus Hernes TA (2004) Laparoscopic navigation pointer for three-dimensional image-guided surgery. Surg Endosc 18:1242–1248CrossRefGoogle Scholar
  42. 42.
    Kaspersen JH, Sjølie E, Wesche J, Asland J, Lundbom J, Odegård A, Lindseth F, Nagelhus Hernes TA (2003) 3D ultrasound based navigation combined with preoperative CT during abdominal interventions: A feasibility study. Cardiovasc Interv Radiol 26:347–356CrossRefGoogle Scholar
  43. 43.
    Banovac F, Tang J, Xu S, Lindisch D, Chung HY, Levy EB, Chang T, McCullough MF, Yaniv Z, Wood BJ, Cleary K (2005) Precision targeting of liver lesions using a novel electromagnetic navigation device in physiologic phantom and swine. Med Phys 32:2698–2705PubMedCrossRefGoogle Scholar
  44. 44.
    Wallace MJ, Gupta S, Hicks ME (2006) Out-of-plane computed-tomography-guided biopsy using a magnetic-field-based navigation system. Cardiovasc Interv Radiol 29:108–113CrossRefGoogle Scholar
  45. 45.
    Nicolau SA, Garcia A, Pennec X, Soler L, Ayache N (2005) An augmented reality system to guide radio-frequency tumour ablation. Comput Animat Virtual World 16:1–10CrossRefGoogle Scholar
  46. 46.
    Nicolau SA, Pennec X, Soler L, Ayache N (2005) A complete augmented reality guidance system for liver punctures: first clinical evaluation. In: Duncan J, Gerig G (eds) Medical image computing and computer-assisted intervention (MICCAI). Vol 3749, Lecture Notes in Computer Science, Springer, Berlin New York, Heidelberg, pp 539–547CrossRefGoogle Scholar
  47. 47.
    Herline AJ, Herring JL, Stefansic JD, Chapman WC, Galloway RL, Dawant BM (2000) Surface registration for use in interactive, image-guided liver surgery. Comput Aided Surg 5:11–17PubMedCrossRefGoogle Scholar
  48. 48.
    Cash DM, Sinha TK, Chapman WC, Terawaki H, Dawant BM, Galloway RL, Miga MI (2003) Incorporation of a laser range scanner into image-guided liver surgery: surface acquisition, registration, and tracking. Med Phys 30:1671–1682PubMedCrossRefGoogle Scholar
  49. 49.
    Sinha TK, Dawant BM, Duay V, Cash DM, Weil RJ, Thompson RC, Weaver KD, Miga M (2005) A method to track cortical surface deformations using a laser range scanner. IEEE Trans Med Imaging 24:767–781PubMedCrossRefGoogle Scholar
  50. 50.
    Sun H, Roberts DW, Farid H, Wu Z, Hartov A, Paulsen KD (2005) Cortical surface tracking using a stereoscopic operating microscope. Neurosurgery 56:86–95PubMedCrossRefGoogle Scholar
  51. 51.
    Miga M, Roberts DW, Kennedy FE, Platinek LA, Hartov A, Lunn KE, Paulsen KD (2001) Modelling of retraction and resection for intraoperative updating of images. Neurosurgery 49:75–85PubMedCrossRefGoogle Scholar
  52. 52.
    Picinbono G, Delingette H, Ayache N (2003) Nonlinear anisotropic elasticity for real-time surgery simulation. Graphical Models 65:305–321CrossRefGoogle Scholar
  53. 53.
    Paulsen KD, Miga MI, Kennedy FE, Hoopes PJ, Hartov A, Roberts DW (1999) A computational model for tracking subsurface tissue deformation during stereotactic neurosurgery. IEEE Trans Biomed Eng 46:213–225PubMedCrossRefGoogle Scholar
  54. 54.
    Miller K (2000) Constitutive modelling of abdominal organs. J Biomech 33:367–373PubMedCrossRefGoogle Scholar
  55. 55.
    Miller K, Chinzei K, Orssengo G, Bednarz P (2000) Mechanical properties of brain tissue invivo: experiment and computer simulation. J Biomech 33:1369–1376PubMedCrossRefGoogle Scholar
  56. 56.
    Sun H, Lunn KE, Farid H, Wu Z, Roberts DW, Hartov A, Paulsen KD (2005) Stereopsis-guided brain shift compensation. IEEE Trans Med Imaging 24:1039–1052PubMedCrossRefGoogle Scholar
  57. 57.
    Miga MI, Cash DM, Cao Z, Galloway RL, Dawant BM, Chapman WC (2003) Intraoperative registration of the liver for image-guided surgery using laser range scanning and deformable models. In: Medical Imaging 2003: visualization, imageguided procedures and display. Vol. 5029, Proceedings of the SPIE, pp 350–359Google Scholar
  58. 58.
    Cash DM, Miga MI, Sinha TK, Galloway RL, Chapman WC (2005) Compensating for intraoperative soft-tissue deformations using incomplete surface data and finite elements. IEEE Trans Med Imaging 24:1479–1491PubMedCrossRefGoogle Scholar
  59. 59.
    Lunn KE, Paulsen KD, Roberts DW, Kennedy FE, Hartov A, West J (2003) Displacement estimation with co-registered ultrasound for image guided neurosurgery: a quantitative in vivo porcine study. IEEE Trans Med Imaging 22:1358–1368PubMedCrossRefGoogle Scholar
  60. 60.
    Nimsky C, Ganslandt O, Hastreiter P (2001) Intraoperative compensation for brain shift. Surg Neurol 43:357–364CrossRefGoogle Scholar
  61. 61.
    Nabavi A, Black PM, Gering DT, Westin CF, Mehta V, Perolizzi RS, Ferrant M, Warfield SK, Hata N, Schwartz RB, Wells WM, Kikinis R, Jolesy FA (2001) Serial intraoperative MR imaging of brain shift. Neurosurgery 48:787–798PubMedCrossRefGoogle Scholar
  62. 62.
    Gebhard F, Weidner A, Liener UC, Stockle U, Arand M (2004) Navigation at the spine. Injury 35[Suppl 1]:S-A:35–34CrossRefGoogle Scholar
  63. 63.
    Nolte LP, Beutler T (2004) Basic principles of CAOS. Injury 35:S-A6–S-A16CrossRefGoogle Scholar
  64. 64.
    Trobaugh JW, Richard WD, Smith KR, Bucholz RD (1994) Frameless stereotactic ultrasonography: method and applications. Comput Med Imaging Graph 18:235–246PubMedCrossRefGoogle Scholar
  65. 65.
    Comeau RM, Sadikot AF, Fenster A, Peters TM (2000) Intraoperative ultrasound for guidance and tissue shift correction in image-guided neurosurgery. Med Phys 27:787–800PubMedCrossRefGoogle Scholar
  66. 66.
    Birth M, Iblher P, Hildebrand P, Nolde J, Bruch HP (2003) Ultrasound-guided interventions using magnetic field navigation. First experiences with Ultra-Guide 2000 under operative conditions. Ultraschall Med 24:90–95PubMedCrossRefGoogle Scholar
  67. 67.
    Tuthill TA, Krücker JF, Fowlkes JB, Carson PL (1998) Automated three-dimensional US frame positioning computed from elevational speckle decorrelation. Radiology 209:575–282PubMedGoogle Scholar
  68. 68.
    Prager RW, Gee Ah, Treece GM, Berman L (2003) Sensorless freehand 3D ultrasound using regression of the echo intensity. Ultrasound Med Biol 29:437–446PubMedCrossRefGoogle Scholar
  69. 69.
    Mercier L, Lango T, Lindseth F, Collins L (2005) A review of calibration techniques for freehand 3-D ultrasound systems. Ultrasound Med Biol 31:449–471PubMedCrossRefGoogle Scholar
  70. 70.
    Gronningsaeter A, Kleven A, Ommedal S, Aarseth TE, Lie T, Lindseth F, Lango T, Unsgard G (2000) SonoWand, an ultrasound-based neuronavigation system. Neurosurgery 47:1373–1379PubMedCrossRefGoogle Scholar
  71. 71.
    Unsgaard G, Ommedal S, Muller T, Gronningsaeter A, Nagelhus Hernes TA (2002) Neuronavigation by intraoperative three-dimensional ultrasound: initial experience during brain tumor resection. Neurosurgery 50:804–812PubMedCrossRefGoogle Scholar
  72. 72.
    Lindseth F, Langø T, Bang J, Hernes T (2002) Accuracy evaluation of a 3D ultrasound-based neuronavigation system. Comput Aided Surg 7:197–222PubMedCrossRefGoogle Scholar
  73. 73.
    Roche A, Pennec X, Malandain G, Ayache N (2001) Rigid registration of 3-D ultrasound With MR images: a new approach combining intensity and gradient information. IEEE Trans Med Imaging 20:1038–1049PubMedCrossRefGoogle Scholar
  74. 74.
    Slomka PJ, Mandel J, Downey D, Fenster A (2001) Evaluation of voxel-based registration of 3-D power Doppler ultrasound and 3-D magnetic resonance angiographic images of carotid arteries. Ultrasound Med Biol 27:945–955PubMedCrossRefGoogle Scholar
  75. 75.
    Pennec X, Cachier P, Ayache N (2003) Tracking brain deformations in time sequences of 3D US images. Pattern Recognition Lett 24:801–813CrossRefGoogle Scholar
  76. 76.
    Letteboer M, Willems P, Viergever MA, Niessen WJ (2003) Non-rigid registration of 3D ultrasound images of brain tumours acquired during neurosurgery. In: Ellis RE, Peters TM (eds) Medical image computing and computer-assisted intervention. Vol. 2879, Springer, Berlin New York Heidelberg, pp 408–415Google Scholar
  77. 77.
    Porter BC, Rubens DJ, Strang JG, Smith J, Totterman S, Parker KJ (2001) Three-dimensional registration and fusion of ultrasound and MRI using major vessels as fiducial markers. IEEE Trans Med Imaging 20:354–359PubMedCrossRefGoogle Scholar
  78. 78.
    Penney GP, Blackall JM, Hamady MS, Sabharwal T, Adam A, Hawkes DJ (2004) Registration of freehand 3D ultrasound and magnetic resonance liver images. Med Image Anal 8:81–91PubMedCrossRefGoogle Scholar
  79. 79.
    Lange T, Eulenstein S, Hünerbein M, Schlag PM (2003) Vessel-based non-rigid registration of MR/CT and 3D ultrasound for navigation in liver surgery. Comput Aided Surg 8:228–240PubMedGoogle Scholar
  80. 80.
    Lange T, Eulenstein S, Hünerbein M, Lamecker H, Schlag PM (2004) Augmenting intraoperative 3D ultrasound with preoperative models for navigation in liver surgery. In: Barillot C, Haynor DR, Hellier P (eds) Medical image computing and computer-assisted intervention. Vol. 3217, Lecture Notes in Computer Science, Springer, Berlin New York Heidelberg, pp 534–541Google Scholar
  81. 81.
    Aylward SR, Jomier J, Weeks S, Bullitt E (2003) Registration and analysis of vascular images. Int J Comput Vision 55:123–138CrossRefGoogle Scholar
  82. 82.
    Schwarz Y, Mehta AC, Ernst A, Herth F, Engel A, Besser D, Becker HD (2003) Electromagnetic navigation during flexible bronchoscopy. Respiration 70:516–522PubMedCrossRefGoogle Scholar
  83. 83.
    Hautmann H, Schneider A, Pinkau T, Peltz F, Feussner H (2005) Electromagnetic catheter navigation during bronchoscopy: validation of a novel method by conventional fluoroscopy. Chest 128:382–387PubMedCrossRefGoogle Scholar
  84. 84.
    Hayashibe M, Suzuki N, Hattori A, Nakamura Y (2002) Intraoperative fast 3D shape recovery of abdominal organs in laparoscopy. In: Dohi T, Kikinis R (eds). Medical image computing and computer-assisted intervention. Vol. 2489, Lecture Notes in Computer Science (LNCS), Springer, Berlin New York Heidelberg, pp 356–363Google Scholar
  85. 85.
    Birth M, Kleemann M, Hildebrand P, Bruch HP (2004) Intraoperative online navigation of dissection of the hepatical tissue — a new dimension in liver surgery. In: Lemke HU, Vannier MW, Inamura K, Farman AG, Doi K, Reiber JHC (eds) Computer assisted radiology and surgery (CARS). Vol. 1268, ICS, Elsevier, Amsterdam, pp 770–774Google Scholar
  86. 86.
    Kleemann M, Hildebrand P, Keller R, Bruch HP, Birth M (2004) Laparoscopic ultrasound navigation in liver surgery — technical aspects and feasibility. In: Lemke HU, Vannier MW, Inamura K, Farman AG, Doi K, Reiber JHC (eds) Computer assisted radiology and surgery (CARS). Vol. 1268, ICS, Elsevier, Amsterdam, pp 793–796Google Scholar
  87. 87.
    Ellsmere J, Stoll J, Rattner D, Brooks D, Kane R, Wells WM, Kikinis R, Vosburgh K (2003) A navigation system for augmenting laparoscopic ultrasound. In: Ellis RE, Peters TM (eds). Medical image computing and computer assisted intervention. Vol. 2879, Springer, Berlin New York Heidelberg, pp 184–191Google Scholar
  88. 88.
    Sjølie E, Kaspersen JH, Wesche J, Lindseth F, Hernes T (2001) Minimal invasive abdominal surgery based on ultrasound vision, possible? In: Lemke HU, Vannier, MW, Inamura K, Farman AG, Doi K (eds) Computer assisted radiology and surgery. Vol. 1230, Elsevier, Amsterdam, pp 39–44Google Scholar
  89. 89.
    Harms J, Feussner H, Baumgartner M, Schneider A, Donhauser M, Wessels G (2001) Three-dimensional navigated laparoscopic ultrasonography. Surg Endosc 15:1459–1462PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Thomas Lange
    • 1
  • Michael Hünerbein
  • Sebastian Eulenstein
  • Sigfried Beller
  • Peter Michael Schlag
  1. 1.Klinik fü Chirurgie und Chirurgische OnkologieRobert-Rösle-KlinikBerlinGermany

Personalised recommendations