Skip to main content

Fruiting-Body Development in Ascomycetes

  • Chapter

Part of the book series: The Mycota ((MYCOTA,volume 1))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   329.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   419.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adachi K, Hamer JE (1998) Divergent cAMP signaling pathways regulate growth and pathogenesis in the rice blast fungus Magnaporthe grisea. Plant Cell 10:1361–1374

    PubMed  CAS  Google Scholar 

  • Adams TH, Wieser JK, Yu J-H (1998) Asexual sporulation in Aspergillus nidulans. Microbiol Mol Biol Rev 62:35–54

    PubMed  CAS  Google Scholar 

  • Alex LA, Borkovich KA, Simon MI (1996) Hyphal development in Neurospora crassa: involvement of a two-component histidine kinase. Proc Natl Acad Sci USA 93:3416–3421

    PubMed  CAS  Google Scholar 

  • Alexopoulos CJ, Mims CW, Blackwell M (1996) Introductory mycology. Wiley, New York

    Google Scholar 

  • Almeida T, Duarte M, Melo AM, Videira A (1999) The 24-kDa iron-sulphur subunit of complex I is required for enzyme activity. Eur J Biochem 265:86–93

    PubMed  CAS  Google Scholar 

  • Aramayo R, Peleg Y, Addison R, Metzenberg R (1996) Asm-1 +, a Neurospora crassa gene related to transcriptional regulators of fungal development. Genetics 144:991–1003

    PubMed  CAS  Google Scholar 

  • Arnaise S, Zickler D, Poisier C, Debuchy R (2001) pah1: a homeobox gene involved in hyphal morphology and microconidiogenesis in the filamentous ascomycete Podospora anserina. Mol Microbiol 39:54–64

    PubMed  CAS  Google Scholar 

  • Baasiri RA, Lu X, Rowley PS, Turner GE, Borkovich KA (1997) Overlapping functions for two G protein α subunits in Neurospora crassa. Genetics 147:137–145

    PubMed  CAS  Google Scholar 

  • Babai-Ahary A, Daboussi-Bareyre MJ, Parisot D (1982) Isolation and genetic analysis of self-sterility and perithecial pigmentation mutants in a homothallic isolate of Nectria haematococca. Can J Bot 60:79–84

    Google Scholar 

  • Bailey LA, Ebbole DJ (1998) The fluffy gene of Neurospora crassa encodes a Gal4p-type C6 zinc cluster protein required for conidial development. Genetics 148:1813–1820

    PubMed  CAS  Google Scholar 

  • Balestrini R, Mainieri D, Soragni E, Garnero L, Rollino S, Viotti A, Ottonello S, Bonfante P (2000) Differential expression of chitin synthase III and IV mRNAs in ascomata of Tuber borchii Vittad. Fungal Genet Biol 31:291–232

    Google Scholar 

  • Ballario P, Vittorioso P, Magrelli A, Talora C, Cabibbo A, Macino G (1996) White collar-1, a central regulator of blue-light responses in Neurospora, is a zinc finger protein. EMBO J 15:1650–1657

    PubMed  CAS  Google Scholar 

  • Balogh J, Tunlid A, Rosen S (2003) Deletion of a lectin gene does not affect the phenotype of the nematode-trapping fungusArthrobotrys oligospora. Fungal Genet Biol 39:128–135

    PubMed  CAS  Google Scholar 

  • Barr ME (2001) Ascomycota. In: McLaughlin DJ, McLaughlin EG, Lemke PA (eds) The Mycota, vol 7A. Systematics and evolution, part A. Springer, Berlin Heidelberg New York, pp 161–177

    Google Scholar 

  • Barreau C, Iskandar M, Loubradou G, Levallois V, Begueret J (1998) The mod-A suppressor of nonallelic heterokaryon incompatibility in Podospora anserina encodes a proline-rich polypeptide involved in female organ formation. Genetics 149:915–926

    PubMed  CAS  Google Scholar 

  • Bell-Pedersen D, Dunlap JC, Loros JJ (1992) The Neurospora circadian clock-controlled gene, ccg-2, is allelic to eas and encodes a fungal hydrophobin required for formation of the conidial rodlet layer. Genes Dev 6:2382–2394

    PubMed  CAS  Google Scholar 

  • Benjamin CR (1955) Ascocarps of Aspergillus and Penicillium. Mycologia 47:669–687

    Google Scholar 

  • Berbee ML, Carmean DA, Winka K (2000) Ribosomal DNA and resolution of branching order among the Ascomycota: how many nucleotides are enough? Mol Phylogenet Evol 17:337–344

    PubMed  CAS  Google Scholar 

  • Berteaux-Lecellier V, Picard M, Thompson-Coffe C, Zickler D, Panvier-Adoutte A, Simonet JM (1995) A non-mammalian homolog of the PAF1 gene (Zellweger syndrome) discovered as a gene involved in caryogamy in the fungus Podospora anserina. Cell 81:1043–1051

    PubMed  CAS  Google Scholar 

  • Berteaux-Lecellier V, Zickler D, Debuchy R, Panvier-Adoutte A, Thompson-Coffe C, Picard M (1998) A homologue of the yeast SHE4 gene is essential for the transition between the syncytial and cellular stages during sexual reproduction of the fungus Podospora anserina. EMBO J 17:1248–1258

    PubMed  CAS  Google Scholar 

  • Bieszke JA, Braun EL, Bean LE, Kang S, Natvig DO, Borkovich KA (1999) The nop-1 gene of Neurospora crassa encodes a seven transmembrane helix retinal-binding protein homologous to archaeal rhodopsins. Proc Natl Acad Sci USA 96:8034–8039

    PubMed  CAS  Google Scholar 

  • Bistis GN (1981) Chemotrophic interactions between trichogynes and conidia of the opposite mating type in Neurospora crassa. Mycologia 73:959–975

    Google Scholar 

  • Bistis GN (1983) Evidence for diffusible mating-type specific trichogyne attractants in Neurospora crassa. Exp Mycol 7:292–295

    CAS  Google Scholar 

  • Bistis GN, Perkins DD, Read ND (2003) Different cell types in Neurospora crassa. Fungal Genet Biol 50:17–19

    Google Scholar 

  • Bobrowicz P, Pawlak R, Correa A, Bell-Pedersen D, Ebbole DJ (2002) The Neurospora crassa pheromone precursor genes are regulated by the mating type locus and the circadian clock. Mol Microbiol 45:795–804

    PubMed  CAS  Google Scholar 

  • Borghouts C, Osiewacz HD (1998) GRISEA, a copper-modulated transcription factor from Podospora anserina involved in senescence and morphogenesis, is an ortholog of MAC1 in Saccharomyces cerevisiae. Mol Gen Genet 260:492–502

    PubMed  CAS  Google Scholar 

  • Borkovich KA, Alex LA, Yarden O, Freitag M, Turner GE, Read ND, Seiler S, Bell-Pedersen D, Paietta J, Plesofsky N et al. (2004) Lessons from the genome sequence of Neurospora crassa: tracing the path from genomic blueprint to multicellular organism. Microbiol Mol Biol Rev 68:1–108

    PubMed  CAS  Google Scholar 

  • Bouhouche K, Zickler D, Debuchy R, Arnaise S (2004) Altering a gene involved in nuclear distribution increases the repeat-induced point mutation process in the fungus Podospora anserina. Genetics 167:151–159

    PubMed  CAS  Google Scholar 

  • Bowman EJ, Kendle R, Bowman BJ (2000) Disruption of vma-1, the gene encoding the catalytic subunit of the vacuolar H(+)-ATPase, causes severe morphological changes in Neurospora crassa. J Biol Chem 275:167–176

    PubMed  CAS  Google Scholar 

  • Braus GH, Krappmann S, Eckert SE (2002) Sexual development in ascomycetes — fruit body formation of Aspergillus nidulans. In: Osiewacz HD (ed) Molecular biology of fungal development. Dekker, New York, pp 215–244

    Google Scholar 

  • Bruggeman J, Debets AJ, Wijngaarden PJ, deVisser JA, Hoekstra RF (2003) Sex slows down the accumulation of deleterious mutations in the homothallic fungus Aspergillus nidulans. Genetics 164:479–485

    PubMed  CAS  Google Scholar 

  • Bruggeman J, Debets AJ, Hoekstra RF(2004) Selection arena in Aspergillus nidulans. Fungal Genet Biol 41:181–188

    PubMed  Google Scholar 

  • Bruno KS, Aramayo R, Minke PF, Metzenberg RL, Plamann M (1996) Loss of growth polarity and mislocalization of septa in a Neurospora mutant altered in the regulatory subunit of cAMP-dependent protein kinase. EMBO J 15:5572–5582

    Google Scholar 

  • Busby TM, Miller KY, Miller BL (1996) Suppression and enhancement of the Aspergillus nidulans medusa mutation by altered dosage of the bristle and stunted genes. Genetics 143:155–163

    PubMed  CAS  Google Scholar 

  • Busch S, Hoffmann B, Valerius O, Starke K, Düvel K, Braus GH (2001) Regulation of the Aspergillus nidulans hisB gene by histidine starvation. Curr Genet 38:314–322

    PubMed  CAS  Google Scholar 

  • Busch S, Eckert SE, Krappmann S, Braus GH (2003) The COP9 signalosome is an essential regulator of development in the filamentous fungus Aspergillus nidulans. Mol Microbiol 49:717–730

    PubMed  CAS  Google Scholar 

  • Bussink HJ, Osmani SA (1998) A cyclin-dependent kinase family member (PHOA) is required to link developmental fate to environmental conditions in Aspergillus nidulans. EMBO J 17:3990–4003

    PubMed  CAS  Google Scholar 

  • Calvo AM, Gardner HW, Keller NP (2001) Genetic connection between fatty acid metabolism and sporulation in Aspergillus nidulans. J Biol Chem 276:25766–25774

    PubMed  CAS  Google Scholar 

  • Catlett NL, Yoder OC, Turgeon BG (2003) Whole-genome analysis of two-component signal transduction genes in fungal pathogens. Eukaryot Cell 2:1151–1161

    PubMed  CAS  Google Scholar 

  • Champe SP, Nagle DL, Yager LN (1994) Sexual sporulation. In: Martinelli SD, Kinghorn JR (eds) Aspergillus: 50 years on. Elsevier, Amsterdam, pp 429–454

    Google Scholar 

  • Choi W, Dean RA (1997) The adenylate cyclase gene MAC1 of Magnaporthe grisea controls appressorium formation and other aspects of growth and development. Plant Cell 9:1973–1983

    PubMed  CAS  Google Scholar 

  • Claussen P (1912) Zur Entwicklungsgeschichte der Ascomyceten. Pyronema confluens. Zeitschr Bot 4:1–63

    Google Scholar 

  • Contamine V, Zickler D, Picard M (2004) The Podospora rmp1 gene implicated in nucleus-mitochondria crosstalk encodes an essential protein whose subcellular location is developmentally regulated. Genetics 166:135–150

    PubMed  CAS  Google Scholar 

  • Coppin E (2002) The fle1 gene encoding a C2H2 zinc finger protein co-ordinates male and female sexual differentiation in Podospora anserina. Mol Microbiol 43:1255–1268

    PubMed  CAS  Google Scholar 

  • Coppin E, Debuchy R, Arnaise S, Picard M (1997) Mating types and sexual development in filamentous ascomycetes. Microbiol Mol Biol Rev 61:411–428

    PubMed  CAS  Google Scholar 

  • Coppin E, de Renty C, Debuchy R (2005) The function of the coding sequences for the putative pheromone precursors in Podospora anserina is restricted to fertilization. Eukaryot Cell 4:407–420

    PubMed  CAS  Google Scholar 

  • Davis R, Perkins DD (2002) Neurospora: a model of model microbes. Nat Rev Genet 3:7–13

    Google Scholar 

  • Degani O, Maor R, Hadar R, Sharon A, Horwitz BA (2004) Host physiology and pathogenic variation of Cochliobolus heterostrophus strains with mutations in the G protein alpha subunit, CGA1. Appl Environ Microbiol 70:5005–5009

    PubMed  CAS  Google Scholar 

  • Degli Innocenti F, Russo VEA (1983) Photoinduction of protoperithecia in Neurospora crassa by blue light. Photochem Photobiol 37:49–51

    Google Scholar 

  • Degli Innocenti F, Russo VEA (1984) Isolation of new white collar mutants of Neurospora crassa and studies on their behavior in the blue light-induced formation of protoperithecia. J Bacteriol 159:757–761

    PubMed  CAS  Google Scholar 

  • Dickman MB, Yarden O (1999) Serine/threonine protein kinases and phosphatases in filamentous fungi. Fungal Genet Biol 26:99–117

    PubMed  CAS  Google Scholar 

  • Dohlman HG (2002) G proteins and pheromone signaling. Annu Rev Physiol 64:129–152

    PubMed  CAS  Google Scholar 

  • Duarte M, Videira A (2000) Respiratory chain complex I is essential for sexual development in Neurospora and binding of iron sulfur clusters are required for enzyme assembly. Genetics 156:607–615

    PubMed  CAS  Google Scholar 

  • Duarte M, Mota N, Pinto L, Videira A (1998) Inactivation of the gene coding for the 30.4-kDa subunit of respiratory chain NADH dehydrogenase: is the enzyme essential for Neurospora? Mol Gen Genet 257:368–375

    PubMed  CAS  Google Scholar 

  • Dutton JR, Johns S, Miller BL (1997) StuAp is a sequence-specific transcription factor that regulates developmental complexity in Aspergillus nidulans. EMBO J 16:5710–5721

    PubMed  CAS  Google Scholar 

  • Dyer PS, Ingram DS, Johnstone K (1992) The control of sexual morphogenesis in the Ascomycotina. Biol Rev 67:421–458

    Google Scholar 

  • Dyer PS, Ingram DS, Johnstone K (1993) Evidence for the involvement of linoleic acid and other endogenous lipid factors in perithecial development of Nectria haematococca mating population VI. Mycol Res 97:485–496

    CAS  Google Scholar 

  • Dyer PS, Paoletti M, Archer DB (2003) Genomics reveals sexual secrets of Aspergillus. Microbiology 149:2301–2303

    PubMed  CAS  Google Scholar 

  • Eckert SE, Hoffmann B, Wanke C, Braus GH (1999) Sexual development of Aspergillus nidulans in tryptophan auxotrophic strains. Arch Microbiol 172:157–166

    PubMed  CAS  Google Scholar 

  • Eckert SE, Kübler E, Hoffmann B, Braus GH (2000) The tryptophan synthase-encoding trpB gene of Aspergillus nidulans is regulated by the cross-pathway control system. Mol Gen Genet 263:867–876

    PubMed  CAS  Google Scholar 

  • Ellis TT, Reynolds DR, Alexopoulus CJ (1973) Hülle cell development in Emericella nidulans. Mycologia 65:1028–1035

    Google Scholar 

  • Esser K (1982) Cryptogams. Cambridge University Press, Cambridge

    Google Scholar 

  • Esser K, Straub J (1958) Genetische Untersuchungen an Sordaria macrospora Auersw.: Kompensation und Induktion bei genbedingten Entwicklungsdefekten. Z Vererbungslehre 89:729–746

    CAS  Google Scholar 

  • Fang EG, Dean RA (2000) Site-directed mutagenesis of the magB gene affects growth and development in Magnaporthe grisea. Mol Plant Microbe Interact 13:1214–1227

    PubMed  CAS  Google Scholar 

  • Fecke W, Sled VD, Ohnishi T, Weiss H (1994) Disruption of the gene encoding the NADH-binding subunit of NADH: ubiquinone oxidoreductase in Neurospora crassa. Formation of a partially assembled enzyme without FMN and the iron-sulphur cluster N-3. Eur J Biochem 220:551–558

    PubMed  CAS  Google Scholar 

  • Feng B, Haas H, Marzluf GA (2000) ASD4, a new GATA factor of Neurospora crassa, displays sequence-specific DNA binding and functions in ascus and ascospore development. Biochemistry 39:11065–11073

    PubMed  CAS  Google Scholar 

  • Fillinger S, Chaveroche MK, Shimizu K, Keller N, d’Enfert C (2002) cAMP and ras signalling independently control spore germination in the filamentous fungus Aspergillus nidulans. Mol Microbiol 44:1001–1016

    PubMed  CAS  Google Scholar 

  • Fischer R (2002) Conidiation in Aspergillus nidulans. In: Osiewacz HD (ed) Molecular biology of fungal development. Dekker, New York, pp 59–86

    Google Scholar 

  • Froehlich AC, Liu Y, Loros JJ, Dunlap JC (2002) White Collar-1, a circadian blue light photoreceptor, binding to the frequency promoter. Science 297:815–819

    PubMed  CAS  Google Scholar 

  • Fuchs U, Czymmek KJ, Sweigard JA (2004) Five hydrophobin genes in Fusarium verticillioides include two required for microconidial chain formation. Fungal Genet Biol 41:852–864

    PubMed  CAS  Google Scholar 

  • Furukawa K, Katsuno Y, Urao T, Yabe T, Yamada-Okabe T, Yamada-Okabe H, Yamagata Y, Abe K, Nakajima T (2002) Isolation and functional analysis of a gene, tcsB, encoding a transmembrane hybrid-type histidine kinase from Aspergillus nidulans. Appl Environ Microbiol 68:5304–5310

    PubMed  CAS  Google Scholar 

  • Gagny B, Silar P (1998) Identification of the genes encoding the cytosolic translation release factors from Podospora anserina and analysis of their role during the life cycle. Genetics 149:1763–1775

    PubMed  CAS  Google Scholar 

  • Galagan JE, Selker EU (2004) RIP: the evolutionary cost of genome defense. Trends Genet 20:417–423

    PubMed  CAS  Google Scholar 

  • Galagan JE, Calvo SE, Borkovich KA, Selker EU, Read ND, Jaffe D, FitzHugh W, Ma LJ, Smirnov S, Purcell S et al. (2003) The genome sequence of the filamentous fungus Neurospora crassa. Nature 422:859–868

    PubMed  CAS  Google Scholar 

  • Gao S, Nuss DL (1996) Distinct roles for two G protein α subunits in fungal virulence, morphology, and reproduction revealed by targeted gene disruption. Proc Natl Acad Sci USA 93:14122–14127

    PubMed  CAS  Google Scholar 

  • Goodrich-Tanrikulu M, Howe K, Stafford A, Nelson MA (1998) Changes in fatty acid composition of Neurospora crassa accompany sexual development and ascospore germination. Microbiology 144:1713–1720

    PubMed  CAS  Google Scholar 

  • Goodrich-Tanrikulu M, Jacobson DJ, Stafford AE, Lin JT, McKeon TA (1999) Characterization of Neurospora crassa mutants isolated following repeat-induced point mutation of the beta subunit of fatty acid synthase. Curr Genet 36:147–152

    PubMed  CAS  Google Scholar 

  • Graia F, Berteaux-Lecellier V, Zickler D, Picard M (2000) ami1, an orthologue of the Aspergillus nidulans apsA gene, is involved in nuclear migration events throughout the life cycle of Podospora anserina. Genetics 155:633–646

    PubMed  CAS  Google Scholar 

  • Graziani S, Vasnier C, Daboussi MJ (2004) Novel polyketide synthase from Nectria haematococca. Appl Environ Microbiol 70:2984–2988

    PubMed  CAS  Google Scholar 

  • Han DM, Han YK, Lee YH, Jahng KY, Jahng SH, Chae KS (1990) Inhibitory conditions of asexual development and their application for the screening of mutants defective in sexual development. Korean J Mycol 18:225–232

    Google Scholar 

  • Han DM, Han YK, Kim JH, Jahng KY, Chung YS, Chae KS (1994) Isolation and characterization of NSD mutants in Aspergillus nidulans. Korean J Mycol 22:1–7

    Google Scholar 

  • Han KY, Cheong SS, Hoe HS, Han DM (1998) Characterization of several NSD mutants of Aspergillus nidulans that never undergo sexual development. Korea J Genet 20:257–264

    CAS  Google Scholar 

  • Han KH, Han KY, Yu JH, Chae KS, Jahng KY, Han DM (2001) The nsdD gene encodes a putative GATA-type transcription factor necessary for sexual development of Aspergillus nidulans. Mol Microbiol 41:299–309

    PubMed  CAS  Google Scholar 

  • Han KH, Seo JA, Yu JH (2004) A putative G protein-coupled receptor negatively controls sexual development in Aspergillus nidulans. Mol Microbiol 51:1333–1345

    PubMed  CAS  Google Scholar 

  • Harding RW, Melles S (1983) Genetic analysis of phototropism of Neurospora crassa perithecial beaks using white collar and albino mutants. Plant Physiol 72:996–1000

    PubMed  Google Scholar 

  • He Q, Cheng P, Yang Y, Wang L, Gardner K, Liu Y (2002) White collar-1, a DNA binding transcription factor and a light sensor. Science 297:840–843

    PubMed  CAS  Google Scholar 

  • Hermann TE, Kurtz MB, Champe SP (1983) Laccase localized in Hülle cells and cleistothecial primordia of Aspergillus nidulans. J Bacteriol 154:955–964

    PubMed  CAS  Google Scholar 

  • Herskowitz I (1989) A regulatory hierarchy for cell specialization in yeast. Nature 342:749–757

    PubMed  CAS  Google Scholar 

  • Hock B, Bahn M, Walk RA, Nitschke U (1978) The control of fruiting body formation in the ascomycete Sordaria macrospora Auersw. by regulation of hyphal development. Planta 141:93–103

    Google Scholar 

  • Hoffmann B, Wanke C, Lapaglia SK, Braus GH (2000) c-Jun and RACK1 homologues regulate a control point for sexual development in Aspergillus nidulans. Mol Microbiol 37:28–41

    PubMed  CAS  Google Scholar 

  • Hoffmann B, Eckert SE, Krappmann S, Braus GH (2001a) Sexual diploids of Aspergillus nidulans do not form by random fusion of nuclei in the heterokaryon. Genetics 157:141–147

    PubMed  CAS  Google Scholar 

  • Hoffmann B, Valerius O, Anderman M, Braus GH (2001b) Transcriptional autoregulation and inhibition of mRNA translation of amino acid regulator gene cpcA of filamentous fungus Aspergillus nidulans. Mol Biol Cell 12:2846–2857

    PubMed  CAS  Google Scholar 

  • Hohmann S (2002) Osmotic stress signaling and osmoadaptation in yeasts. Microbiol Mol Biol Rev 66:300–372

    PubMed  CAS  Google Scholar 

  • Horwitz BA, Sharon A, Lu SW, Ritter V, Sandrock TM, Yoder OC, Turgeon BG (1999) A G protein alpha subunit from Cochliobolus heterostrophus involved in mating and appressorium formation. Fungal Genet Biol 26:19–32

    PubMed  CAS  Google Scholar 

  • Hou Z, Xue C, Peng Y, Katan T, Kistler HC, Xu JR (2002) A mitogen-activated protein kinase gene (MGV1) in Fusarium graminearum is required for female fertility, heterokaryon formation, and plant infection. Mol Plant Microbe Interact 15:1119–1127

    PubMed  CAS  Google Scholar 

  • Howard RJ, Valent B (1996) Breaking and entering: host penetration by the fungal rice blast pathogen Magnaporthe grisea. Annu Rev Microbiol 50:491–512

    PubMed  CAS  Google Scholar 

  • Ito S, Matsui Y, Toh-e A, Harashima T, Inoue H (1997) Isolation and characterization of the krev-1 gene, a novel member of ras superfamily in Neurospora crassa: involvement in sexual cycle progression. Mol Gen Genet 255:429–437

    PubMed  CAS  Google Scholar 

  • Ivey FD, Hodge PN, Turner GE, Borkovich KA (1996) The Gαi homologue gna-1 controls multiple differentiation pathways in Neurospora crassa. Mol Biol Cell 7:1283–1297

    PubMed  CAS  Google Scholar 

  • Ivey FD, Kays AM, Borkovich KA (2002) Shared and independent roles for a Gαi protein and adenylyl cyclase in regulating development and stress responses in Neurospora crassa. Eukaryot Cell 1:634–642

    PubMed  CAS  Google Scholar 

  • Jacobson ES (2000) Pathogenic roles for fungal melanins. Clin Microbiol Rev 13:708–717

    PubMed  CAS  Google Scholar 

  • Johnson TE (1978) Isolation and characterization of perithecial developmental mutants in Neurospora. Genetics 88:27–47

    Google Scholar 

  • Kawasaki L, Sanchez O, Shiozaki K, Aguirre J (2002) SakA MAP kinase is involved in stress signal transduction, sexual development and spore viability in Aspergillus nidulans. Mol Microbiol 45:1153–1163

    PubMed  CAS  Google Scholar 

  • Kays AM, Borkovich KA (2004) Severe impairment of growth and differentiation in a Neurospora crassa mutant lacking all heterotrimeric Gα proteins. Genetics 166:1229–1240

    PubMed  CAS  Google Scholar 

  • Kays AM, Rowley PS, Baasiri RA, Borkovich KA (2000) Regulation of conidiation and adenylyl cyclase levels by the Gα protein GNA-3 in Neurospora crassa. Mol Cell Biol 20:7693–7705

    PubMed  CAS  Google Scholar 

  • Kemp HA, Sprague GFJ (2003) Far3 and five interacting proteins prevent premature recovery from pheromone arrest in the budding yeast Saccharomyces cerevisiae. Mol Cell Biol 23:1750–1763

    PubMed  CAS  Google Scholar 

  • Kicka S, Silar P (2004) PaASK1, a mitogen-activated protein kinase kinase kinase that controls cell degeneration and cell differentiation in Podospora anserina. Genetics 166:1241–1252

    PubMed  CAS  Google Scholar 

  • Kim H, Borkovich KA (2004) A pheromone receptor gene, pre-1, is essential for mating type-specific directional growth and fusion of trichogynes and female fertility in Neurospora crassa. Mol Microbiol 52:1781–1798

    PubMed  CAS  Google Scholar 

  • Kim H, Metzenberg RL, Nelson MA (2002a) Multiple functions of mfa-1, a putative pheromone precursor gene of Neurospora crassa. Eukaryot Cell 1:987–999

    PubMed  CAS  Google Scholar 

  • Kim H, Kyu-Yong H, Kim KJ, Han DM, Jahng KY, Chae KS (2002b) The veA gene activates sexual development in Aspergillus nidulans. Fungal Genet Biol 37:72–80

    PubMed  CAS  Google Scholar 

  • Kirk KE, Morris NR (1991) The tubB alpha-tubulin gene is essential for sexual development in Aspergillus nidulans. Genes Dev 5:2014–2023

    PubMed  CAS  Google Scholar 

  • Kirk PM, Cannon PF, David JC, Staplers JA (2001)Ainsworth and Bisby’s dictionary of the fungi. CAB International, Wallingford, Oxon

    Google Scholar 

  • Kothe GO, Free SJ (1998) The isolation and characterization of nrc-1 and nrc-2, two genes encoding protein kinases that control growth and development in Neurospora crassa. Genetics 149:117–130

    PubMed  CAS  Google Scholar 

  • Kronstad J, Staben C (1997) Mating type in filamentous fungi. Annu Rev Genet 31:245–276

    PubMed  CAS  Google Scholar 

  • Kronstad J, de Maria AD, Funnell D, Laidlaw RD, Lee N, de Sa MM, Ramesh M (1998) Signaling via cAMP in fungi: interconnections with mitogen-activated protein kinase pathways. Arch Microbiol 170:395–404

    PubMed  CAS  Google Scholar 

  • Krystofova S, Borkovich KA (2005) The heterotrimeric G-protein subunits GNG-1 and GNB-1 forma Gβγ dimer required for normal female fertility, asexual development, and Gα protein levels in Neurospora crassa. Eukaryot Cell 4:365–378

    PubMed  CAS  Google Scholar 

  • Kück U (2005) A Sordaria macrospora mutant, lacking the leu1 gene, shows a developmental arrest during fruiting body formation. Mol Gen Genomics DOI:10.1007/s00438-005-0021-8

    Google Scholar 

  • Kües U, Liu Y (2000) Fruiting body production in basidiomycetes. Appl Microbiol Biotechnol 54:141–152

    PubMed  Google Scholar 

  • Kurtz MB, Champe SP (1981) Dominant spore color mutants of Aspergillus nidulans defective in germination and sexual development. J Bacteriol 148:629–638

    PubMed  CAS  Google Scholar 

  • Kwon KJ, Raper KB (1967) Sexuality and cultural characteristics of Aspergillus heterothallis. Am J Bot 54:36–48

    PubMed  CAS  Google Scholar 

  • Lacourt I, Duplessis S, Abbà S, Bonfante P, Martin F (2002) Isolation and characterization of differentially expressed genes in the mycelium and fruit body of Tuber borchii. Appl Env Microbiol 68:4574–4582

    CAS  Google Scholar 

  • Langfelder K, Streibel M, Jahn B, Haase G, Brakhage AA (2003) Biosynthesis of fungal melanins and their importance for human pathogenic fungi. Fungal Genet Biol 38:143–158

    PubMed  CAS  Google Scholar 

  • Lara-Ortíz T, Riveros-Rosas H, Aguirre J (2003) Reactive oxygen species generated by microbial NADPH oxidase NoxA regulate sexual development in Aspergillus nidulans. Mol Microbiol 50:1241–1255

    PubMed  Google Scholar 

  • Lee DW, Kim S, Kim SJ, Han DM, Jahng KY, Chae KS (2001) The lsdA gene is necessary for sexual development inhibition by a salt in Aspergillus nidulans. Curr Genet 39:237–243

    PubMed  CAS  Google Scholar 

  • Lee JI, Choi JH, Park BC, Park YH, Lee MY, Park HM, Maeng PJ (2004) Differential expression of the chitin synthase genes of Aspergillus nidulans, chsA, chsB, and chsC, in response to developmental status and environmental factors. Fungal Genet Biol 41:635–646

    PubMed  CAS  Google Scholar 

  • Lengeler KB, Davidson RC, D’Souza C, Harashima T, Shen WC, Wang P, Pan X, Waugh M, Heitman J (2000) Signal transduction cascades regulating fungal development and virulence. Microbiol Mol Biol Rev 64:746–785

    PubMed  CAS  Google Scholar 

  • Leslie JF, Raju NB (1985) Recessive mutations from natural populations of Neurospora crassa that are expressed in the sexual diplophase. Genetics 111:759–777

    PubMed  CAS  Google Scholar 

  • Lev S, Sharon A, Hadar R, Ma H, Horwitz BA (1998) A mitogen-activated protein kinase of the corn leaf pathogen Cochliobolus heterostrophus is involved in conidiation, appressorium formation, and pathogenicity: diverse roles for mitogen-activated protein kinase homologs in foliar pathogens. Proc Natl Acad Sci USA 96:13542–13547

    Google Scholar 

  • Li D, Bobrowicz P, Wilkinson HH, Ebbole DJ (2005) A MAP kinase pathway essential for mating and contributing to vegetative growth inNeurospora crassa. Genetics (in press)

    Google Scholar 

  • Linden H, Macino G (1997) White collar 2, a partner in blue-light signal transduction, controlling expression of light-regulated genes in Neurospora crassa. EMBO J 16:98–109

    PubMed  CAS  Google Scholar 

  • Lindenmuth R, Wirtz N, Lumbsch HT (2001) Phylogeneic analysis of nuclear and mitochondrial rDNA sequences supports the view that loculoascomycetes (Ascomycota) are not monophyletic. Mycol Res 105:1176–1181

    Google Scholar 

  • Liu S, Dean RA (1997) G protein α-subunit genes control growth, development, and pathogenicity of Magnaporthe grisea. Mol Plant Microbe Interact 10:1075–1086

    PubMed  CAS  Google Scholar 

  • Liu YJ, Whelen S, Hall BD (1999) Phylogenetic relationships among ascomycetes: evidence from an RNA polymerse II subunit. Mol Biol Evol 16:1799–1808

    PubMed  CAS  Google Scholar 

  • Loros JJ, Dunlap JC (2001) Genetic and molecular analysis of circadian rhythms in Neurospora. Annu Rev Physiol 63:757–794

    PubMed  CAS  Google Scholar 

  • Loros JJ, Denome SA, Dunlap JC (1989) Molecular cloning of genes under the control of the circadian clock in Neurospora. Science 243:385–388

    PubMed  CAS  Google Scholar 

  • Loubradou G, Bégueret J, Turcq B (1997) A mutation in an HSP90 gene affects the sexual cycle and suppresses vegetative incompatibility in the fungus Podospora anserina. Genetics 147:581–588

    PubMed  CAS  Google Scholar 

  • Loubradou G, Bégueret J, Turcq B (1999) MOD-D, a Gα subunit of the fungus Podospora anserina, is involved in both regulation of development and vegetative incompatibility. Genetics 152:519–528

    PubMed  CAS  Google Scholar 

  • Lumbsch HT (2000) Phylogeny of filamentous ascomycetes. Naturwissenschaften 87:335–342

    PubMed  CAS  Google Scholar 

  • Lumbsch HT, Lindemuth R, Schmitt I (2000) Evolution of filamentous ascomycetes interferred from LSU rRNA sequence data. Plant Biol 2:525–529

    CAS  Google Scholar 

  • Malagnac F, Lalucque H, Lepere G, Silar P (2004) Two NADPH oxidase isoforms are required for sexual reproduction and ascospore germination in the filamentous fungus Podospora anserina. Fungal Genet Biol 41:982–997

    PubMed  CAS  Google Scholar 

  • Marshall MR, Hindal DF, MacDonald WL (1982) Production of perithecia in culture by Ceratocystis ulmi. Mycologia 74:376–381

    CAS  Google Scholar 

  • Masloff S, Pöggeler S, Kück U (1999) The pro1 + gene from Sordaria macrospora encodes a C6 zinc finger transcription factor required for fruiting body development. Genetics 152:191–199

    PubMed  CAS  Google Scholar 

  • Masloff S, Jacobsen S, Pöggeler S, Kück U (2002) Functional analysis of the C6 zinc finger gene pro1 involved in fungal sexual development. Fungal Genet Biol 36:107–116

    PubMed  CAS  Google Scholar 

  • Mayrhofer S, Pöggeler S (2005) Functional characterization of an α-factor-like Sordaria macrospora peptide pheromone and analysis of its interaction with its cognate receptor in Saccharomyces cerevisiae. Eukaryot Cell 4:661–672

    PubMed  CAS  Google Scholar 

  • McCahill A, Warwicker J, Bolger GB, Houslay MD, Yarwood SJ (2002) The RACK1 scaffold protein: a dynamic cog in cell response mechanisms. Mol Pharmacol 62:1261–1273

    PubMed  CAS  Google Scholar 

  • Metz AM, Haddad A, Worapong J, Long DM, Ford EJ, Hess WM, Strobel GA (2000) Induction of the sexual stage of Pestalotiopsis microspora, a taxol-producing fungus. Microbiology 146:2079–2089

    PubMed  CAS  Google Scholar 

  • Mitchell TK, Dean RA (1995) The cAMP-dependent protein kinase catalytic subunit is required for appressorium formation and pathogenesis by the rice blast pathogen Magnaporthe grisea. Plant Cell 7:1869–1878

    PubMed  CAS  Google Scholar 

  • Molowitz R, Bahn M, Hock B (1976) The control of fruiting body formation in the ascomycete Sordaria macrospora Auersw. by arginine and biotin: a two-factor analysis. Planta 128:143–148

    CAS  Google Scholar 

  • Mooney JL, Yager LN (1990) Light is required for conidiation in Aspergillus nidulans. Genes Dev 4:1473–1482

    PubMed  CAS  Google Scholar 

  • Moore D (1998) Fungal morphogenesis. Cambridge University Press, Cambridge

    Google Scholar 

  • Moore-Landecker E (1979) Effect of light regimens and intensities on morphogenesis of the discomycete Pyronema domesticum. Mycologia 71:699–712

    Google Scholar 

  • Moore-Landecker E (1992) Physiology and biochemistry of ascocarp induction and development. Mycol Res 96:705–716

    CAS  Google Scholar 

  • Müller F, Krüger D, Sattlegger E, Hoffmann B, Ballario P, Kanaan M, Barthelmeß IB (1995) The cpc-2 gene of Neurospora crassa encodes a protein entirely composed of WD-repeat segments that is involved in general amino acid control and female fertility. Mol Gen Genet 248:162–173

    PubMed  Google Scholar 

  • Nelson MA, Metzenberg RL (1992) Sexual development genes of Neurospora crassa. Genetics 132:149–162

    PubMed  CAS  Google Scholar 

  • Nelson MA, Kang S, Braun EL, Crawford ME, Dolan PL, Leonard PM, Mitchell J, Armijo AM, Bean L, Blueyes E et al. (1997a) Expressed sequences from conidial, mycelial, and sexual stages of Neurospora crassa. Fungal Genet Biol 21:348–363

    PubMed  CAS  Google Scholar 

  • Nelson MA, Merino ST, Metzenberg RL (1997b) A putative rhamnogalacturonase required for sexual development of Neurospora crassa. Genetics 146:531–540

    PubMed  CAS  Google Scholar 

  • Neves SR, Ram PT, Iyengar R (2002) G protein pathways. Science 296:1636–1639

    PubMed  CAS  Google Scholar 

  • Nowrousian M, Masloff S, Pöggeler S, Kück U (1999) Cell differentiation during sexual development of the fungus Sordaria macrospora requires ATP citrate lyase activity. Mol Cell Biol 19:450–460

    PubMed  CAS  Google Scholar 

  • Nowrousian M, Kück U, Loser K, Weltring KM (2000) The fungal acl1 and acl2 genes encode two polypeptides with homology to the N-and C-terminal parts of the animal ATP citrate lyase polypeptide. Curr Genet 37:189–193

    PubMed  CAS  Google Scholar 

  • Nowrousian M, Dunlap JC, Nelson MA (2004) Functional genomics in fungi. In: Kück U (ed) The Mycota, vol II. Springer, Berlin Heidelberg New York, pp 115–128

    Google Scholar 

  • Nukina M, Sassa T, Ikeda M, Takahashi K, Toyota S (1981) Linoleic acid enhances perithecial production in Neurospora crassa. Agric Biol Chem 45:2371–2373

    CAS  Google Scholar 

  • Oda K, Hasunuma K (1997) Genetic analysis of signal transduction through light-induced protein phosphorylation in Neurospora crassa perithecia. Mol Gen Genet 256:593–601

    PubMed  CAS  Google Scholar 

  • Ogura Y, Yoshida Y, Yabe N, Hasunuma K (2001) A point mutation in nucleoside diphosphate kinase results in a deficient light response for perithecial polarity in Neurospora crassa. J Biol Chem 276:21228–21234

    PubMed  CAS  Google Scholar 

  • Osherov N, May G (2000) Conidial germination in Aspergillus nidulans requires RAS signaling and protein synthesis. Genetics 155:647–656

    PubMed  CAS  Google Scholar 

  • Osiewacz HD, Nuber U (1996) GRISEA, a putative copper-activated transcription fact or from Podospora anserina involved in differentiation and senescence. Mol Gen Genet 252:115–124

    PubMed  CAS  Google Scholar 

  • Pandey A, Roca MG, Read ND, Glass NL (2004) Role of a mitogen-activated protein kinase pathway during conidial germination and hyphal fusion in Neurospora crassa. Eukaryot Cell 3:348–358

    PubMed  CAS  Google Scholar 

  • Pascon Castiglioni R, Miller BL (2000) Morphogenesis in Aspergillus nidulans requires Dopey (DopA), a member of a novel family of leucine zipper-like proteins conserved from yeast to humans. Mol Microbiol 36:1250–1264

    Google Scholar 

  • Perkins DD, Davis R (2000) Neursopora at the millenium. Fungal Genet Biol 31:153–167

    PubMed  CAS  Google Scholar 

  • Perkins DD, Radford A, Newmeyer D, Bjorkman M (1982) Chromosomal loci of Neurospora crassa. Microbiol Rev 46:426–570

    PubMed  CAS  Google Scholar 

  • Perpetua NS, Kubo Y, Yasuda N, Takano Y, Furusawa I (1996) Cloning and characterization of a melanin biosynthetic THR1 reductase gene essential for appressorial penetration of Colletotrichum lagenarium. Mol Plant Microbe Interact 9:323–329

    PubMed  CAS  Google Scholar 

  • Pöggeler S (2000) Two pheromone precursor genes are transcriptionally expressed in the homothallic ascomycete Sordaria macrospora. Curr Genet 37:403–411

    PubMed  Google Scholar 

  • Pöggeler S (2001) Mating-type genes for classical strain improvements of ascomycetes. Appl Microbiol Biotechnol 56:589–601

    PubMed  Google Scholar 

  • Pöggeler S, Kück U (2001) Identification of transcriptionally expressed pheromone receptor genes in filamentous ascomycetes. Gene 280:9–17

    PubMed  Google Scholar 

  • Pöggeler S, Kück U (2004) A WD40 repeat protein regulates fungal cell differentiation and can functionally be replaced by the mammalian homologue striatin. Eukaryot Cell 3:232–240

    PubMed  Google Scholar 

  • Pöggeler S, Nowrousian M, Jacobsen S, Kück U (1997) An efficient procedure to isolate fungal genes from an indexed cosmid library. J Microbiol Methods 29:49–61

    Google Scholar 

  • Pontecorvo G (1953) The genetics of Aspergillus nidulans. In: Demerec M (ed) Advances in genetics. Academic Press, New York, pp 141–238

    Google Scholar 

  • Raju BB (1992) Genetic control of the sexual cycle in Neurospora. Mycol Res 96:241–262

    Google Scholar 

  • Randall TA, Metzenberg RL (1998) The mating type locus of Neurospora crassa: identification of an adjacent gene and characterization of transcripts surrounding the idiomorphs. Mol Gen Genet 259:615–621

    PubMed  CAS  Google Scholar 

  • Rosén S, Yu JH, Adams TH (1999) The Aspergillus nidulans sfaD gene encodes a G protein β-subunit that is required for normal growth and repression of sporulation. EMBO J 18:5592–5600

    PubMed  Google Scholar 

  • Scherer M, Wei H, Liese R, Fischer R (2002) Aspergillus nidulans catalase-peroxidase gene (cpeA) is transcriptionally induced during sexual development through the transcription factor StuA. Eukaryot Cell 1:725–735

    PubMed  CAS  Google Scholar 

  • Schumacher MM, Enderlin CS, Selitrennikoff CP (1997) The osmotic-1 locus of Neurospora crassa encodes a putative histidine kinase similar to osmosensors of bacteria and yeast. Curr Microbiol 34:340–347

    PubMed  CAS  Google Scholar 

  • Segers GC, Hamada W, Oliver RP, Spanu PD (1999) Isolation and characterisation of five different hydrophobin-encoding cDNAs from the fungal tomato pathogen Cladosporium fulvum. Mol Gen Genet 261:644–652

    PubMed  CAS  Google Scholar 

  • Seo JA, Han KH, Yu JH (2004) The gprA and gprB genes encode putative G protein-coupled receptors required for self-fertilization in Aspergillus nidulans. Mol Microbiol 53:1611–1623

    PubMed  CAS  Google Scholar 

  • Shen WC, Bobrowicz P, Ebbole DJ (1999) Isolation of pheromone precursor genes of Magnaporthe grisea. Fungal Genet Biol 27:253–263

    PubMed  CAS  Google Scholar 

  • Silar P, Lalucque H, Haedens V, Zickler D, Picard M (2001) eEF1A controls ascospore differentiation through elevated accuracy, but controls longevity and fruiting body formation through another mechanism in Podospora anserina. Genetics 158:1477–1489

    PubMed  CAS  Google Scholar 

  • Som T, Kolaparthi VS (1994) Developmental decisions in Aspergillus nidulans are modulated by Ras activity. Mol Cell Biol 14:5333–5348

    PubMed  CAS  Google Scholar 

  • Stringer MA, Timberlake WE (1995) dewA encodes a fungal hydrophobin component of the Aspergillus spore wall. Mol Microbiol 16:33–44

    PubMed  CAS  Google Scholar 

  • Stringer MA, Dean RA, Sewall TC, Timberlake WE (1991) Rodletless, a new Aspergillus developmental mutant induced by direct gene inactivation. Genes Dev 5:1161–1171

    PubMed  CAS  Google Scholar 

  • Stumpferl SW, Stephan O, Osiewacz HD (2004) Impact of a disruption of a pathway delivering copper to mitochondria on Podospora anserina metabolism and life span. Eukaryot Cell 3:200–211

    PubMed  CAS  Google Scholar 

  • Swart K, van Heemst D, Slakhorst M, Debets F, Heyting C (2001) Isolation and characterization of sexual sporulation mutants of Aspergillus nidulans. Fungal Genet Biol 33:25–35

    PubMed  CAS  Google Scholar 

  • Takai Y, Sasaki T, Matozaki T (2001) Small GTP-binding proteins. Physiol Rev 81:153–208

    PubMed  CAS  Google Scholar 

  • Talbot NJ, Kershaw MJ, Wakley G, de Vries O, Wessels JG, Hamer JE (1996) MPG1 encodes a fungal hydrophobin involved in surface interactions during infection-related development of Magnaporthe grisea. Plant Cell 8:985–999

    PubMed  CAS  Google Scholar 

  • Taylor SS, Yang J, Wu J, Haste NM, Radzio-Andzelm E, Anand G (2004) PKA: a portrait of protein kinase dynamics. Biochim Biophys Acta 11:259–269

    Google Scholar 

  • Tsitsigiannis DI, Zarnowski R, Keller NP (2004) The lipid body protein, PpoA, coordinates sexual and asexual sporulation in Aspergillus nidulans. J Biol Chem 279:11344–11353

    PubMed  CAS  Google Scholar 

  • Turina M, Prodi A, Alfen NK (2003) Role of the Mf1-1 pheromone precursor gene of the filamentous ascomycete Cryphonectria parasitica. Fungal Genet Biol 40:242–251

    PubMed  CAS  Google Scholar 

  • Vallim MA, Miller KA, Miller BL (2000) Aspergillus SteA (Sterile12-like) is a homeodomain-C2/H2-Zn2+ finger transcription factor required for sexual reproduction. Mol Microbiol 36:290–301

    PubMed  CAS  Google Scholar 

  • Van Heemst D, Swart K, Holub EF, van Dijk R, Offenberg HH, Goosen T, van den Broek HW, Heyting C (1997) Cloning, sequencing, disruption and phenotypic analysis of uvsC, an Aspergillus nidulans homologue of yeast RAD51. Mol Gen Genet 254:654–664

    PubMed  Google Scholar 

  • Van Heemst D, James F, Pöggeler S, Berteaux-Lecellier V, Zickler D (1999) Spo76p is a conserved chromosome morphogenesis protein that links the mitotic and meiotic programs. Cell 98:261–271

    PubMed  Google Scholar 

  • Videira A, Duarte M (2001) On complex I and other NADH:ubiquinone reductases of Neurospora crassa mitochondria. J Bioenerg Biomembr 33:197–203

    CAS  Google Scholar 

  • Vienken K, Scherer M, Fischer R (2004) The Zn(II)2Cys6 putative Aspergillus nidulans transcription factor repressor of sexual development inhibits sexual development under low-carbon conditions and in submersed culture. Genetics 169:619–630

    PubMed  Google Scholar 

  • Virginia M, Appleyard CL, McPheat WL, Stark MJ (2000) A novel ‘two-component’ protein containing histidine kinase and response regulator domains required for sporulation in Aspergillus nidulans. Curr Genet 37:364–372

    PubMed  CAS  Google Scholar 

  • Vojtek AB, Der CJ (1998) Increasing complexity of the Ras signaling pathway. J Biol Chem 273:19925–19928

    PubMed  CAS  Google Scholar 

  • Walser PJ, Velagapudi R, Aebi M, Kües U (2003) Extracellular matrix proteins in mushroom development. Recent Res Dev Microbiol 7:381–415

    CAS  Google Scholar 

  • Walz M, Kück U (1995) Transformation of Sordaria macrospora to hygromycin B resistance: characterization of transformants by electrophoretic karyotyping and tetrad analysis. Curr Genet 29:88–95

    PubMed  CAS  Google Scholar 

  • Wei H, Scherer M, Singh A, Liese R, Fischer R (2001) Aspergillus nidulans α-1,3 glucanase (mutanase), mutA, is expressed during sexual development and mobilizes mutan. Fungal Genet Biol 34:217–227

    PubMed  CAS  Google Scholar 

  • Wei H, Requena N, Fischer R (2003) The MAPKK kinase SteC regulates conidiophore morphology and is essential for heterokaryon formation and sexual development in the homothallic fungus Aspergillus nidulans. Mol Microbiol 47:1577–1588

    PubMed  CAS  Google Scholar 

  • Wei H, Vienken K, Weber R, Bunting S, Requena N, Fischer R (2004) A putative high affinity hexose transporter, hxtA, of Aspergillus nidulans is induced in vegetative hyphae upon starvation and in ascogenous hyphae during cleistothecium formation. Fungal Genet Biol 41:148–156

    PubMed  CAS  Google Scholar 

  • Widmann C, Gibson S, Jarpe MB, Johnson GL (1999) Mitogen-activated protein kinase: conservation of a three-kinase module from yeast to human. Physiol Rev 79:143–180

    PubMed  CAS  Google Scholar 

  • Wilson RA, Chang PK, Dobrzyn A, Ntambi JM, Zarnowski R, Keller NP (2004) Two Δ9-stearic acid desaturases are required for Aspergillus nidulans growth and development. Fungal Genet Biol 41:501–509

    PubMed  CAS  Google Scholar 

  • Wösten HA, van Wetter MA, Lugones LG, van der Mei HC, Busscher HJ, Wessels JG (1999) How a fungus escapes the water to grow into the air. Curr Biol 9:85–88

    PubMed  Google Scholar 

  • Wu J, Miller BL (1997) Aspergillus asexual reproduction and sexual reproduction are differentially affected by transcriptional and translational mechanisms regulating stunted gene expression. Mol Cell Biol 17:6191–6120

    PubMed  CAS  Google Scholar 

  • Wu D, Dou X, Hashmi SB, Osmani SA (2004) The Pho80-like cyclin of Aspergillus nidulans regulates development independently of its role in phosphate acquisition. J Biol Chem 279:37693–37703

    PubMed  CAS  Google Scholar 

  • Xiang Q, Rasmussen C, Glass NL (2002) The ham-2 locus, encoding a putative transmembrane protein, is required for hyphal fusion in Neurospora crassa. Genetics 160:169–180

    PubMed  CAS  Google Scholar 

  • Xu JR, Staiger CJ, Hamer JE (1998) Inactivation of the mitogen-activated protein kinase Mps1 from the rice blast fungus prevents penetration of host cells but allows activation of plant defense responses. Proc Natl Acad Sci USA 95:12713–12718

    PubMed  CAS  Google Scholar 

  • Yamashiro CT, Ebbole DJ, Lee BU, Brown RE, Bourland C, Madi L, Yanofsky C (1996) Characterization of rco-1 of Neurospora crassa, a pleiotropic gene affecting growth and development that encodes a homolog of Tup1 of Saccharomyces cerevisiae. Mol Cell Biol 16:6218–6228

    PubMed  CAS  Google Scholar 

  • Yang Q, Borkovich KA (1999) Mutational activation of a Gαi causes uncontrolled proliferation of aerial hyphae and increased sensitivity to heat and oxidative stress in Neurospora crassa. Genetics 151:107–117

    PubMed  CAS  Google Scholar 

  • Yang Q, Poole SI, Borkovich KA (2002) A G-protein β-subunit required for sexual and vegetative development and maintenance of normal Gα protein levels in Neurospora crassa. Eukaryot Cell 1:378–390

    PubMed  CAS  Google Scholar 

  • Yatzkan E, Yarden O (1999) The B regulatory subunit of protein phosphatase 2A is required for completion of macroconidiation and other developmental processes in Neurospora crassa. Mol Microbiol 31:197–209

    PubMed  CAS  Google Scholar 

  • Yoshida Y, Hasunuma K (2004) Reactive oxygen species affect photomorphogenesis inNeurospora crassa. J Biol Chem 279:6986–6993

    PubMed  CAS  Google Scholar 

  • Zhang L, Churchill ACL, Kazmierczak P, Kim DH, van Alfen NK (1993) Hypovirulence-associated traits induced by a mycovirus of Cryphonectria parasitica are mimicked by targeted inactivation of a host gene. Mol Cell Biol 13:7782–7792

    PubMed  CAS  Google Scholar 

  • Zhang L, Baasiri RA, van Alfen NK (1998) Viral repression of the fungal pheromone precursor gene expression. Mol Cell Biol 18:953–959

    PubMed  CAS  Google Scholar 

  • Zonneveld BJM (1972) Morphogenesis in Aspergillus nidulans. The significance of α-1,3-glucan of the cell wall and α-1,3-glucanase for cleistothecium development. Biochim Biophys Acta 273:174–187

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pöggeler, S., Nowrousian, M., Kück, U. (2006). Fruiting-Body Development in Ascomycetes. In: Kües, U., Fischer, R. (eds) Growth, Differentiation and Sexuality. The Mycota, vol 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-28135-5_16

Download citation

Publish with us

Policies and ethics