Skip to main content

Regulatory and Structural Networks Orchestrating Mating, Dimorphism, Cell Shape, and Pathogenesis in Ustilago maydis

  • Chapter
Growth, Differentiation and Sexuality

Part of the book series: The Mycota ((MYCOTA,volume 1))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 329.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 419.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adamikova L, Straube A, Schulz I, Steinberg G (2004) Calcium signaling is involved in dynein-dependent microtubule organization. Mol Biol Cell 15:1969–1980

    PubMed  CAS  Google Scholar 

  • Aichinger C, Hansson K, Eichhorn H, Lessing F, Mannhaupt G, Mewes W, Kahmann R (2003) Identification of plant-regulated genes in Ustilago maydis by enhancer-trapping mutagenesis. Mol Gen Genomics 270:303–314

    CAS  Google Scholar 

  • Andrews DL, Egan JD, Mayorga ME, Gold SE (2000) The Ustilago maydis ubc4 and ubc5 genes encode members of a MAP kinase cascade required for filamentous growth. Mol Plant Microbe Interact 13:781–786

    PubMed  CAS  Google Scholar 

  • Ayscough KR, Stryker J, Pokala N, Sanders M, Crews P, Drubin DG (1997) High rates of actin filament turnover in budding yeast and roles for actin in establishment and maintenance of cell polarity revealed using the actin inhibitor latrunculin-A. J Cell Biol 137:399–416

    PubMed  CAS  Google Scholar 

  • Banuett F (1995) Genetics of Ustilago maydis, a fungal pathogen that induces tumors in maize. Annu Rev Genet 29:179–208

    PubMed  CAS  Google Scholar 

  • Banuett F, Herskowitz I (1994) Identification of fuz7, a Ustilago maydis MEK/MAPKK homolog required for a-locus-dependent and-independent steps in the fungal life cycle. Genes Dev 8:1367–1378

    PubMed  CAS  Google Scholar 

  • Banuett F, Herskowitz I (1996) Discrete developmental stages during teliospore formation in the corn smut fungus, Ustilago maydis. Development 122:2965–2976

    PubMed  CAS  Google Scholar 

  • Banuett F, Herskowitz I (2002) Bud morphogenesis and the actin and microtubule cytoskeletons during budding in the corn smut fungus, Ustilago maydis. Fungal Genet Biol 37:149–170

    PubMed  Google Scholar 

  • Barrett KJ, Gold SE, Kronstad JW (1993) Identification and complementation of a mutation to constitutive filamentous growth in Ustilago maydis. Mol Plant Microbe Interact 6:274–283

    PubMed  CAS  Google Scholar 

  • Basse CW, Kerschbamer C, Brustmann M, Altmann T, Kahmann R (2002a) Evidence for a Ustilago maydis steroid 5α-reductase by functional expression in Arabidopsis det2-1 mutants. Plant Physiol 129:717–732

    PubMed  CAS  Google Scholar 

  • Basse CW, Kolb S, Kahmann R (2002b) A maize-specifically expressed gene cluster in Ustilago maydis. Mol Microbiol 43:75–93

    PubMed  CAS  Google Scholar 

  • Bernards A, Settleman J (2004) GAP control: regulating the regulators of small GTPases. Trends Cell Biol 14:377–385

    PubMed  CAS  Google Scholar 

  • Bohlmann R (1996) Isolierung und Charakterisierung von filamentspezifisch exprimierten Genen aus Ustilago maydis. PhD Thesis, Fakultät für Biologie, Ludwig-Maximilians-Universität München, Germany

    Google Scholar 

  • Bohlmann R, Schauwecker F, Basse C, Kahmann R (1994) Genetic regulation of mating and dimorphism in Ustilago maydis. In: Daniels MJ (ed) Advances in Molecular Genetics of Plant-Microbe Interactions, vol 3. Kluwer, Dordrecht, pp 239–245

    Google Scholar 

  • Bölker M (2001) Ustilago maydis — a valuable model system for the study of fungal dimorphism and virulence. Microbiology 147:1395–1401

    PubMed  Google Scholar 

  • Bölker M, Urban M, Kahmann R (1992) The a mating type locus of U. maydis specifies cell signaling components. Cell 68:441–450

    PubMed  Google Scholar 

  • Bölker M, Genin S, Lehmler C, Kahmann R (1995) Genetic regulation of mating, and dimorphism in Ustilago maydis. Can J Bot 73:320–325

    Google Scholar 

  • Bortfeld M, Auffarth K, Kahmann R, Basse CW (2004) The Ustilago maydis a2 mating-type locus genes lga2 and rga2 compromise pathogenicity in the absence of the mitochondrial p32 family protein Mrb1. Plant Cell 16:2233–2248

    PubMed  CAS  Google Scholar 

  • Bourne HR, Sanders DA, McCormick F (1990) The GTPase superfamily: a conserved switch for diverse cell functions. Nature 348:125–132

    PubMed  CAS  Google Scholar 

  • Brachmann A, Weinzierl G, Kämper J, Kahmann R (2001) Identificationof genes in the bW/bE regulatory cascade in Ustilago maydis. Mol Microbiol 42:1047–1063

    PubMed  CAS  Google Scholar 

  • Brachmann A, Schirawski J, Müller P, Kahmann R (2003) An unusual MAP kinase is required for efficient penetration of the plant surface by Ustilago maydis. EMBO J 22:2199–2210

    PubMed  CAS  Google Scholar 

  • Brachmann A, König J, Julius C, Feldbrügge M (2004) A reverse genetic approach for generating gene replacement mutants in Ustilago maydis. Mol Gen Genomics 272:216–226

    CAS  Google Scholar 

  • Brefort T, Müller P, Kahmann R (2005) The high-mobility-group domain transcription factor Rop1 is a direct regulator of prf1 in Ustilago maydis. Eukaryot Cell 4:379–391

    PubMed  CAS  Google Scholar 

  • Burbelo PD, Drechsel D, Hall A (1995) A conserved binding motif defines numerous candidate target proteins for both Cdc42 and Rac GTPases. J Biol Chem 270:29071–29074

    PubMed  CAS  Google Scholar 

  • Castillo-Lluva S, Garcia-Muse T, Pérez-Martín J (2004) A member of the Fizzy-related family of APC activators is regulated by cAMP and is required at different stages of plant infection by Ustilago maydis. J Cell Sci 117:4143–4156

    PubMed  CAS  Google Scholar 

  • Cherfils J, Chardin P (1999) GEFs: structural basis for their activation of small GTP-binding proteins. Trends Biochem Sci 24:306–311

    PubMed  CAS  Google Scholar 

  • Davey J (1998) Fusion of a fission yeast. Yeast 14:1529–1566

    PubMed  CAS  Google Scholar 

  • Dürrenberger F, Wong K, Kronstad JW (1998) Identification of a cAMP-dependent protein kinase catalytic subunit required for virulence and morphogenesis in Ustilago maydis. Proc Natl Acad Sci USA 95:5684–5689

    PubMed  Google Scholar 

  • Dürrenberger F, Laidlaw RD, Kronstad JW (2001) The hgl1 gene is required for dimorphism and teliospore formation in the fungal pathogen Ustilago maydis. Mol Microbiol 41:337–348

    PubMed  Google Scholar 

  • Elion EA (2000) Pheromone response, mating and cell biology. Curr Opin Microbiol 3:573–581

    PubMed  CAS  Google Scholar 

  • Farfsing JW, Auffarth K, Basse CW (2005) Identification of cis-active elements in Ustilago maydis mig2 promoters conferring high-level activity during pathogenic growth in maize. Mol Plant Microbe Interact 18:75–87

    PubMed  CAS  Google Scholar 

  • Feldbrügge M, Kämper J, Steinberg G, Kahmann R (2004) Regulation of mating and pathogenic development in Ustilago maydis. Curr Opin Microbiol 7:666–672

    PubMed  Google Scholar 

  • Froeliger EH, Leong SA (1991) The a mating-type alleles of Ustilago maydis are idiomorphs. Gene 100:113–122

    PubMed  CAS  Google Scholar 

  • Fuchs U, Manns I, Steinberg G (2005) The cytoskeleton has essential roles in dimorphic transition in the plant pathogen Ustilago maydis. Mol Biol Cell 16:2746–2758

    PubMed  CAS  Google Scholar 

  • Garcerá-Teruel A, Xoconostle-Cázares B, Rosas-Quijano R, Ortiz L, León-Ramírez C, Specht CA, Sentandreu R, Ruiz-Herrera J (2004) Loss of virulence in Ustilago maydis by Umchs6 gene disruption. Res Microbiol 155:87–97

    PubMed  Google Scholar 

  • Garcia-Muse T, Steinberg G, Pérez-Martín J (2003) Pheromone-induced G2 arrest in the phytopathogenic fungus Ustilago maydis. Eukaryot Cell 2:494–500

    PubMed  CAS  Google Scholar 

  • Garcia-Pedrajas MD, Klostermann SJ, Andrews DL, Gold SE (2004) The Ustilago maydis-maize interaction. In: Talbot NJ (ed) Plant-Pathogen Interactions, vol 11. CRC Press, London, pp 166–201

    Google Scholar 

  • Garrido E, Pérez-Martín J (2003) The crk1 gene encodes an Ime2-related protein that is required for morphogenesis in the plant pathogen Ustilago maydis. Mol Microbiol 47:729–743

    PubMed  CAS  Google Scholar 

  • Garrido E, Voß U, Müller P, Kahmann R, Pérez-Martín J (2004) The induction of sexual development and virulence in the smut fungus Ustilago maydis on Crk1, a novel MAPK protein. Genes Dev 18:3117–3130

    PubMed  CAS  Google Scholar 

  • Geitmann A, Emons AM (2000) The cytoskeleton in plant and fungal cell tip growth. J Microsc 198:218–245

    PubMed  CAS  Google Scholar 

  • Gillissen B, Bergemann J, Sandmann C, Schroeer B, Bölker M, Kahmann R (1992) A two-component regulatory system for self/non-self recognition in Ustilago maydis. Cell 68:647–657

    PubMed  CAS  Google Scholar 

  • Gold SE, Duncan G, Barrett K, Kronstad J (1994) cAMP regulates morphogenesis in the fungal pathogen Ustilago maydis. Genes Dev 8:2805–2816

    PubMed  CAS  Google Scholar 

  • Gold SE, Brogdon SM, Mayorga ME, Kronstad JW (1997) The Ustilago maydis regulatory subunit of a cAMP-dependent protein kinase is required for gall formation in maize. Plant Cell 9:1585–1594

    PubMed  CAS  Google Scholar 

  • Gow NAR (1995) Tip growth and polarity. In: Gow NAR, Gadd GM (eds) The growing fungus. Chapman and Hall, London, pp 99–134

    Google Scholar 

  • Grimshaw SJ, Mott HR, Stott KM, Nielsen PR, Evetts KA, Hopkins LJ, Nietlispach D, Owen D (2004) Structure of the sterile alpha motif (SAM) domain of the Saccharomyces cerevisiae mitogen-activated protein kinase pathway-modulating protein STE50 and analysis of its interaction with the STE11 SAM. J Biol Chem 279:2192–2201

    PubMed  CAS  Google Scholar 

  • Harold FM (1990) To shape a cell: an inquiry into the causes of morphogenesis of microorganisms. Microbiol Rev 54:381–431

    PubMed  CAS  Google Scholar 

  • Hartmann HA, Kahmann R, Bölker M (1996) The pheromone response factor coordinates filamentous growth and pathogenicity in Ustilago maydis. EMBO J 15:1632–1641

    PubMed  CAS  Google Scholar 

  • Hartmann HA, Krüger J, Lottspeich F, Kahmann R (1999) Environmental signals controlling sexual development of the corn smut fungus Ustilago maydis through the transcriptional regulator Prf1. Plant Cell 11:1293–1306

    PubMed  CAS  Google Scholar 

  • Heath IB (1995) The cytoskeleton. In: Gow NAR, Gadd GM (eds) The growing fungus. Chapman and Hall, London, pp 99–134

    Google Scholar 

  • Horio T, Oakley BR (2005) The role of microtubules in rapid hyphal tip growth of Aspergillus nidulans. Mol Biol Cell 16:918–926

    PubMed  CAS  Google Scholar 

  • Huber SM, Lottspeich F, Kämper J (2002) A gene that encodes a product with similarity to dioxygenases is highly expressed in teliospores of Ustilago maydis. Mol Gen Genomics 267:757–771

    CAS  Google Scholar 

  • Huckaba TM, Gay AC, Pantalena LF, Yang HC, Pon LA (2004) Live cell imaging of the assembly, disassembly, and actin cable-dependent movement of endosomes and actin patches in the budding yeast, Saccharomyces cerevisiae. J Cell Biol 167:519–530

    PubMed  CAS  Google Scholar 

  • Huffaker TC, Thomas JH, Botstein D (1988) Diverse effects of beta-tubulin mutations on microtubule formation and function. J Cell Biol 106:1997–2010

    PubMed  CAS  Google Scholar 

  • Johnston GC, Prendergast JA, Singer RA (1991) The Saccharomyces cerevisiae MYO2 gene encodes an essential myosin for vectorial transport of vesicles. J Cell Biol 113:539–551

    PubMed  CAS  Google Scholar 

  • Kaffarnik F, Müller P, Leibundgut M, Kahmann R, Feldbrügge M (2003) PKA and MAPK phosphorylation of Prf1 allows promoter discrimination in Ustilago maydis. EMBO J 22:5817–5826

    PubMed  CAS  Google Scholar 

  • Kahmann R, Kämper J (2004) Ustilago maydis: how its biology relates to pathogenic development. New Phytol 164:31–42

    CAS  Google Scholar 

  • Kahmann R, Basse C, Feldbrügge M (1999) Fungal-plant signalling in the Ustilago maydis-maize pathosystem. Curr Opin Microbiol 2:647–650

    PubMed  CAS  Google Scholar 

  • Kaksonen M, Sun Y, Drubin DG (2003) A pathway for association of receptors, adaptors, and actin during endocytic internalization. Cell 115:475–487

    PubMed  CAS  Google Scholar 

  • Kämper J (2004) A PCR-based system for highly efficient generation of gene replacement mutants in Ustilago maydis. Mol Gen Genomics 271:103–110

    Google Scholar 

  • Kämper J, Reichmann M, Romeis T, Bölker M, Kahmann R (1995) Multiallelic recognition: nonself-dependent dimerization of the bE and bW homeodomain proteins in Ustilago maydis. Cell 81:73–83

    PubMed  Google Scholar 

  • Klose J, de Sa MM, Kronstad JW (2004) Lipid-induced filamentous growth in Ustilago maydis. Mol Microbiol 52:823–835

    PubMed  CAS  Google Scholar 

  • Kronstad JW, Leong SA (1990) The b mating-type locus of Ustilago maydis contains variable and constant regions. Genes Dev 4:1384–1395

    PubMed  CAS  Google Scholar 

  • Krüger J, Loubradou G, Regenfelder E, Hartmann A, Kahmann R (1998) Crosstalk between cAMP and pheromone signalling pathways in Ustilago maydis. Mol Gen Genet 260:193–198

    PubMed  Google Scholar 

  • Krüger J, Loubradou G, Wanner G, Regenfelder E, Feldbrügge M, Kahmann R (2000) Activation of the cAMP pathway in Ustilago maydis reduces fungal proliferation and teliospore formation in plant tumors. Mol Plant Microbe Interact 13:1034–1040

    PubMed  Google Scholar 

  • Kübler E, Riezman H (1993) Actin and fimbrin are required for the internalization step of endocytosis in yeast. EMBO J 12:2855–2862

    PubMed  Google Scholar 

  • Lee N, Kronstad JW (2002) ras2 controls morphogenesis, pheromone response, and pathogenicity in the fungal pathogen Ustilago maydis. Eukaryot Cell 1:954–966

    PubMed  CAS  Google Scholar 

  • Lee N, D’Souza C, Kronstad JW (2003) Of smuts, blasts, mildews, and blights: cAMP signalling in phytophatogenic fungi. Annu Rev Phytopathol 41:399–427

    PubMed  CAS  Google Scholar 

  • Lehmler C, Steinberg G, Snetselaar KM, Schliwa M, Kahmann R, Bölker M (1997) Identification of a motor protein required for filamentous growth in Ustilago maydis. EMBO J 16:3464–3473

    PubMed  CAS  Google Scholar 

  • Leveleki L, Mahlert M, Sandrock B, Bölker M (2004) The PAK family kinase Cla4 is required for budding and morphogenesis in Ustilago maydis. Mol Microbiol 54:396–406

    PubMed  CAS  Google Scholar 

  • Loubradou G, Brachmann A, Feldbrügge M, Kahmann R (2001) A homolog of the transcriptional repressor Ssn6p antagonizes cAMP signalling in Ustilago maydis. Mol Microbiol 40:719–730

    PubMed  CAS  Google Scholar 

  • Mahlert M, Leveleki L, Hlubek A, Sandrock B, Bölker M (2005) Rac1 and Cdc42 regulate hyphal growth and cytokinesis in the dimorphic fungus Ustilago maydis. Mol Microbiol (in press)

    Google Scholar 

  • Martinez-Espinoza AD, Ruiz-Herrera J, Leon-Ramirez CG, Gold SE (2004) MAP kinase and cAMP signaling pathways modulate the pH-induced yeast-to-mycelium dimorphic transition in the corn smut fungus Ustilago maydis. Curr Microbiol 49:274–281

    PubMed  CAS  Google Scholar 

  • Mayorga ME, Gold SE (1999) A MAP kinase encoded by the ubc3 gene of Ustilago maydis is required for filamentous growth and full virulence. Mol Microbiol 34:485–497

    PubMed  CAS  Google Scholar 

  • Mayorga ME, Gold SE (2001) The ubc2 gene of Ustilago maydis encodes a putative novel adaptor protein required for filamentous growth, pheromone response and virulence. Mol Microbiol 41:1365–1379

    PubMed  CAS  Google Scholar 

  • Müller P, Aichinger C, Feldbrügge M, Kahmann R (1999) The MAP kinase Kpp2 regulates mating and pathogenic development in Ustilago maydis. Mol Microbiol 34:1007–1017

    PubMed  Google Scholar 

  • Müller P, Katzenberger JD, Loubradou G, Kahmann R (2003a) Guanyl nucleotide exchange factor Sql2 and Ras2 regulate filamentous growth in Ustilago maydis. Eukaryot Cell 2:609–617

    PubMed  Google Scholar 

  • Müller P, Weinzierl G, Brachmann A, Feldbrügge M, Kahmann R (2003b) Mating and pathogenic development of the smut fungus Ustilago maydis are regulated by one mitogen-activated protein kinase cascade. Eukaryot Cell 2:1187–1199

    PubMed  Google Scholar 

  • Müller P, Leibbrandt A, Teunissen H, Cubasch S, Aichinger C, Kahmann R (2004) The Gß-subunit-encoding gene bpp1 controls cyclic-AMP signaling in Ustilago maydis. Eukaryot Cell 3:806–814

    PubMed  Google Scholar 

  • Nugent KG, Choffe K, Saville BJ (2004) Gene expression during Ustilago maydis diploid filamentous growth: EST library creation and analyses. Fungal Genet Biol 41:349–360

    PubMed  CAS  Google Scholar 

  • Oakley BR, Akkari YN (1999) Gamma-tubulin at ten: progress and prospects. Cell Struct Funct 24:365–372

    PubMed  CAS  Google Scholar 

  • O’Donnell KL, McLaughlin DJ (1984) Postmeiotic mitosis, basidiospore development, and septation in Ustilago maydis. Mycologia 76:486–502

    Google Scholar 

  • Olofsson B (1999) Rho guanine dissociation inhibitors: pivotal molecules in cellular signalling. Cell Signal 11:545–554

    PubMed  CAS  Google Scholar 

  • Quadbeck-Seeger C, Wanner G, Huber S, Kahmann R, Kämper J (2000) A protein with similarity to the human retinoblastoma binding protein 2 acts specifically as a repressor for genes regulated by the b mating type locus in Ustilago maydis. Mol Microbiol 38:154–166

    PubMed  CAS  Google Scholar 

  • Regenfelder E, Spellig T, Hartmann A, Lauenstein S, Bölker M, Kahmann R (1997) G proteins in Ustilago maydis: transmission of multiple signals? EMBO J 16:1934–1942

    PubMed  CAS  Google Scholar 

  • Reichmann M, Jamnischek A, Weinzierl G, Ladendorf O, Huber S, Kahmann R, Kämper J (2002) The histone deacetylase Hda1 from Ustilago maydis is essential for teliospore development. Mol Microbiol 46:1169–1182

    PubMed  CAS  Google Scholar 

  • Romeis T, Brachmann A, Kahmann R, Kämper J (2000) Identification of a target gene for the bE-bW homeodomain protein complex in Ustilago maydis. Mol Microbiol 37:54–66

    PubMed  CAS  Google Scholar 

  • Sacadura NT, Saville BJ (2003) Gene expression and EST analyses of Ustilago maydis germinating teliospores. Fungal Genet Biol 40:47–64

    PubMed  CAS  Google Scholar 

  • Santos B, Snyder M (1997) Targeting of chitin synthase 3 to polarized growth sites in yeast requires Chs5p and Myo2p. J Cell Biol 136:95–110

    PubMed  CAS  Google Scholar 

  • Sawin KE, Nurse P (1998) Regulation of cell polarity by microtubules in fission yeast. J Cell Biol 142:457–471

    PubMed  CAS  Google Scholar 

  • Schauwecker F, Wanner G, Kahmann R (1995) Filament-specific expression of a cellulase gene in the dimorphic fungus Ustilago maydis. Biol Chem Hoppe Seyler 376:617–625

    PubMed  CAS  Google Scholar 

  • Schuchardt I, Aßmann D, Thines E, Schuberth C, Steinberg G (2005) Myosin-V, Kinesin-1, and Kinesin-3 cooperate in long-distance transport in hyphal growth of the fungus Ustilago maydis, Mol Biol Cell (in press)

    Google Scholar 

  • Schulz B, Banuett F, Dahl M, Schlesinger R, Schäfer W, Martin T, Herskowitz I, Kahmann R (1990) The b alleles of U. maydis, whose combinations program pathogenic development, code for polypeptides containing a homeodomain-related motif. Cell 60:295–306

    PubMed  CAS  Google Scholar 

  • Smith DG, Garcia-Pedrajas MD, Hong W, Yu Z, Gold SE, Perlin MH (2004) A ste20 homologue in Ustilago maydis plays a role in mating and pathogenicity. Eukaryot Cell 3:180–189

    PubMed  CAS  Google Scholar 

  • Snetselaar KM (1993) Microscopic observation of Ustilago maydis mating interactions. Exp Mycol 17:345–355

    Google Scholar 

  • Snetselaar KM, Mims CW (1994) Light and electron microscopy of Ustilago maydis hyphae in maize. Mycol Res 98:347–355

    Google Scholar 

  • Snetselaar KM, Bölker M, Kahmann R (1996) Ustilago maydis mating hyphae orient their growth toward pheromone sources. Fungal Genet Biol 20:299–312

    PubMed  Google Scholar 

  • Steinberg G (2000) The cellular roles of molecular motors in fungi. Trends Microbiol 8:162–168

    PubMed  CAS  Google Scholar 

  • Steinberg G, Wedlich-Söldner R, Brill M, Schulz I (2001) Microtubules in the fungal pathogen Ustilago maydis are highly dynamic and determine cell polarity. J Cell Sci 114:609–622

    PubMed  CAS  Google Scholar 

  • Stradal TE, Rottner K, Disanza A, Confalonieri S, Innocenti M, Scita G (2004) Regulation of actin dynamics by WASP and WAVE family proteins. Trends Cell Biol 14:303–311

    PubMed  CAS  Google Scholar 

  • Straube A, Enard W, Berner A, Wedlich-Söldner R, Kahmann R, Steinberg G (2001) A split motor domain in a cytoplasmic dynein. EMBO J 20:5091–5100

    PubMed  CAS  Google Scholar 

  • Straube A, Brill M, Oakley BR, Horio T, Steinberg G (2003) Microtubule organization requires cell cycle-dependent nucleation at dispersed cytoplasmic sites: polar and perinuclear microtubule organizing centers in the plant pathogen Ustilago maydis. Mol Biol Cell 14:642–657

    PubMed  CAS  Google Scholar 

  • Straube A, Weber I, Steinberg G (2005) A novel mechanism of nuclear envelope break-down in a fungus: nuclear migration strips off the envelope. EMBO J 24:1674–1685

    PubMed  CAS  Google Scholar 

  • That TC, Rossier C, Barja F, Turian G, Roos UP (1988) Induction of multiple germ tubes in Neurospora crassa by antitubulin agents. Eur J Cell Biol 46:68–79

    PubMed  CAS  Google Scholar 

  • Torreblanca J, Stumpferl S, Basse CW (2003) Histone deacetylase Hda1 acts as repressor of the Ustilago maydis biotrophic marker gene mig1. Fungal Genet Biol 38:22–32

    PubMed  CAS  Google Scholar 

  • Urban M, Kahmann R, Bölker M (1996a) The biallelic a mating type locus of Ustilago maydis: remnants of an additional pheromone gene indicate evolution from a multiallelic ancestor. Mol Gen Genet 250:414–420

    PubMed  CAS  Google Scholar 

  • Urban M, Kahmann R, Bölker M (1996b) Identification of the pheromone response element in Ustilago maydis. Mol Gen Genet 251:31–37

    PubMed  CAS  Google Scholar 

  • Weber I, Aßmann D, Thines E, Steinberg G (2005) Development-specific roles of polar localizing chitin syntheses in the plant pathogen Ustilago maydis, Plant Cell (in press)

    Google Scholar 

  • Weber I, Gruber C, Steinberg G (2003) A class-V myosin required for mating, hyphal growth, and pathogenicity in the dimorphic plant pathogen Ustilago maydis. Plant Cell 15:2826–2842

    PubMed  CAS  Google Scholar 

  • Wedlich-Söldner R, Bölker M, Kahmann R, Steinberg G (2000) A putative endosomal t-SNARE links exo-and endocytosis in the phytopathogenic fungus Ustilago maydis. EMBO J 19:1974–1986

    PubMed  Google Scholar 

  • Wedlich-Söldner R, Schulz I, Straube A, Steinberg G (2002a) Dynein supports motility of endoplasmic reticulum in the fungus Ustilago maydis. Mol Biol Cell 13:965–977

    PubMed  Google Scholar 

  • Wedlich-Söldner R, Straube A, Friedrich MW, Steinberg G (2002b) A balance of KIF1A-like kinesin and dynein organizes early endosomes in the fungus Ustilago maydis. EMBO J 21:2946–2957

    PubMed  Google Scholar 

  • Weinzierl G, Leveleki L, Hassel A, Kost G, Wanner G, Bölker M (2002) Regulation of cell separation in the dimorphic fungus Ustilago maydis. Mol Microbiol 45:219–231

    PubMed  CAS  Google Scholar 

  • Win TZ, Gachet Y, Mulvihill DP, May KM, Hyams JS (2001) Two type V myosins with non-overlapping functions in the fission yeast Schizosaccharomyces pombe: Myo52 is concerned with growth polarity and cytokinesis, Myo51 is a component of the cytokinetic actin ring. J Cell Sci 114:69–79

    PubMed  CAS  Google Scholar 

  • Wösten HA, Bohlmann R, Eckerskorn C, Lottspeich F, Bölker M, Kahmann R (1996) A novel class of small amphipathic peptides affect aerial hyphal growth and surface hydrophobicity in Ustilago maydis. EMBO J 15:4274–4281

    PubMed  Google Scholar 

  • Xiang X, Plamann M (2003) Cytoskeleton and motor proteins in filamentous fungi. Curr Opin Microbiol 6:628–633

    PubMed  CAS  Google Scholar 

  • Yokoyama K, Kaji H, Nishimura K, Miyaji M (1990) The role of microfilaments and microtubules in apical growth and dimorphism of Candida albicans. J Gen Microbiol 136:1067–1075

    PubMed  CAS  Google Scholar 

  • Zhang FL, Casey PJ (1996) Protein prenylation: molecular mechanisms and functional consequences. Annu Rev Biochem 65:241–269

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Feldbrügge, M., Bölker, M., Steinberg, G., Kämper, J., Kahmann, R. (2006). Regulatory and Structural Networks Orchestrating Mating, Dimorphism, Cell Shape, and Pathogenesis in Ustilago maydis . In: Kües, U., Fischer, R. (eds) Growth, Differentiation and Sexuality. The Mycota, vol 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-28135-5_18

Download citation

Publish with us

Policies and ethics