Skip to main content

Organelle Inheritance in Yeasts and Other Fungi

  • Chapter
Growth, Differentiation and Sexuality

Part of the book series: The Mycota ((MYCOTA,volume 1))

  • 2021 Accesses

V. Conclusions

Organelle inheritance has emerged as an active and fundamentally important branch of cell biology. As a result of advances in our understanding of organelle biogenesis, cell cycle progression, cytoskeletal dynamics, establishment of cell polarity, and membrane-cytoskeletal interactions, we are now in a position to uncover the molecular basis for organelle inheritance. Diversity appears to be a theme in organelle inheritance, from the use of immobilization versus selective mobilization for control of organelle position, in the type of force-generating machinery that is used to drive organelle motility, and in the type of cytoskeletal network used for all forms of positional control. Fungi will continue to play a central role as model systems to understand the mechanisms that ensure proper organelle segregation during cell division in dividing cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 329.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 419.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams AEM, Botstein D, Drubin DG (1991) Requirement of yeast fimbrin for actin organization and morphogenesis in vivo. Nature 354:404–408

    Article  PubMed  CAS  Google Scholar 

  • Aist JR, Bayles CJ (1991) Organelle motility within mitotic asters of the fungus Nectria haematococca. Eur J Cell Biol 56:358–363

    PubMed  CAS  Google Scholar 

  • Alberti-Segui C, Dietrich F, Altmann-Johl R, Hoepfner D, Philippsen P (2001) Cytoplasmic dynein moves nuclei towards the hyphal tip in the filamentous ascomycete Ashbya gossypii. J Cell Sci 114:975–986

    PubMed  CAS  Google Scholar 

  • Asakura T, Sasaki T, Nagano F, Satoh A, Obaishi H, Nishioka H, Imamura H, Hotta K, Tanaka K, Nakanishi H et al. (1998) Isolation and characterization of a novel actin filament-binding protein from Saccharomyces cerevisiae. Oncogene 16:121–130

    Article  PubMed  CAS  Google Scholar 

  • Baba M, Osumi M (1987) Transmission and scanning electron microscopy examination of intracellular organelles in freeze-substituted Kloeckera and Saccharomyces cerevisiae yeast cells. J Electron Microsc 5:249–261

    Article  Google Scholar 

  • Banuett F, Herskowitz I (2002) Bud morphogenesis and the actin and microtubule cytoskeletons during budding in the corn smut fungus Ustilagomaydis. Fungal Genet Biol 37:149–170

    Article  PubMed  Google Scholar 

  • Barelle CJ, Bohula EA, Kron SJ, Wessels D, Soll DR, Schafer A, Brown AJ, Gow NA (2003) Asynchronous cell cycle and asymmetric vacuolar inheritance in true hyphae of Candida albicans. Eukaryot Cell 2:398–410

    Article  PubMed  CAS  Google Scholar 

  • Beach DL, Thibodeaux J, Maddox P, Yeh E, Bloom K (2000) The role of the proteins Kar9 and Myo2 in orienting the mitotic spindle of budding yeast. Curr Biol 10:1497–1506

    Article  PubMed  CAS  Google Scholar 

  • Beams HW, Kessel RG (1968) The Golgi apparatus: structure and function. Int Rev Cytol 23:209–276

    Article  PubMed  CAS  Google Scholar 

  • Bellu AR, Komori M, van der Klei IJ, Kiel JA, Veenhuis M (2001) Peroxisome biogenesis and selective degradation converge at Pex14p. J Biol Chem 276:44570–44574

    Article  PubMed  CAS  Google Scholar 

  • Berger KH, Sogo LF, Yaffe MP (1997) Mdm12p, a component required for mitochondrial inheritance that is conserved between budding and fission yeast. J Cell Biol 136:545–553

    Article  PubMed  CAS  Google Scholar 

  • Bertrand E, Chartrand P, Schaefer M, Shenoy SM, Singer RH, Long RM (1998) Localization of ASH1 mRNA particles in living yeast. Mol Cell 2:437–445

    Article  PubMed  CAS  Google Scholar 

  • Bevis BJ, Hammond AT, Reinke CA, Glick BS (2002) De novo formation of transitional ER sites and Golgi structures in Pichia pastoris. Nat Cell Biol 4:750–756

    Article  PubMed  CAS  Google Scholar 

  • Bohl F, Kruse C, Frank A, Ferring D, Jansen RP (2000) She2p, a novel RNA-binding protein tethers ASH1 mRNA to the Myo4p myosin motor via She3p. EMBO J 19:5514–5524

    Article  PubMed  CAS  Google Scholar 

  • Boldogh IR, Yang HC, Nowakowski WD, Karmon SL, Hays LG, Yates JR III, Pon LA (2001a) Arp2/3 complex and actin dynamics are required for actin-based mitochondrial motility in yeast. Proc Natl Acad Sci USA 98:3162–3167

    Article  PubMed  CAS  Google Scholar 

  • Boldogh IR, Yang HC, Pon LA (2001b) Mitochondrial inheritance in budding yeast. Traffic 2:368–374

    Article  PubMed  CAS  Google Scholar 

  • Boldogh IR, Nowakowski DW, Yang HC, Chung H, Karmon S, Royes P, Pon LA (2003) A protein complex containing Mdm10p, Mdm12p, and Mmm1p links mitochondrial membranes and DNA to the cytoskeleton-based segregation machinery. Mol Biol Cell 14:4618–4627

    Article  PubMed  CAS  Google Scholar 

  • Boldogh IR, Ramcharan SL, Yang HC, Pon LA (2004) A type V myosin (Myo2p) and a Rab-like G-protein (Ypt11p) are required for retention of newly inherited mitochondria in yeast cells during cell division. Mol Biol Cell 15:3994–4002

    Article  PubMed  CAS  Google Scholar 

  • Botstein D, Amberg D, Mulholland J, Huffaker T, Adams A, Drubin D, Stearns T (1997) The yeast cytoskeleton. In: Pringle JR, Broach JR, Jones EW (eds) The molecular and cellular biology of the yeast Saccharomyces: cell cycle and cell biology. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 1–90

    Google Scholar 

  • Burgess SM, Delannoy M, Jensen RE (1994) MMM1 encodes a mitochondrial outer membrane protein essential for establishing and maintaining the structure of yeast mitochondria. J Cell Biol 126:1375–1391

    Article  PubMed  CAS  Google Scholar 

  • Catlett NL, Weisman LS (1998) The terminal tail region of a yeast myosin-V mediates its attachment to vacuole membranes and sites of polarized growth. Proc Natl Acad Sci USA 95:14799–14804

    Article  PubMed  CAS  Google Scholar 

  • Catlett N, Duex J, Tang F, Weisman L (2000) Two distinct regions in a yeast myosin-V tail domain are required for the movement of different cargoes. J Cell Biol 150:513–526

    Article  PubMed  CAS  Google Scholar 

  • Chang F, Nurse P (1996) How fission yeast fission in the middle. Cell 84:191–194

    Article  PubMed  CAS  Google Scholar 

  • Chang FS, Stefan CJ, Blumer KJ (2003) A WASp homolog powers actin polymerization-dependent motility of endosomes in vivo. Curr Biol 13:455–463

    Article  PubMed  CAS  Google Scholar 

  • Conradt D, Shaw J, Vida T, Emr S, Wickner W (1992) In vitro reactions of vacuole inheritance in Saccharomyces cerevisiae. J Cell Biol 119:1469–1479

    Article  PubMed  CAS  Google Scholar 

  • Dabora SL, Sheetz MP (1988) The microtubule-dependent formation of a tubulovesicular network with characteristics of the ER from cultured cell extracts. Cell 54:27–35

    Article  PubMed  CAS  Google Scholar 

  • Distel B, Erdmann R, Gould SJ, Blobel G, Crane DI, Cregg JM, Dodt G, Fujiki Y, Goodman JM, Just WW et al. (1996) A unified nomenclature for peroxisome biogenesis factors. J Cell Biol 135:1–3

    Article  PubMed  CAS  Google Scholar 

  • Drees B, Brown C, Barrell BG, Bretscher A (1995) Tropomyosin is essential in yeast, yet the TPM1 and TPM2 proteins perform distinct functions. J Cell Biol 128:383–392

    Article  PubMed  CAS  Google Scholar 

  • Drubin DG, Jones HD, Wertman KF (1993) Actin structure and function: roles in mitochondrial organization and morphogenesis in budding yeast and identification of the phalloidin-binding site. Mol Biol Cell 4:1277–1294

    PubMed  CAS  Google Scholar 

  • Du Y, Pypaert M, Novick P, Ferro-Novick S (2001) Aux1p/Swa2p is required for cortical endoplasmic reticulum inheritance in Saccharomyces cerevisiae. Mol Biol Cell 12:2614–2628

    PubMed  CAS  Google Scholar 

  • Dunphy WG, Rothman JE (1985) Compartmental organization of the Golgi stack. Cell 42:13–21

    Article  PubMed  CAS  Google Scholar 

  • Eckert JH, Erdmann R (2003) Peroxisome biogenesis. Rev Physiol Biochem Pharmacol 147:75–121

    PubMed  CAS  Google Scholar 

  • Efimov VP (2003) Roles of NUDE and NUDF proteins of Aspergillus nidulans: insights from intracellular localization and overexpression effects. Mol Biol Chem 14:871–888

    Article  CAS  Google Scholar 

  • Einerhand AW, van der Leij I, Kos WT, Distel B, Tabak HF (1992) Transcriptional regulation of genes encoding proteins involved in biogenesis of peroxisomes in Saccharomyces cerevisiae. Cell Biochem Funct 10:185–191

    Article  PubMed  CAS  Google Scholar 

  • Eitzen G, Wang L, Thorngren N, Wickner W (2002) Remodeling of organelle-bound actin is required for yeast vacuole fusion. J Cell Biol 158:669–679

    Article  PubMed  CAS  Google Scholar 

  • Engqvist-Goldstein AE, Drubin DG (2003) Actin assembly and endocytosis: from yeast to mammals. Annu Rev Cell Dev Biol 19:287–332

    Article  PubMed  CAS  Google Scholar 

  • Erdmann R, Blobel G (1995) Giant peroxisomes in oleic acid-induced Saccharomycs cerevisiae lacking the peroxisomal membrane protein Pmp27p. J Cell Biol 128:509–523

    Article  PubMed  CAS  Google Scholar 

  • Erdmann R, Veenhuis M, Kunau WH (1997) Peroxisomes: organelles at the crossroads. Trends Cell Biol 7:400–407

    Article  CAS  PubMed  Google Scholar 

  • Estrada P, Kim J, Coleman J, Walker L, Dunn B, Takizawa P, Novick P, Ferro-Novick S (2003) Myo4p and She3p are required for cortical ER inheritance in Saccharomyces cerevisiae. J Cell Biol 163:1255–1266

    Article  PubMed  CAS  Google Scholar 

  • Evangelista M, Pruyne D, Amberg DC, Boone C, Bretscher A (2002) Formins direct Arp2/3-independent actin filament assembly to polarize cell growth in yeast. Nat Cell Biol 4:260–269

    Article  PubMed  CAS  Google Scholar 

  • Fehrenbacher KL, Davis D, Wu M, Boldogh I, Pon LA (2002) Endoplasmic reticulumdynamics, inheritance, and cytoskeletal interactions in budding yeast. Mol Cell Biol 13:854–865

    Article  CAS  Google Scholar 

  • Fehrenbacher KL, Bodogh IR, Pon LA (2003) Taking the A-train: actin-based force generators and organelle targeting. Trends Cell Biol 13:472–477

    Article  PubMed  CAS  Google Scholar 

  • Fehrenbacher KL, Yang HC, Gay AC, Huckaba TM, Pon LA (2004) Live cell imaging of mitochondrial movement along actin cables in budding yeast. Curr Biol 14:1996–2004

    Article  PubMed  CAS  Google Scholar 

  • Gall WE, Higginbotham MA, Chen C, Ingram MF, Cyr DM, Graham TR (2000) The auxilin-like phosphoprotein Swa2p is required for clathrin function in yeast. Curr Biol 10:1349–1358

    Article  PubMed  CAS  Google Scholar 

  • Graia F, Berteaux-Lecellier V, Zickler D, Picard M (2000) ami1, an orthologue of the Aspergillus nidulans apsA gene, is involved in nuclear migration throughout the life cycle of Podospora anserine. Genetics 155:633–646

    PubMed  CAS  Google Scholar 

  • Grote E, Carr CM, Novick PJ (2000) Ordering the final events in yeast exocytosis. J Cell Biol 151:439–452

    Article  PubMed  CAS  Google Scholar 

  • Guo T, Kit YY, Nicaud JM, Le Dall MT, Sears SK, Vali H, Chan H, Rachubinski RA, Titorenko VI (2003) Peroxisome division in the yeast Yarrowia lipolytica is regulated by a signal from inside the peroxisome. J Cell Biol 162:1255–1266

    Article  PubMed  CAS  Google Scholar 

  • Hagan IM (1998) The fission yeast microtubule cytoskeleton. J Cell Sci 111:1603–1612

    PubMed  CAS  Google Scholar 

  • Han G, Liu B, Zhang J, Zuo W, Morris NR, Xiang X (2001) The Aspergillus cytoplasmic dynein heavy chain and NUDF localize to microtubule plus ends and affect microtubule dynamics. Curr Biol 11:719–724

    Article  PubMed  CAS  Google Scholar 

  • Harris SD (2001) Septum formation in Aspergillus nidulans. Curr Opin Microbiol 4:736–739

    Article  PubMed  CAS  Google Scholar 

  • Heath IB, Heath MC, Herr F (1982) Motile systems in fungi. Symp Soc Exp Biol 35:563–587

    PubMed  CAS  Google Scholar 

  • Hedge RS, Lingappa VR (1999) Regulation of protein biogenesis at the endoplasmic reticulum membrane. Trends Cell Biol 9:132–137

    Article  Google Scholar 

  • Hermann GJ, Shaw JM (1998) Mitochondrial dynamics in yeast. Annu Rev Cell Dev Biol 14:265–303

    Article  PubMed  CAS  Google Scholar 

  • Hermann GJ, King EJ, Shaw JM (1997) The yeast gene, MDM20, is necessary for mitochondrial inheritance and organization of the actin cytoskeleton. J Cell Biol 137:141–153

    Article  PubMed  CAS  Google Scholar 

  • Hill KL, Catlett NL, Weisman LS (1996) Actin and myosin function in directed vacuole movement during cell division in Saccharomyces cerevisiae. J Cell Biol 135:1535–1549

    Article  PubMed  CAS  Google Scholar 

  • Hobbs AE, Srinivasan M, McCaffery JM, Jensen RE (2001) Mmm1p, a mitochondrial outer membrane protein, is connected to mitochondrial DNA (mtDNA) nucleoids and required for mtDNA stability. J Cell Biol 152:401–410

    Article  PubMed  CAS  Google Scholar 

  • Hoepfner D, van den Berg M, Philippsen P, Tabak HF, Hettema EH (2001) A role for Vps1p, actin, and the Myo2p motor in peroxisome abundance and inheritance in Saccharomyces cerevisiae. J Cell Biol 155:979–990

    Article  PubMed  CAS  Google Scholar 

  • Howard RJ, Aist JR (1980) Cytoplasmic microtubules and fungal morphogenesis: ultrastructural effects of methyl benzimidazole-2-ylcarbamate determined by freeze-substitution of hyphal tip cells. J Cell Biol 87:55–64

    Article  PubMed  CAS  Google Scholar 

  • Huckaba TM, Gay AC, Pantalena LF, Yang H-C, Pon LA (2004) Live cell imaging of assembly, disassembly, and actin cable-dependent movement of endosomes and actin patches in the budding yeast, Saccharomyces cerevisiae. J Cell Biol 167:519–530

    Article  PubMed  CAS  Google Scholar 

  • Insall R, Muller-Taubenberger A, Machesky L, Kohler J, Simmeth E, Atkinson SJ, Weber I, Gerisch G (2001) Dynamics of the Dictyostelium Arp2/3 complex in endocytosis, cytokinesis, and chemotaxis. Cell Motil Cytoskeleton 50:115–128

    Article  PubMed  CAS  Google Scholar 

  • Ishikawa K, Catlett NL, Novak JL, Tang F, Nau JJ, Weisman LS (2003) Identification of an organelle-specific myosin V receptor. J Cell Biol 160:887–897

    Article  PubMed  CAS  Google Scholar 

  • Itoh T, Watabe A, Toh-e A, Matsui Y (2002) Complex formation with Ypt11p, a rab-type small GTPase, is essential to facilitate the function of Myo2p, a class V myosin, in mitochondrial distribution in Saccharomyces cerevisiae. Mol Cell Biol 22:7744–7757

    Article  PubMed  CAS  Google Scholar 

  • Jamet-Vierny C, Contamine V, Boulay J, Zickler D, Picard M (1997)Mutations in genes encoding the mitochondrial membrane proteins Tom70 and Mdm10 of Podospora anserina modify the spectrum of mitochondrial DNA rearrangements associated with cellular death. Mol Cell Biol 17:6359–6366

    PubMed  CAS  Google Scholar 

  • Jones HD, Schliwa M, Drubin DG (1993) Video microscopy of organelle inheritance and motility in budding yeast. Cell Motil Cytoskeleton 25:129–142

    Article  PubMed  CAS  Google Scholar 

  • Jung MK, May GS, Oakley BR (1998) Mitosis in wild-type and beta-tubulin mutant strains of Aspergillus nidulans. Fungal Genet Biol 24:146–160

    Article  PubMed  CAS  Google Scholar 

  • Kaksonen M, Sun Y, Drubin DG (2003) A pathway for association of receptors, adaptors, and actin during endocytic internalization. Cell 115:475–487

    Article  PubMed  CAS  Google Scholar 

  • Kanbe T, Kobayashi I, Tanaka K (1989) Dynamics of cytoplasmic organelles in the cell cycle of the fission yeast Schizosaccharomyces pombe: three-dimensional reconstruction from serial sections. J Cell Sci 94:647–656

    PubMed  Google Scholar 

  • Koning AJ, Roberts CJ, Wright RL (1996) Different subcellular localization of Saccharomyces cerevisiae HMG-CoA reductase isoenzymes at elevated levels corresponds to distinct endoplasmic reticulum proliferations. Mol Biol Cell 7:769–789

    PubMed  CAS  Google Scholar 

  • Lazarow PB (2003) Peroxisome biogenesis: advances and conundrums. Curr Opin Cell Biol 15:489–497

    Article  PubMed  CAS  Google Scholar 

  • Lazarow PB, Fujiki Y (1985) Biogenesis of peroxisomes. Annu Rev Cell Biol 1:489–530

    Article  PubMed  CAS  Google Scholar 

  • Lazzarino DA, Boldogh I, Smith MG, Rosand J, Pon LA (1994) Yeast mitochondria contain ATP-sensitive, reversible actin-binding activity. Mol Biol Cell 5:807–818

    PubMed  CAS  Google Scholar 

  • Lee WL, Oberle, JR, Cooper JA (2003) The role of the lissencephaly protein Pac1 during nuclear migration in budding yeast. J Cell Biol 160:355–364

    Article  PubMed  CAS  Google Scholar 

  • Lillie SH, Brown SS (1994) Immunofluorescence localization of the unconventional myosin, Myo2p, and the putative kinesin-related protein, Smylp, to the same regions of polarized growth in Saccharomyces cerevisiae. J Cell Biol 125:825–842

    Article  PubMed  CAS  Google Scholar 

  • McConnell SJ, Stewart LC, Talin A, Yaffe MP (1990) Temperature-sensitive mutants defective in mitochondrial inheritance. J Cell Biol 111:967–976

    Article  PubMed  CAS  Google Scholar 

  • McDaniel DB, Roberson RW (2000) Microtubules are required for motility and positioning of vesicles and mitochondria in hyphal tip cells of Allomyces macrogynus. Fungal Genet Biol 31:233–244

    Article  PubMed  CAS  Google Scholar 

  • Meldolesi J, Pozzan T (1998) The endoplasmic reticulum Ca2+ store: a view from the lumen. Trends Biochem Sci 23:10–14

    Article  PubMed  CAS  Google Scholar 

  • Minke PF, Lee IH, Plamann M (1999) Microscopic analysis of Neurospora ropy mutants defective in nuclear distribution. Fungal Genet Biol 28:55–67

    Article  PubMed  CAS  Google Scholar 

  • Moreau V, Madania A, Martin RP, Winson B (1996) The Saccharomyces cerevisiae actin-related protein Arp2 is involved in the actin cytoskeleton. J Cell Biol 134:117–132

    Article  PubMed  CAS  Google Scholar 

  • Morré DJ (1987) The Golgi apparatus. Int Rev Cytol Suppl 17:211–253

    Google Scholar 

  • Oakley (2004) Tubulins in Aspergillus nidulans. Fungal Genet Biol 41:420–427

    Article  PubMed  CAS  Google Scholar 

  • Pelham HR (1996) The dynamic organization of the secretory pathway. Cell Struct Funct 21:413–419

    Article  PubMed  CAS  Google Scholar 

  • Pishvaee B, Costaguta G, Yeung BG, Ryazantsev S, Greener T, Greene LE, Eisenberg E, McCaffery JM, Payne GS (2000) A yeast DNA J protein required for uncoating of clathrin-coated vesicles in vivo. Nat Cell Biol 2:958–963

    Article  PubMed  CAS  Google Scholar 

  • Pollard TD, Beltzner CC (2002) Structure and function of the Arp2/3 complex. Curr Opin Struct Biol 12:768–774

    Article  PubMed  CAS  Google Scholar 

  • Pon LA, Schatz G (1991) Biogenesis of yeast mitochondria. In: Pringle JR, Broach JR, Jones EW (eds) The molecular and cellular biology of the yeast Saccharomyces: genome dynamics, protein synthesis and energetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 334–406

    Google Scholar 

  • Preuss D, Mulholland J, Kaiser CA, Orlean P, Allbright C, Rose MD, Robbins PW, Botstein D (1991) Structure of the yeast endoplasmic reticulum: localization of ER proteins using immunofluorescence and immunoelectron microscopy. Yeast 7:891–911

    Article  PubMed  CAS  Google Scholar 

  • Preuss D, Mulholland J, Franzusoff A, Segev N, Botstein D (1992) Characterization of the Saccharomyces Golgi complex through the cell cycle by immunoelectron microscopy. Mol Biol Cell 3:89–803

    Google Scholar 

  • Prinz W, Grzyb L, Veenhuis M, Kahana JA, Silver PA, Rapoport TA (2000) Mutants affecting the structure of the cortical endoplasmic reticulum in Saccharomyces cerevisiae. J Cell Biol 150:461–474

    Article  PubMed  CAS  Google Scholar 

  • Prokisch H, Neupert W, Westermannn B (2000) Role of MMM1 in maintaining mitochondrial morphology in Neurospora crassa. Mol Biol Cell 11:2961–2971

    PubMed  CAS  Google Scholar 

  • Pruyne DW, Schott DH, Bretscher A (1998) Tropomyosin-containing actin cables direct the Myo2p-dependent polarized delivery of secretory vesicles in budding yeast. J Cell Biol 143:1931–1945

    Article  PubMed  CAS  Google Scholar 

  • Pruyne D, Evangelista M, Yang C, Bi E, Zigmond S, Bretscher A, Boone C (2002) Role of formins in actin assembly: nucleation and barbed-end association. Science 297:612–615

    Article  PubMed  CAS  Google Scholar 

  • Requena N, Alberti-Segui C, Wizenburg E, Horn C, Schiliwa M, Philippsen P, Liese R, Fischer R (2001) Genetic evidence for a microtubule-destabilizing effect of convectional kinesin and analysis of its consequences for the control of nuclear distribution in Aspergillus nidulans. Mol Microbiol 42:121–132

    Article  PubMed  CAS  Google Scholar 

  • Roeder AD, Hermann GJ, Keegan BR, Thatcher SA, Shaw JM (1998) Mitochondrial inheritance is delayed in Saccharomyces cerevisiae cells lacking the serine/threonine phosphatase PTC1. Mol Biol Cell 9:917–930

    PubMed  CAS  Google Scholar 

  • Rossanese OW, Soderholm J, Bevis BJ, Sears IB, O’Connor J, Williamson EK, Glick BS (1999) Golgi structure correlates with transitional endoplasmic reticulum organization in Pichia pastoris and Saccharomyces cerevisiae. J Cell Biol 145:69–81

    Article  PubMed  CAS  Google Scholar 

  • Rossanese OW, Reinke CA, Bevis BJ, Hammond AT, Sears IB, O’Connor J, Glick BS (2001) A role for actin, Cdc1p and Myo2p in the inheritance of late Golgi element in Saccharomyces cerevisiae. J Cell Biol 153:47–62

    Article  PubMed  CAS  Google Scholar 

  • Sagot I, Klee SK, Pellman D (2002a) Yeast formins regulate cell polarity by controlling the assembly of actin cables. Nat Cell Biol 4:42–50

    PubMed  CAS  Google Scholar 

  • Sagot I, Rodal AA, Moseley J, Goode BL, Pellman D (2002b) An actin nucleation mechanism mediated by Bni1 and profilin. Nat Cell Biol 4:626–631

    PubMed  CAS  Google Scholar 

  • Sato M, Toda T (2004) Reconstruction of microtubules; entry into interphase. Dev Cell 6:456–458

    Article  PubMed  CAS  Google Scholar 

  • Schmidt A, Hall MN(1998) Signalling to the actin cytoskeleton. Annu Rev Cell Dev 14:305–338

    Article  CAS  Google Scholar 

  • Schott D, Ho J, Pruyne D, Bretscher A (1999) The COOH-terminal domain of Myo2p, a yeast myosin V, has a direct role in secretory vesicle targeting. J Cell Biol 147:791–808

    Article  PubMed  CAS  Google Scholar 

  • Schott DH, Collins RN, Bretscher A (2002) Secretory vesicle transport velocity in living cells depends on the myosin-V lever arm length. J Cell Biol 156:35–39

    Article  PubMed  CAS  Google Scholar 

  • Severs NJ, Jordan EG, Willamson DH (1976) Nuclear pore absence form areas of close association between nucleus and vacuole in synchronous yeast cultures. J Ultrastruct Res 54:374–387

    Article  PubMed  CAS  Google Scholar 

  • Sheeman B, Carvalho P, Sagot I, Geiser J, Kho D, Hoyt MA, Pellman D (2003) Determinants of S. cerevisiae dynein localization and activation: implications for the mechanism of spindle positioning. Curr Biol 139:985–994

    Google Scholar 

  • Simon VR, Swayne TC, Pon LA (1995) Actin-dependent mitochondrial motility in mitotic yeast and cell-free systems: identification of a motor activity on the mitochondrial surface. J Cell Biol 130:345–354

    Article  PubMed  CAS  Google Scholar 

  • Simon VR, Karmon SL, Pon LA (1997) Mitochondrial inheritance: cell cycle and actin cable dependence of polarized mitochondrial movements in Saccharomyces cerevisiae. Cell Motil Cytoskeleton 37:199–210

    Article  PubMed  CAS  Google Scholar 

  • Soderholm J, Bhattacharyya D, Strongin D, Markovitz V, Connerly PL, Reinke CA, Glick BS (2004) The transitional ER localization mechanism of Pichia pastoris Sec12. Dev Cell 6:649–659

    Article  PubMed  CAS  Google Scholar 

  • Sogo LF, Yaffe MP (1994) Regulation of mitochondrial morphology and inheritance by Mdm10p, a protein of the mitochondrial outer membrane. J Cell Biol 126:1361–1373

    Article  PubMed  CAS  Google Scholar 

  • Steinberg G, Fuchs U (2004) The role of microtubules in cellular organization and endocytosis in the plant pathogen Ustilago maydis. J Microsc 214:114–123

    Article  PubMed  CAS  Google Scholar 

  • Steinberg G, Schliwa M (1993) Organelle movements in the wild type and wall-less fz;sg;os-1 mutants of Neurospora crassa are mediated by cytoplasmic microtubules. J Cell Sci 106:555–564

    PubMed  Google Scholar 

  • Steinberg G, Wedlich-Söldner R, Brill M, Schulz I (2001) Microtubules in the fungal pathogen Ustilago maydis are highly dynamic and determine cell polarity. J Cell Sci 114:609–622

    PubMed  CAS  Google Scholar 

  • Stevens BJ (1977) Variation in number and volume of the mitochondria in yeast according to growth conditions. A study based on serial sectioning and computer graphics reconstruction. Biol Cell 29:37–56

    Google Scholar 

  • Straube A, Brill M, Oakley BR, Horio T, Steinberg G (2003) Microtubule organization requires cell cycle-dependent nucleation at dispersed cytoplasmic sites: polar and perinuclear microtubule organizing centers in the plant pathogen Ustilago maydis. Mol Biol Cell 14:642–657

    Article  PubMed  CAS  Google Scholar 

  • Suelmann R, Fischer R (2000) Mitochondrial movement and morphology depend on an intact actin cystoskeleton in Aspergillus nidulans. Cell Motil Cytoskeleton 45:42–50

    Article  PubMed  CAS  Google Scholar 

  • Svitkina TM, Borisy GG (1999) Arp2/3 complex and actin depolymerizing factor/cofilin in dendritic organization and treadmilling of actin filament array in lamellipodia. J Cell Biol 145:1009–1026

    Article  PubMed  CAS  Google Scholar 

  • Tabak HF, Braakman I, Distel B (1999) Peroxisomes: simple in function but complex in maintenance. Trends Cell Biol 9:447–453

    Article  PubMed  CAS  Google Scholar 

  • Takizawa PA, Vale RD (2000) The myosin motor, Myo4p, binds Ash1 mRNA via the adapter protein, She3p. Proc Natl Acad Sci USA 97:5273–5278

    Article  PubMed  CAS  Google Scholar 

  • Takizawa PA, Sil A, Swedlow JR, Herskowitz I, Vale RD (1997) Actin-dependent localization of an RNA encoding a cell-fate determinant in yeast. Nature 389:90–93

    Article  PubMed  CAS  Google Scholar 

  • Takizawa PA, DeRisi JL, Wilhelm JE, Vale RD (2000) Plasma membrane compartmentalization in yeast by messenger RNA transport and a septin diffusion barrier. Science 290:341–344

    Article  PubMed  CAS  Google Scholar 

  • Tang F, Kauffman EJ, Novak JL, Nau JJ, Catlett NL, Weisman LS (2003) Regulated degradation of class V myosin receptor directs movement of the yeast vacuole. Nature 422:87–92

    Article  PubMed  CAS  Google Scholar 

  • Titorenko VI, Rachubinski RA (1998) The endoplasmic reticulum plays an essential role in peroxisome biogenesis. Trends Biochem Sci 23:231–233

    Article  PubMed  CAS  Google Scholar 

  • Titorenko VI, Chan H, Rachubinski RA (2000) Fusion of small peroxisomal vesicles in vitro reconstructs an early step in the in vivo multistep peroxisome assembly pathway of Yarrowia lipolytica. J Cell Biol 148:29–44

    Article  PubMed  CAS  Google Scholar 

  • Tran PT, Doye V, Chang F, Inoue S (2000) Microtubule-dependent nuclear positioning and nuclear-dependent septum positioning in the fission yeast Schizosaccharomyces pombe. Biol Bull 199:205–206

    PubMed  CAS  Google Scholar 

  • Tran PT, Harsh L, Doye V, Inoue S, Chang F (2001) A mechanism for nuclear positioning in fission yeast based on microtubule pushing. J Cell Biol 153:397–412

    Article  PubMed  CAS  Google Scholar 

  • Van den Bosch H, Schutgens RB, Wanders RJ, Tager JM (1992) Biochemistry of peroxisomes. Annu Rev Biochem 61:157–197

    Article  PubMed  Google Scholar 

  • Van Roermund CW, Tabak HF, van Den Berg M, Wanders RJ, Hettema EH (2000) Pex11p plays a primary role in medium-chain fatty acid oxidation, a process that affects peroxisome number and size in Saccharomyces cerevisiae. J Cell Biol 150:489–498

    Article  PubMed  Google Scholar 

  • Veenhuis M, Harder W (1988) Microbodies in yeasts: structure, function and biogenesis. Microbiol Sci 5:347–351

    PubMed  CAS  Google Scholar 

  • Veenhuis M, Keizer I, Harder W (1979) Characterization of peroxisomes in glucose-grownHansenula polymorpha and their development after the transfer of cells into methanol-containing media. Arch Microbiol 120:167–175

    Article  CAS  Google Scholar 

  • Volkmann N, Amann KJ, Stoilova-McPhie S, Egile C, Winter DC, Hazelwood L, Heuser JE, Li R, Pollard TD, Hanein D (2001) Structure of Arp2/3 complex in its activated state and in actin filament branch junctions. Science 293:2456–2459

    Article  PubMed  CAS  Google Scholar 

  • Walch-Solimena C, Collins RN, Novick PJ (1997) Sec2p mediates nucleotide exchange on Sec4p and is involved in polarized delivery of post-Golgi vesicles. J Cell Biol 137:1495–1509

    Article  PubMed  CAS  Google Scholar 

  • Warmka J, Hanneman J, Lee J, Amin D, Ota I (2001) Ptc1, a type 2C Ser/Thr phosphatase, inactivates the HOG pathway by dephosphorylating the mitogen-activated protein kinase Hog1. Mol Cell Biol 21:51–60

    Article  PubMed  CAS  Google Scholar 

  • Wedlich-Söldner R, Schulz I, Straube A, Steinberg G (2002a) Dynein supports motility of endoplasmic reticulum in the fungus Ustilago maydis. Mol Biol Cell 13:965–977

    Article  PubMed  CAS  Google Scholar 

  • Wedlich-Söldner R, Straube A, Friedrich MW, Steinberg G (2002b) A balance of KIF1A-like kinesin and dynein organizes early endosomes in the fungus Ustilagomaydis. EMBO J 21:2946–2957

    Article  PubMed  Google Scholar 

  • Weisman LS (2003) Yeast vacuole inheritance and dynamics. Annu Rev Genet 37:435–460

    Article  PubMed  CAS  Google Scholar 

  • Weisman LS, Wickner W (1988) Intervacuole exchange in the yeast zygote: a new pathway in organelle communication. Science 241:589–591

    PubMed  CAS  Google Scholar 

  • Weisman LS, Bacallao R, Wickner W (1987) Multiple methods of visualizing the yeast vacuole permit evaluation of its morphology and inheritance during the cell cycle. J Cell Biol 105:1539–1547

    Article  PubMed  CAS  Google Scholar 

  • Wiederkehr A, Du Y, Pypaert M, Ferro-Novick S, Novick P (2003) Sec3p is needed for the spatial regulation of secretion and for the inheritance of the cortical endoplasmic reticulum. Mol Biol Cell 14:4770–4782

    Article  PubMed  CAS  Google Scholar 

  • Wiemken A, Matile P, Moor H (1970) Vacuolar dynamics in synchronously budding yeast. Arch Mikrobiol 70:89–103

    Article  PubMed  CAS  Google Scholar 

  • Winter D, Podtelejnikov AV, Mann M, Li R (1997) The complex containing actin-related proteins Arp2 and Arp3 is required for the motility and integrity of yeast actin patches. Curr Biol 7:519–529

    Article  PubMed  CAS  Google Scholar 

  • Wu Q, Sandrock TM, Turgeon BG, Yoder OC, Wirsel SG, Aist JR (1998) A fungal kinesin required for organelle motility, hyphal growth, and morphogenesis. Mol Biol Cell 9:89–101

    PubMed  CAS  Google Scholar 

  • Xiang X, Fischer R (2004) Nuclear migration and positioning in filamentous fungi. Fungal Genet Biol 41:411–419

    Article  PubMed  CAS  Google Scholar 

  • Xiang S, Han G, Winkelmann DA, Zuo W, Morris NR (2000) Dynamics of cytoplasmic dynein in living cells and the effect of mutation in the dynactin complex actin-related protein Arp1. Curr Biol 9:1211–1220

    Google Scholar 

  • Yaffe MP, Harata D, Verde F, Eddison M, Toda T, Nurse P (1996) Microtubules mediate mitochondrial distribution in fission yeast. Proc Natl Acad Sci USA 93:11664–11668

    Article  PubMed  CAS  Google Scholar 

  • Yaffe MP, Stuurman N, Vale RD (2003) Mitochondrial positioning in fission yeast is driven by association with dynamic microtubules and mitotic spindle poles. Proc Natl Acad Sci USA 100:11424–11428

    Article  PubMed  CAS  Google Scholar 

  • Yang HC, Pon LA (2002) Actin cable dynamics in budding yeast. Proc Natl Acad Sci USA 99:751–756

    Article  PubMed  CAS  Google Scholar 

  • Yin H, Pruyne D, Huffaker TC, Bretscher A (2000) Myosin V orientates the mitotic spindle in yeast. Nature 406:1013–1015

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Han G, Xiang X (2002) Cytoplasmic dynein intermediate chain and heavy chain are dependent upon each other for microtubule end localization in Aspergillus nidulans. Mol Microbiol 44:381–391

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Li S, Fischer R, Xiang X (2003) The accumulation of cytoplasmic dynein and dynactin at microtubule plus ends is kinesin dependent in Aspergillus nidulans. Mol Biol Chem 14:1479–1488

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

García-Rodríguez, L.J., Gay, A.C., Pon, L.A. (2006). Organelle Inheritance in Yeasts and Other Fungi. In: Kües, U., Fischer, R. (eds) Growth, Differentiation and Sexuality. The Mycota, vol 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-28135-5_2

Download citation

Publish with us

Policies and ethics