Skip to main content

Universal Wide Shear Zones in Granular Bulk Flow

  • Conference paper
Traffic and Granular Flow ’03

Summary

Granular matter exhibits an intricate mix of solid and liquid-like phenomena, some familiar, others remarkable, but almost always poorly understood [1–5]. In particular, when submitted to external stress, granular matter does not flow homogeneously like an ordinary fluid would. Instead, it forms rigid regions separated by narrow shear bands where the material yields and flows [1–7]. This shear localization may also be relevant for dense colloids, emulsions and foams [8–10], but for granular media it is ubiquitous- think of geological faults [11,12], avalanches [13,14] and silo discharges [2,15–17]. Empirically, shear bands are observed to be narrow, particle-shape dependent and often localize near a wall [1,2,6,7,11–21]. Here in contrast to this behaviour, we present experiments in which much wider and universal shear zones can be created in the bulk of the material. These shear zones exhibit Gaussian strain rate profiles, with position and width tunable by the experimental geometry and particle properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Duran J., Sand, powders and grains Eyrolles, Paris (1997).

    Google Scholar 

  2. Nedderman R., Statics and Kinematics of Granular Materials (Cambridge University Press 1992).

    Google Scholar 

  3. Jaeger H.M., Nagel S.R., and Behringer R.P. Granular solids, liquids and gases. Rev. Mod. Phys. 68, 1259–1272 (1996).

    Article  Google Scholar 

  4. De Gennes P.G., Granular matter: a tentative view. Rev. Mod. Phys. 71, 374–382 (1999).

    Article  Google Scholar 

  5. Jaeger H.M. and Nagel S.R., Physics of the granular state. Science 255, 1523–1531 (1992).

    Article  Google Scholar 

  6. Hartley R.R. and Behringer R.P., Nature 421, 928–930 (2003).

    Article  Google Scholar 

  7. Mueth D.M., Debrégeas G.F., Karczmar G.S., Eng P.J, Nagel S.R., and Jaeger H.M, Nature 406, 385–389 (2000).

    Article  Google Scholar 

  8. Chen L.B., Zukoski C.F., Ackerson B.J., Hanley H.J.M., Straty G.C., Barker J., and Glinka C.J., Structural Changes and Orientational Order in a Sheared Colloidal Suspension. Phys. Rev. Lett. 69, 688–691 (1992).

    Article  Google Scholar 

  9. Mason T.G., Bibette J., and Weitz D.A., Yielding and flow of monodisperse emulsions. J. of Coll. and Int. Sci. 19, 439–448 (1996).

    Article  Google Scholar 

  10. Debrégeas G., Tabuteau H., and di Meglio J-M., Deformation and Flow of a Two-Dimensional Foam under Continuous Shear. Phys. Rev. Lett. 87, 178305 (2001).

    Article  Google Scholar 

  11. Scott D.R., Seismicity and stress rotation in a granular model of the brittle crust. Nature 381, 592–595 (1996).

    Article  Google Scholar 

  12. Oda M. and Kazama H., Microstructure of shear bands and its relation to the mechanisms of dilatancy and failure of dense granular soils. Géothechnique 48, 465–481 (1998).

    Google Scholar 

  13. Komatsu T.S., Inagaki S., Nakagawa N. and Nasuno S., Creep motion in a granular pile exhibiting steady surface flow. Phys. Rev. Lett. 86, 1757–1760 (2001).

    Article  Google Scholar 

  14. Daerr A. and Douady S., Two types of avalanches in granular media. Nature 399, 241–243 (1999).

    Article  Google Scholar 

  15. Nedderman R.M. and Laohakul C., The thickness of the shear zone of flowing granular materials. Powder Technol. 25, 91–100 (1980).

    Article  Google Scholar 

  16. Bridgewater J., On the width of failure zones Géothechnique 30, 533–536 (1980).

    Google Scholar 

  17. Muhlhaus H.B. and Vardoulakis I., The thickness of shear bands in granular materials. Géotechnique 37, 271–283 (1987).

    Article  Google Scholar 

  18. Pouliquen O. and Gutfraind R., Stress fluctuations and shear zones in quasistatic granular chute flows. Phys. Rev. E 53, 552–560 (1996).

    Article  Google Scholar 

  19. Howell D.W., Behringer R.P., and Veje C.T., Stress Fluctuations in a 2D Granular Couette Cell experiment: A Continuous Transition. Phys. Rev. Lett. 82, 5241–5244 (1999).

    Article  Google Scholar 

  20. Losert W., Bocquet L., Lubensky T.C., and Gollub J.P., Particle dynamics in sheared granular matter. Phys. Rev. Lett. 85, 1428–1431 (2000).

    Article  Google Scholar 

  21. Losert W. and Kwon G., Transient and steady-state dynamics of granular shear flow Adv. in Comp. Syst. 4, 369 (2001).

    Article  MATH  Google Scholar 

  22. Lätzel M., Luding S., Herrmann H.J., Howell D.W., and Behringer R.P., Comparing Simulation and Experiment of a 2D Granular Couette Shear Device Eur. Phys. J. E. 11, 325–333 (2003).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fenistein, D., van Hecke, M. (2005). Universal Wide Shear Zones in Granular Bulk Flow. In: Hoogendoorn, S.P., Luding, S., Bovy, P.H.L., Schreckenberg, M., Wolf, D.E. (eds) Traffic and Granular Flow ’03. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-28091-X_52

Download citation

Publish with us

Policies and ethics